Reprocessing of a physiological sensor

Information

  • Patent Grant
  • 12109021
  • Patent Number
    12,109,021
  • Date Filed
    Monday, September 26, 2022
    2 years ago
  • Date Issued
    Tuesday, October 8, 2024
    2 months ago
Abstract
Because reprocessing or refurbishing of physiological sensors reuses large portions of an existing sensor, the material costs for refurbishing sensors is significantly lower than the material costs for making an entirely new sensor. Typically, existing reprocessors replace only the adhesive portion of an adhesive physiological sensor and reuse the sensing components. However, re-using the sensing components can reduce the reliability of the refurbished sensor and/or reduce the number of sensors eligible for refurbishing due to out-of-specification sensor components. It is therefore desirable to provide a process for refurbishing physiological sensors that replaces the sensing components of the sensor. While sensing components are replaced, generally, sensor cable and/or patient monitor attachments are retained, resulting in cost savings over producing new sensors.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates to medical sensors and specifically to reprocessing or refurbishing of medical sensors.


BACKGROUND OF THE DISCLOSURE

Patient monitoring of various physiological parameters of a patient is important to a wide range of medical applications. Oximetry is one of the techniques that has developed to accomplish the monitoring of some of these physiological characteristics. It was developed to study and to measure, among other things, the oxygen status of blood. Pulse oximetry—a noninvasive, widely accepted form of oximetry—relies on a sensor attached externally to a patient to output signals indicative of various physiological parameters, such as a patient's constituents and/or analytes, including for example a percent value for arterial oxygen saturation, carbon monoxide saturation, methemoglobin saturation, fractional saturations, total hematocrit, billirubins, perfusion quality, or the like. A pulse oximetry system generally includes a patient monitor, a communications medium such as a cable, and/or a physiological sensor having light emitters and a detector, such as one or more LEDs and a photodetector. The sensor is attached to a tissue site, such as a finger, toe, ear lobe, nose, hand, foot, or other site having pulsatile blood flow which can be penetrated by light from the emitters. The detector is responsive to the emitted light after attenuation by pulsatile blood flowing in the tissue site. The detector outputs a detector signal to the monitor over the communication medium, which processes the signal to provide a numerical readout of physiological parameters such as oxygen saturation (SpO2) and/or pulse rate.


High fidelity pulse oximeters capable of reading through motion induced noise are disclosed in U.S. Pat. Nos. 7,096,054, 6,813,511, 6,792,300, 6,770,028, 6,658,276, 6,157,850, 6,002,952 5,769,785, and 5,758,644, which are assigned to Masimo Corporation of Irvine, CA (“Masimo Corp.”) and are incorporated by reference herein. Advanced physiological monitoring systems can incorporate pulse oximetry in addition to advanced features for the calculation and display of other blood parameters, such as carboxyhemoglobin (HbCO), methemoglobin (HbMet), total hemoglobin (Hbt), total Hematocrit (Hct), oxygen concentrations, glucose concentrations, blood pressure, electrocardiogram data, temperature, and/or respiratory rate as a few examples. Typically, the physiological monitoring system provides a numerical readout of and/or waveform of the measured parameter. Advanced physiological monitors and multiple wavelength optical sensors capable of measuring parameters in addition to SpO2, such as HbCO, HbMet and/or Hbt are described in at least U.S. patent application Ser. No. 11/367,013, filed Mar. 1, 2006, titled Multiple Wavelength Sensor Emitters and U.S. patent application Ser. No. 11/366,208, filed Mar. 1, 2006, titled Noninvasive Multi-Parameter Patient Monitor, assigned to Masimo Laboratories, Inc. and incorporated by reference herein. Further, noninvasive blood parameter monitors and optical sensors including Rainbow™ adhesive and reusable sensors and RAD57™ and Radical-7™ monitors capable of measuring SpO2, pulse rate, perfusion index (PI), signal quality (SiQ), pulse variability index (PVI), HbCO and/or HbMet, among other parameters, are also commercially available from Masimo Corp.


In order reduce costs, some hospitals or medical institutions choose to purchase refurbished or reprocessed sensors. Typically, these sensors are single-use sensors and are meant to be used by a single patient. Refurbishers receive used sensors, usually from the hospitals, and replace adhesive portions of the sensor while keeping the sensing components unchanged. However, such re-use of the sensing components can decrease reliability of the readings of the sensors as the sensing components of the sensor suffer from wear, damage, misalignment, or the like due to use.


Typically, for adhesive physiological sensors, reprocessors simply replace the adhesive tape on the sensors without replacing additional components. This could potentially lead to sensors with degraded sensing performance. On the other hand, if the reprocessor institutes strict functional testing procedures, sensors can be disposed of even if a large portion of a sensor, other than the sensing component, is still within specification.


SUMMARY OF THE DISCLOSURE

Because reprocessing or refurbishing of physiological sensors reuses large portions of an existing sensor, the material costs for refurbishing sensors is significantly lower than the material costs for making an entirely new sensor. Typically, existing reprocessors replace only the adhesive portion of an adhesive physiological sensor and reuse the sensing components. However, re-using the sensing components can reduce the reliability of the refurbished sensor and/or reduce the number of sensors eligible for refurbishing due to out-of-specification sensor components. It is therefore desirable to provide a process for refurbishing physiological sensors that replaces the sensing components of the sensor. While sensing components are replaced, generally, sensor cable and/or patient monitor attachments are retained, resulting in cost savings over producing new sensors.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A illustrates an example non-invasive physiological sensor which can be used with a sensor refurbishing process according to embodiments of the disclosure;



FIGS. 1B and 1C illustrate the attachment of a new sensor assembly to a reused sensor cable of FIG. 1A;



FIG. 2 illustrates a perspective view of a sensor embodiment having a detachable sensor assembly usable in a refurbishing process;



FIG. 3A illustrates an exploded perspective view of a disposable sensor assembly usable in a refurbishing process;



FIG. 3B illustrates the disposable sensor of FIG. 3A attached to a tissue site and a cable assembly



FIG. 4 illustrates a perspective view of a neonate sensor assembly with a detachable sensor portion usable in a refurbishing process;



FIGS. 5A and 5B illustrate flow charts for embodiments of a refurbishing process for replacing sensor components;



FIG. 6 illustrates another embodiment of a refurbishing process for sensors comprising replaceable modular assemblies;



FIG. 7 illustrates a perspective view of one embodiment of reusable sensor usable in a refurbishing process according to embodiments of the disclosure;



FIG. 8A illustrates an exploded perspective view of an embodiment of a disposable sensor 800 usable in a refurbishing process according to embodiments of the disclosure;



FIG. 8B illustrates a perspective view of the bottom side of the sensor portion of FIG. 8A; and



FIGS. 9A and 9B illustrate embodiments of mechanical sensor component holders.





DETAILED DESCRIPTION

Reprocessing includes operations performed to render a used reusable or single-use device patient-ready or to allow an unused product that has been opened to be patient-ready. Reprocessing can be done in-house or by a third-party reprocessor. Whether reprocessesing is done in-house or through a third party, reprocessing generally involves cleaning, sterilization, function testing and/or replacement of components.


In this context, cleaning can mean removal of visible contaminants and environmental debris (including microscopic particles of tissue, body waste, body fluids, dirt, and/or dust). Function testing verifies that a device will perform as intended. Sterilization in the context of reprocessing can mean meeting domestic and/or international sterilization standards, such as meeting a sterility assurance level of 10-6 (i.e. a theoretical one in a million chance that an organism could survive).



FIG. 1A illustrates a top view of an example non-invasive physiological sensor 100 which can be used with a sensor refurbishing process according to embodiments of the disclosure. In certain embodiments, the sensor 100 may allow for the measurement of blood constituents and related parameters, including oxygen saturation, HbCO, HBMet and/or pulse rate. The sensor 100 may advantageously be a non-invasive optical sensor capable of emitting light and outputting one or more signals indicative of attenuation of that light by body tissue. For example, the sensor 100 may be a pulse oximeter sensor including, for example, a red emitter, an infrared emitter, and a photodiode detector. The sensor 100 may be attached to a patient's finger, earlobe, or foot. For a finger, the sensor can be configured so that the emitters project light from one side of the finger, through the outer tissue of the finger, and into the blood vessels and capillaries contained inside. The photodiode can be positioned at the opposite side of the finger to detect the emitted light as it emerges from the outer tissues of the finger. The photodiode can generate a signal based on the emitted light and relay that signal to the sensor 100. The sensor 100 can determine blood oxygen saturation by, for example, computing the differential absorption by the arterial blood of the two or more wavelengths emitted by the sensor.


In certain embodiments, the sensor 100 can be adapted to attach to a tissue site. The sensor 100 can include a sensor assembly 105, a patient monitor connector 110, a sensor cable 115 operatively connecting the sensor assembly 105 and a monitor connector 110. The monitor connector 110 can be adapted to connect to a patient monitor which may include a display providing readouts of measured parameters, such as oxygen saturation, pulse rate, HbCO and/or HbMet to name a few. The sensor assembly 105 can comprise one or more emitters 120 and a detector 125. In certain embodiments, the sensor 100 utilizes an adhesive attachment mechanism 130, such as an adhesive layer, for attaching the sensor 100 to a tissue site. In some embodiments, the sensor can be disposable, re-usable, or partially re-usable and partially disposable.


After the sensor 100 is used on a patient, the used sensor can be refurbished through a refurbishing process. Typically, refurbishing or reprocessing of medical sensors can include disassembling sensors into sub-components, testing sensor components, replacing sensor components, reassembly of the components, testing of the sensor and/or sterilization of the sensor. In some embodiments of the reprocessing process, the entire sensor assembly 105 can be replaced, reusing only the cable 115 and monitor connector 110. In certain embodiments, the cable 115 and/or monitor connector 110 can also be replaced. In some embodiments, only portions of the sensor assembly 105, such as the sensing components, 120, 125 are replaced.


In some embodiments, the whole sensor assembly 105 is replaced. Replacing the whole sensor assembly 105 can reduce or eliminate the need to disassemble the sensor and/or test components during the refurbishing process. For example, the replacement sensor can be pre-tested and/or calibrated beforehand, such as during production, so that testing the sensor components is not required. During reprocessing, the old sensor assembly 105 can be detached from the cable 115, for example, by cutting along a section of the cable 140. The cable 115 can be cut along any section, but preferably is cut near the sensor assembly 105 so that a larger portion of the cable 115 can be reused. After the old sensor assembly 105 is removed, a new sensor assembly is attached to the old cable and tested to determine whether the sensor 100 operates correctly.


In some embodiments, the new sensor assembly includes a cable portion, typically of short length, for attachment to a reprocessed cable. In some embodiments, the cable portion can terminate in a connector for simplified attachment to the reprocessed cable.



FIGS. 1B and 1C illustrate the attachment of a new sensor assembly to a reused sensor cable 115 of FIG. 1A. The sensor cable 115 having a number of wires 145 is attached to a new sensor assembly having a number of wires 155. In one embodiment, the sensor assembly 150 includes a cable portion extending from the sensor assembly containing the sensor assembly wires 155. In one embodiment, at least part of the cable covering the wires 145, 155 is removed to expose the wires 145, 155 for easier access.


In FIG. 1C, the wires 145, 155 are attached to operatively connect the sensor cable 115 and the sensor assembly 150. The connection can be both mechanical and electrical. Attachment of the wires 145, 155 can be through soldering, pressure, tying, adhesive and/or the like. A cable covering 160 can be applied over the connection area to cover exposed wires and/or strengthen the mechanical connection between the cable 115 and the sensor assembly 150.


Although disclosed with reference to the above sensor 100, an artisan will recognize from the disclosure herein a wide variety of oximeter sensors, optical sensors, noninvasive sensors, medical sensors, disposable sensors, reusable sensors or the like that may benefit from embodiments of the refurbishing process disclosed herein.



FIG. 2 illustrates a perspective view of a sensor embodiment 200 having a detachable sensor assembly 205 usable in a refurbishing process. The sensor 200 includes the sensor assembly 205 and a cable assembly 207. The sensor assembly 205 includes a sensor, a cable 215 and a connector 220. The cable assembly includes a connector 245, a cable 250 and a monitor connector 255. The sensor connector 220 is attachable to the cable connector 245. The connectors 220, 245 form a releasable mechanical and electrical connection between the sensor assembly and the cable assembly. The connectors 220, 245 can include pins 230 and corresponding pin connectors for forming an electrical connection between the sensor portion 205 and cable portion 207. Connector assemblies are disclosed in U.S. application Ser. No. 12/248,856 assigned to Masimo Corp. and is incorporated by reference herein.


During reprocessing, the connectors 220, 245 facilitate replacement of either the sensor assembly 205 or the cable assembly 207 of the sensor 200. For example, the sensor portion 205 can be replaced whole by detaching the old sensor assembly 205 from the cable assembly 207 via the sensor connector 220 and replacing with a new sensor assembly by attaching the new sensor connector to the old cable connector 245. The use of a connector also allows replacement of the sensor assembly 205 on-site, for example at a hospital. The sensor assembly 205 can then be sent for refurbishing without also sending the cable assembly, thus reducing shipping costs.



FIG. 3A illustrates an exploded perspective view of a disposable sensor assembly 300. The sensor assembly includes one or more tape layers 305, 315 and a sensor portion 310. The sensor portion 310 includes a base material 318, one or more sensing components 320, 325 such as emitters and/or detectors, and an electrical connector 330. The sensor portion can further include a sensor cover 345 for one or more of the sensing components. Sensor components can be replaced individually or together as part of the sensor portion 310.


In one embodiment, the base material 318, preferably a flexible material, comprises a flex circuit. The flex circuit can comprise a copper/MYLAR™ or copper/Capton™ laminant, or similar material. Alternatively, the flex circuit can be formed by depositing a conductive ink on MYLAR™, polyester, or plastic film. The flex circuit allows electrical communication between the sensing components 320, 325 and electrical connector 330 through the conductive material on the flex circuit.


The sensing components 320, 325 can be attached to the base material 318 through pressure sensitive adhesive (PSA), solder, clip holder, pressure fit or the like. In one embodiment, the emitter and detector are placed such that the transmission and detection field of view are through detector and emitter windows formed on the base material.


In one embodiment, the sensing components 320, 325 are attached to the flex-circuit using pressure or thermally sensitive adhesive configured to provide a temporary bond, advantageously allowing the sensing components 320, 325 to be detached from the sensor portion 310 by pulling the sensing components from the base material 318. As will be apparent, other attachment methods can be used that facilitate removal of sensor components in order to simplify the refurbishing process, such as nodular metal paste, mechanical attachments, or the like.


In another embodiment, the sensing components are attached to the flex-circuit using low temperature solder paste. The sensing components can be desoldered from the flex circuit. The solder can be reheated and reused or new solder can be dispensed on contacts for the detector connections and/or emitter connections in order to attach new sensing components. The solder operation is preferably performed through a direct heat reflow of the low temperature solder.


The sensor portion 310 can further comprise a flex circuit shield including an insulator film, conductive and/or non-conductive PSA. When attached to a flex circuit, a flex circuit shield can insulate the signal traces of the flex circuit from the metallization of the flex circuit shield to prevent short circuits. The sensor portion 310 can be attached to a base layer 305. In one embodiment, the base layer comprises Avery base material. Each side of the base layer can be coated with PSA adhesive.


A face stock 315 can be attached to the base layer 305 such that the sensor portion 310 is secured between the face stock and the base material. In one embodiment, the face stock 315 is advantageously constructed from a non-woven, flexible material, though woven materials can be used. Adhesive can be applied on one side of the face stock. Pressure applied to the face stock 315 bonds the face stock with the base material 305 and/or sensor portion 310. Preferably, the face stock has an aperture 340 to allow a portion of the cover 345 to protrude through the face stock. A release liner can be placed on the other side of the base material from the face stock in order to protect adhesive on that side. The release liner can be removed when the sensor is attached to a patient.


During reprocessing, the sensor assembly 300 can be disassembled into its constituent parts. For example, the face stock 315 can be detached from the base material 305 to expose the sensor portion 310. The sensing components 320, 325 on the sensor portion can be replaced individually or together as part of the sensor portion 310. In one embodiment, the sensing components 320, 325 are replaced individually with at least some of the sensor portion 310 retained. After replacing the sensing components, the sensor can be reassembled. The base layer 305, face stock 315, and/or cover 345 can be replaced or reused. New adhesive can be applied to the sensor assembly 300 and a release liner attached. Once reassembled, the sensor assembly 300 can be sterilized and then packaged for use.



FIG. 3B illustrates the disposable sensor of FIG. 3A attached to a tissue site and a cable assembly. The cable assembly 350 comprises a cable and a connector attachable to the sensor assembly 300 via its sensor connector 330. The cable assembly 350 operatively connects the sensor assembly 300 to a patient monitor. The cable portion 350 can also be reprocessed with the sensor assembly 300 and replaced if defective. However, as the cable portion generally receives less wear than the sensor assembly 300, the cable portion can likely be reused without replacement of components, reducing the cost of reprocessing the sensor.



FIG. 4 illustrates a perspective view of a neonate sensor assembly 400 with a detachable sensor portion 405 usable in a refurbishing process. The sensor includes the sensor portion 405, an elongated body 410, and a connector portion 412. The sensor portion 405 incorporates one or more emitters 420, a detector assembly 425, and a sensor portion pinout 435. The sensor portion pinout 430 is configured to connect with a body pinout 430 so as to mechanically and electrically connect the sensor to the body 410. Connection can be accomplished by solder, adhesive, mechanically such as by tab, sleeve or clip, or by other connection mechanism. The body 410 includes signal traces between the sensor portion pinout 435 and the connector portion 412. The connector portion 412 has a plug portion configured to insert into a mating patient cable connector so as to mechanically and electrically connect the sensor 400 to a patient cable, for example. The connector portion 412 is configured with a connector tab 415 supporting sensor pinouts 440.


As the sensor portion 405 is detachable from the elongate body 410, reprocessing of the sensor is simplified. For example, the sensor portion 405 can be detached from the elongate body and replaced with a new sensor portion 405. By incorporating sensing elements, such as the emitters 420 and the detector 410 on the detachable modular portion, the sensing elements can be easily replaced as a whole rather than individually, thus reducing refurbishing costs and refurbishing time. In one embodiment, the sensing elements can be pre-tested in order to eliminate or reduce the need for testing the sensor elements.



FIGS. 5A, 5B and 6 illustrate flow charts for embodiments of a refurbishing process replacing sensor components. The refurbishing process can be used for the sensors described in FIGS. 1A-4 and FIGS. 7-9B, as well as other types of sensors. In some embodiments, the refurbishing process may be performed by a computing system comprising one or more computing devices, the one or more computing devices configured to perform one or more of the logical blocks described below. The logical blocks of the refurbishing process can be embodied as software, hardware, or a combination of software and hardware of the computing system. For example, the refurbishing process may be embodied in software stored on non-transitory, physical computer storage such as a hard drive, optical disk or flash memory. In some embodiments, the computing system may be part of a refurbishing system comprising one or more machines configured to dissemble sensors, replace sensor components, test sensors and/or sterilize sensors. In one embodiment, the computing system directs or monitors the operation of the refurbishing machines. In one embodiment, the machines operate automatically. In some embodiments, one or more logical blocks may be performed by or directed by a person. For example, the entire refurbishing process may be performed by or directed by one or more persons.


In FIG. 5A the process 500 begins at block 505 with disassembling the sensor, in whole or in part, into subcomponents or individual components. Sensors can be disassembled through desoldering, removing adhesive, detaching connectors, or the like.


At bock 510, the sensor components can optionally be tested. For example, sensor components can be tested to determine if performance is within specification. Sensor components within specification can be reused. Testing of components can be skipped to reduce cost and/or speed up the refurbishing process.


In one embodiment, testing can be conducted before disassembly to determine if the sensor as a whole is within specification. Generally, sensors need to meet specified sensor performance criteria determined by the manufacturer or purchaser. By testing before disassembly, out-of-specification sensing components can be detected beforehand and the sensing portion can be replaced as a whole without disassembly. In contrast, by testing after disassembly, a specific out-of-spec component can be identified, allowing reuse of the other parts of the sensing portion that are still in-spec. The timing of the testing can be chosen based on the costs of disassembly versus the savings from reusing still in-specification components. After block 510, the refurbishing process proceeds to block 515.


At block 515, sensor components are replaced. In one embodiment, sensor components are replaced if determined to be out-of-spec. In another embodiment, no testing is performed and pre-determined sensor components are replaced. For example, as part of the refurbishing process, all or some of the sensing components can be replaced without testing. Advantageously, predetermined replacement of components can eliminate or reduce the need for testing or disassembly. After block 515, the refurbishing process proceeds to block 520.


At block 520, the sensor is reassembled. Reassembly can comprise soldering, adhesively connecting, and/or mechanically connecting various components together. Typically, the assembled sensor comprises both new components and at least some of the original components. After block 520, the refurbishing process proceeds to block 525.


At block 525, the assembled sensor is optionally tested to determine if the sensor works and is within specification for the particular sensor type. Testing can include testing of the assembly of the sensor components, testing of the electrical connection between sensor components, testing of sensor performance, and/or the like. If the test fails, the sensor can reenter the refurbishing process at block 505 or can be disposed of. If the sensor passes the test, the refurbishing process proceeds to block 530. In some embodiments, testing may be unnecessary during reprocessing, such as when the sensor components are pre-tested before assembling the sensor.


At block 530, the sensor is sterilized. Sterilization can occur before or after the sensor is packaged for use. The sensor can also be cleaned before sterilization. After sterilization, the sensor can be packaged for use, ending the refurbishing process.



FIG. 5B generally illustrates the same process as FIG. 5A, except that optional block 510, testing of the sensor components, occurs before block 505, disassembling the sensor. Testing of the components can be individually, by group, or of the whole sensor. By testing the sensor components before dissembling the sensor, components that need to be replaced can be identified before disassembly, potentially reducing the number of components to be detached.



FIG. 6 illustrates another embodiment of a refurbishing process 600 for a sensor comprising replaceable modular assemblies. The refurbishing process can be used for the sensors described in FIGS. 1A-4 and FIGS. 7-9B, as well as other types of sensors. In one embodiment, the sensor is composed of modules, such as a sensor assembly and a cable assembly. In some embodiments, a sensor assembly comprises a modular sensor portion. The sensor portion can further comprise adhesive portions, a sensor body, and/or electrical or mechanical connectors. During reprocessing, the modular assembly is replaced. By replacing the modular assembly as a whole, the need for testing sensor components can be reduced or eliminated, thus reducing costs. For example, in FIG. 1A, the sensor assembly 100 can be replaced as whole. Likewise with the sensor assembly 205 of FIG. 2, the sensor portion 310 of FIG. 3, and the sensor portion 405 of FIG. 4. Furthermore, modular assemblies can be pre-tested during their production, simplifying the refurbishing process.


At block 605, the refurbishing process begins by detaching the modular assembly from the sensor. In some embodiments, a sensor portion 405 (in FIG. 4) is detached from a sensor assembly 400. In some embodiments, a sensor assembly 105 (in FIG. 1) is detached from a cable assembly 140, for example, by cutting the sensor assembly from the cable. In some embodiments, detaching of the modular assembly can be simplified by using a connector 220 (in FIG. 2), 405 (in FIG. 4). After block 605, the refurbishing process proceeds to block 610.


At block 610, the modular assembly is attached to the sensor. The attached modular assembly can be a sensor portion attached to a sensor assembly or a sensor assembly attached to a cable assembly. Typically, the assembled sensor comprises both new components and at least some of the original components. Generally, the cable assembly receives less wear and tear during use and is likely to perform within specification without replacement. However, in some situations, the cable assembly can be replaced in addition or instead of the sensor portion or assembly. Reattachment can be accomplished through use of a connector, splicing of wires, adhesive connection, soldering, or the like.


As replacement is accomplished by replacing groups of components, such as a sensor assembly, cable assembly, and/or a sensor portion, reassembly of the sensor is simplified in comparison to replacement of individual components. If component costs are cheap relative to assembly and disassembly cost, the simplified reassembly can reduce the costs of refurbishing. After block 610, the refurbishing process proceeds to block 620.


At block 620, the assembled sensor is optionally tested to determine if the sensor works and is within specification for the particular sensor type. Testing can include testing of the assembly of the sensor components, testing of the electrical connection between sensor components, testing of sensor performance, and/or the like. If the test fails, the sensor can reenter the refurbishing process at block 605 or can be disposed of. If the sensor passes the test, the refurbishing process proceeds to block 625. In some embodiments, testing during reprocessing may be unnecessary, such as when the sensor portion is pre-tested before assembling the sensor.


At block 625, the sensor is sterilized. Sterilization can occur before or after the sensor is packaged for use. The sensor can also be cleaned before sterilization. Once packaged, the sensor can be delivered to an end-user.



FIG. 7 illustrates a perspective view of one embodiment of reusable sensor 700 usable in a refurbishing process according to embodiments of the disclosure. The reusable sensor can be a clip-type sensor including an upper housing 722, a lower housing 724 and a hinge element 726. The upper and lower housings 722, 724 house electrical and/or optical components (not shown) of the non-invasive physiological sensor 720. For example, the upper and lower housings 722, 724 can house sensing elements 730, 732, such as one or more light emitters or LEDs and a detector or light sensor. The sensor 720 can be connected to a patient monitor via a cable 728. For example, the detector outputs a signal to the monitor over the cable 728 which then processes the signal to provide a numerical readout of physiological parameters such as oxygen saturation (SpO2) and pulse rate.


During refurbishing, one or both the sensing elements 730, 732 can be removed and/or replaced from the reusable sensor 700. The sensor elements can be tested separately or as part of the reusable sensor. Other components of the reusable sensor can also be replaced during the refurbishing process,



FIG. 8A illustrates an exploded perspective view of an embodiment of a disposable sensor 800 usable in a refurbishing process according to embodiments of the disclosure. The sensor includes one or more tape layers 805, 810, a cable assembly 815, and a sensor portion 818. The cable assembly 815 can terminate at an electric connector 816 and can be attached to one of the tape layers 805. The sensor portion 818 includes a base material 819, one or more sensing components 820, 825 such as emitters and/or detectors, and an electrical connector 830. Sensor components can be replaced individually or together as part of the sensor portion 818. The sensor portion's electrical connector 830 can attach to the cable assembly's electrical connector 816 to form an electrical connection between the sensor portion and the cable. The sensor portion 818 can be attached to the cable assembly 815 and/or one or more tape layers 805, 810 by various ways, such as adhesive, solder, clip holder, pressure fit and/or the like. In one embodiment, the sensor assembly 815 and sensor portion 818 are sandwiched between a first layer 805 and a second 810 tape layer.


As the sensor portion 818 is detachable from the cable assembly 815 and/or tape layers 805, 810, reprocessing of the sensor is simplified. For example, the sensor portion 818 can be detached from the elongate body and replaced with a new sensor portion. By incorporating sensing components 820, 825, such as emitters and/or detectors on the detachable modular portion, the sensing components can be easily replaced as a whole rather than individually, thus reducing refurbishing costs and refurbishing time. In one embodiment, the sensing components can be pre-tested in order to eliminate or reduce the need for testing the sensing components during the refurbishing process.



FIG. 8B illustrates a perspective view of the bottom side of the sensor portion 818 of FIG. 8A. The electrical connector 830 is shown on the bottom side of the sensor portion. However, the electrical connector can also be placed on the top side.



FIGS. 9A and 9B illustrate embodiments of mechanical sensor component holders. FIG. 9A illustrates a cross-sectional view of a sensor component attached to a sensor via a clip holder. The sensor component 905 is held in place by one or more clip arms 910 extending over the sensor component. The sensor component 905 can be detached for replacement by pushing the clip arms 910 outward and removing the sensor component 905.



FIG. 9B illustrates a cross-sectional view of a sensor component attached to a sensor via a pressure or snug fit holder. The sides of the holder 915 are biased inwards, holding the sensor component together via pressure. The sensor component 905 can be detached for replacement by pushing the sides of the holder 915 outward and removing the sensor component 905.


The reusable nature of the mechanical holders allows replacement of the sensor component without requiring new attachment mechanisms, such as replacement adhesive or solder, thus reducing refurbishing costs and/or complexity. As will be apparent, other types of mechanical holders can be used and mechanical holders can be used with both disposable and reusable sensors.


Depending on the embodiment, certain acts, events, or functions of any of the algorithms described herein can be performed in a different sequence, can be added, merged, or left out all together (e.g., not all described acts or events are necessary for the practice of the algorithms). Moreover, in certain embodiments, acts or events can be performed concurrently, e.g., through multi-threaded processing, interrupt processing, or multiple processors or processor cores or on other parallel architectures, rather than sequentially.


The various illustrative logical blocks, modules, and algorithm steps described in connection with the embodiments disclosed herein can be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. The described functionality can be implemented in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the disclosure.


The various illustrative logical blocks and modules described in connection with the embodiments disclosed herein can be implemented or performed by a machine, such as a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor can be a microprocessor, but in the alternative, the processor can be a controller, microcontroller, or state machine, combinations of the same, or the like. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.


The steps of a method, process, or algorithm described in connection with the embodiments disclosed herein can be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of computer-readable storage medium known in the art. An exemplary storage medium can be coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium can be integral to the processor. The processor and the storage medium can reside in an ASIC. The ASIC can reside in a user terminal. In the alternative, the processor and the storage medium can reside as discrete components in a user terminal. Data may be stored in various types of data stores, such as tables, files, databases, directories or the like.


Conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list.


Various reprocessing and refurbishing processes have been disclosed in detail in connection with various embodiments. These embodiments are disclosed by way of examples only and are not to limit the scope of the claims that follow. Indeed, the novel methods and systems described herein can be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein can be made without departing from the spirit of the inventions disclosed herein. The claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of certain of the inventions disclosed herein. One of ordinary skill in the art will appreciate the many variations, modifications and combinations. For example, the various embodiments of the reprocessing and refurbishing process can be used with sensors that can measure any type of physiological parameter and with both disposable and reusable sensors.

Claims
  • 1. A reprocessed physiological sensor comprising: a first physiological sensor component that is not a replacement physiological sensor component;a replacement physiological sensor component that is a replacement for a previously used physiological sensor component, wherein a performance of the replacement physiological sensor component meets a specification of the reprocessed physiological sensor, and wherein a performance of the previously used physiological sensor component does not satisfy a threshold; anda used cable component including: at a first end, a monitor connector; andat a second end from which the previously used physiological sensor component was cut, a new attachment via a wire portion to the first and replacement physiological sensor components.
  • 2. The reprocessed physiological sensor of claim 1, wherein the new attachment of the replacement physiological sensor component includes a spliced connection.
  • 3. The reprocessed physiological sensor of claim 1, wherein the new attachment of the replacement physiological sensor component includes connecting a cut connection.
  • 4. The reprocessed physiological sensor of claim 1, wherein the replacement physiological sensor component includes at least one of an emitter or a detector.
  • 5. The reprocessed physiological sensor of claim 1, wherein the reprocessed physiological sensor is a pulse oximetry sensor.
  • 6. The reprocessed physiological sensor of claim 1, wherein the used cable component is configured to be sterilized in preparation for use.
  • 7. A method for reprocessing a previously used physiological sensor into a reprocessed physiological sensor, the method comprising: determining that a performance of a previously used physiological sensor component of the previously used physiological sensor does not satisfy a threshold;determining that a performance of a replacement physiological sensor component meets a specification of the reprocessed physiological sensor; andreplacing the previously used physiological sensor component with the replacement physiological sensor component,wherein a used cable component of the reprocessed physiological sensor includes: at a first end, a monitor connector; andat a second end from which the previously used physiological sensor component was cut, a new attachment via a wire portion to the replacement physiological sensor component and a first physiological sensor component of the reprocessed physiological sensor that is not a replacement physiological sensor component.
  • 8. The method of claim 7, wherein the new attachment of the replacement physiological sensor component includes a spliced connection.
  • 9. The method of claim 7, wherein the new attachment of the replacement physiological sensor component includes connecting a cut connection.
  • 10. The method of claim 7, wherein the replacement physiological sensor component includes at least one of an emitter or a detector.
  • 11. The method of claim 7, wherein the reprocessed physiological sensor is a pulse oximetry sensor.
  • 12. The method of claim 7, wherein the used cable component is configured to be sterilized in preparation for use.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/911,781, filed Jun. 25, 2020, titled “REPROCESSING OF A PHYSIOLOGICAL SENSOR,” which application is a continuation of U.S. patent application Ser. No. 15/592,945, filed May 11, 2017, titled “REPROCESSING OF A PHYSIOLOGICAL SENSOR,” which application is a continuation of U.S. patent application Ser. No. 14/078,843, filed Nov. 13, 2013, titled “REPROCESSING OF A PHYSIOLOGICAL SENSOR,” which application is a continuation of U.S. patent application Ser. No. 13/041,803, filed Mar. 7, 2011, titled “REPROCESSING OF A PHYSIOLOGICAL SENSOR,” which claims the benefit of priority under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 61/311,668, filed Mar. 8, 2010, titled “REPROCESSING OF A PHYSIOLOGICAL SENSOR.” Each of the above identified applications is hereby incorporated by reference in its entirety herein.

US Referenced Citations (1032)
Number Name Date Kind
4960128 Gordon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
5041187 Hink et al. Aug 1991 A
5069213 Hink et al. Dec 1991 A
5163438 Gordon et al. Nov 1992 A
5319355 Russek Jun 1994 A
5337744 Branigan Aug 1994 A
5341805 Stavridi et al. Aug 1994 A
D353195 Savage et al. Dec 1994 S
D353196 Savage et al. Dec 1994 S
5377676 Vari et al. Jan 1995 A
D359546 Savage et al. Jun 1995 S
5431170 Mathews Jul 1995 A
5436499 Namavar et al. Jul 1995 A
D361840 Savage et al. Aug 1995 S
D362063 Savage et al. Sep 1995 S
5452717 Branigan et al. Sep 1995 A
D363120 Savage et al. Oct 1995 S
5456252 Vari et al. Oct 1995 A
5479934 Imran Jan 1996 A
5482036 Diab et al. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5533511 Kaspari et al. Jul 1996 A
5534851 Russek Jul 1996 A
5561275 Savage et al. Oct 1996 A
5562002 Lalin Oct 1996 A
5590649 Caro et al. Jan 1997 A
5602924 Durand et al. Feb 1997 A
5632272 Diab et al. May 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645440 Tobler et al. Jul 1997 A
5671914 Kalkhoran et al. Sep 1997 A
5685299 Diab et al. Nov 1997 A
5726440 Kalkhoran et al. Mar 1998 A
D393830 Tobler et al. Apr 1998 S
5743262 Lepper, Jr. et al. Apr 1998 A
5747806 Khalil et al. May 1998 A
5750994 Schlager May 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5782757 Diab et al. Jul 1998 A
5785659 Caro et al. Jul 1998 A
5791347 Flaherty et al. Aug 1998 A
5810734 Caro et al. Sep 1998 A
5823950 Diab et al. Oct 1998 A
5830131 Caro et al. Nov 1998 A
5833618 Caro et al. Nov 1998 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5890929 Mills et al. Apr 1999 A
5904654 Wohltmann et al. May 1999 A
5919134 Diab Jul 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5987343 Kinast Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5997343 Mills et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6010937 Karam et al. Jan 2000 A
6011986 Diab et al. Jan 2000 A
6014576 Raley Jan 2000 A
6027452 Flaherty et al. Feb 2000 A
6036642 Diab et al. Mar 2000 A
6040578 Malin et al. Mar 2000 A
6045509 Caro et al. Apr 2000 A
6066204 Haven May 2000 A
6067462 Diab et al. May 2000 A
6081735 Diab et al. Jun 2000 A
6088607 Diab et al. Jul 2000 A
6104846 Hodgson et al. Aug 2000 A
6110522 Lepper, Jr. et al. Aug 2000 A
6115673 Malin et al. Sep 2000 A
6124597 Shehada et al. Sep 2000 A
6128521 Marro et al. Oct 2000 A
6129675 Jay Oct 2000 A
6144868 Parker Nov 2000 A
6151516 Kiani-Azarbayjany et al. Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6184521 Coffin, IV et al. Feb 2001 B1
6206830 Diab et al. Mar 2001 B1
6229856 Diab et al. May 2001 B1
6232609 Snyder et al. May 2001 B1
6236872 Diab et al. May 2001 B1
6241683 Macklem et al. Jun 2001 B1
6253097 Aronow et al. Jun 2001 B1
6255708 Sudharsanan et al. Jul 2001 B1
6256523 Diab et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6280381 Malin et al. Aug 2001 B1
6285896 Tobler et al. Sep 2001 B1
6301493 Marro et al. Oct 2001 B1
6308089 von der Ruhr et al. Oct 2001 B1
6317627 Ennen et al. Nov 2001 B1
6321100 Parker Nov 2001 B1
6325761 Jay Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6360114 Diab et al. Mar 2002 B1
6368283 Xu et al. Apr 2002 B1
6371921 Caro et al. Apr 2002 B1
6377829 Al-Ali Apr 2002 B1
6388240 Schulz et al. May 2002 B2
6397091 Diab et al. May 2002 B2
6411373 Garside et al. Jun 2002 B1
6415167 Blank et al. Jul 2002 B1
6430437 Marro Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6463311 Diab Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6487429 Hockersmith et al. Nov 2002 B2
6501975 Diab et al. Dec 2002 B2
6505059 Kollias et al. Jan 2003 B1
6515273 Al-Ali Feb 2003 B2
6519487 Parker Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6534012 Hazen et al. Mar 2003 B1
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6587196 Stippick et al. Jul 2003 B1
6587199 Luu Jul 2003 B1
6595316 Cybulski et al. Jul 2003 B2
6597932 Tian et al. Jul 2003 B2
6597933 Kiani et al. Jul 2003 B2
6606511 Ali et al. Aug 2003 B1
6632181 Flaherty et al. Oct 2003 B2
6635559 Greenwald et al. Oct 2003 B2
6639668 Trepagnier Oct 2003 B1
6640116 Diab Oct 2003 B2
6640117 Makarewicz et al. Oct 2003 B2
6643530 Diab et al. Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6654624 Diab et al. Nov 2003 B2
6658276 Kiani et al. Dec 2003 B2
6661161 Lanzo et al. Dec 2003 B1
6671531 Al-Ali Dec 2003 B2
6676600 Conero et al. Jan 2004 B1
6678543 Diab et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6697656 Al-Ali Feb 2004 B1
6697657 Shehada et al. Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6721582 Trepagnier et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6728560 Kollias et al. Apr 2004 B2
6735459 Parker May 2004 B2
6738652 Mattu et al. May 2004 B2
6745060 Diab et al. Jun 2004 B2
6760607 Al-Ali Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6788965 Ruchti et al. Sep 2004 B2
6792300 Diab et al. Sep 2004 B1
6813511 Diab et al. Nov 2004 B2
6816241 Grubisic Nov 2004 B2
6816741 Diab Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6830711 Mills et al. Dec 2004 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6852083 Caro et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6876931 Lorenz et al. Apr 2005 B2
6898452 Al-Ali et al. May 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6931268 Kiani-Azarbayjany et al. Aug 2005 B1
6934570 Kiani et al. Aug 2005 B2
6939305 Flaherty et al. Sep 2005 B2
6943348 Coffin, IV Sep 2005 B1
6950687 Al-Ali Sep 2005 B2
6956649 Acosta et al. Oct 2005 B2
6961598 Diab Nov 2005 B2
6970792 Diab Nov 2005 B1
6979812 Al-Ali Dec 2005 B2
6985764 Mason et al. Jan 2006 B2
6990364 Ruchti et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
6999904 Weber et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7015451 Dalke et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7030749 Al-Ali Apr 2006 B2
7039449 Al-Ali May 2006 B2
7041060 Flaherty et al. May 2006 B2
7044918 Diab May 2006 B2
7067893 Mills et al. Jun 2006 B2
D526719 Richie, Jr. et al. Aug 2006 S
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
D529616 Deros et al. Oct 2006 S
7132641 Schulz et al. Nov 2006 B2
7133710 Acosta et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7149561 Diab Dec 2006 B2
7153709 Purdy et al. Dec 2006 B1
7186966 Al-Ali Mar 2007 B2
7190261 Al-Ali Mar 2007 B2
7215984 Diab et al. May 2007 B2
7215986 Diab et al. May 2007 B2
7221971 Diab et al. May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7225007 Al-Ali et al. May 2007 B2
RE39672 Shehada et al. Jun 2007 E
7239905 Kiani-Azarbayjany et al. Jul 2007 B2
7245953 Parker Jul 2007 B1
7254429 Schurman et al. Aug 2007 B2
7254431 Al-Ali et al. Aug 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7272425 Al-Ali Sep 2007 B2
7274955 Kiani et al. Sep 2007 B2
D554263 Al-Ali et al. Oct 2007 S
7280858 Al-Ali et al. Oct 2007 B2
7289835 Mansfield et al. Oct 2007 B2
7292883 De Felice et al. Nov 2007 B2
7295866 Al-Ali Nov 2007 B2
7300630 Cronin et al. Nov 2007 B2
7328053 Diab et al. Feb 2008 B1
7332784 Mills et al. Feb 2008 B2
7340287 Mason et al. Mar 2008 B2
7341559 Schulz et al. Mar 2008 B2
7343186 Lamego et al. Mar 2008 B2
D566282 Al-Ali et al. Apr 2008 S
7355512 Al-Ali Apr 2008 B1
7356365 Schurman Apr 2008 B2
7371981 Abdul-Hafiz May 2008 B2
7373193 Al-Ali et al. May 2008 B2
7373194 Weber et al. May 2008 B2
7376453 Diab et al. May 2008 B1
7377794 Al-Ali et al. May 2008 B2
7377899 Weber et al. May 2008 B2
7383070 Diab et al. Jun 2008 B2
7395158 Monfre et al. Jul 2008 B2
7415297 Al-Ali et al. Aug 2008 B2
7428432 Ali et al. Sep 2008 B2
7438683 Al-Ali et al. Oct 2008 B2
7440787 Diab Oct 2008 B2
7454240 Diab et al. Nov 2008 B2
7467002 Weber et al. Dec 2008 B2
7469157 Diab et al. Dec 2008 B2
7471969 Diab et al. Dec 2008 B2
7471971 Diab et al. Dec 2008 B2
7483729 Al-Ali et al. Jan 2009 B2
7483730 Diab et al. Jan 2009 B2
7489958 Diab et al. Feb 2009 B2
7496391 Diab et al. Feb 2009 B2
7496393 Diab et al. Feb 2009 B2
D587657 Al-Ali et al. Mar 2009 S
7499741 Diab et al. Mar 2009 B2
7499835 Weber et al. Mar 2009 B2
7500950 Al-Ali et al. Mar 2009 B2
7509154 Diab et al. Mar 2009 B2
7509494 Al-Ali Mar 2009 B2
7510849 Schurman et al. Mar 2009 B2
7514725 Wojtczuk et al. Apr 2009 B2
7519406 Blank et al. Apr 2009 B2
7526328 Diab et al. Apr 2009 B2
D592507 Wachman et al. May 2009 S
7530942 Diab May 2009 B1
7530949 Al Ali et al. May 2009 B2
7530955 Diab et al. May 2009 B2
7563110 Al-Ali et al. Jul 2009 B2
7593230 Abul-Haj et al. Sep 2009 B2
7596398 Al-Ali et al. Sep 2009 B2
7606608 Blank et al. Oct 2009 B2
7618375 Flaherty et al. Nov 2009 B2
7620674 Ruchti et al. Nov 2009 B2
D606659 Kiani et al. Dec 2009 S
7629039 Eckerbom et al. Dec 2009 B2
7640140 Ruchti et al. Dec 2009 B2
7647083 Al-Ali et al. Jan 2010 B2
D609193 Al-Ali et al. Feb 2010 S
D614305 Al-Ali et al. Apr 2010 S
7696468 Lohmann Apr 2010 B2
7697966 Monfre et al. Apr 2010 B2
7698105 Ruchti et al. Apr 2010 B2
RE41317 Parker May 2010 E
RE41333 Blank et al. May 2010 E
7729733 Al-Ali et al. Jun 2010 B2
7734320 Al-Ali Jun 2010 B2
7761127 Al-Ali et al. Jul 2010 B2
7761128 Al-Ali et al. Jul 2010 B2
7764982 Dalke et al. Jul 2010 B2
D621516 Kiani et al. Aug 2010 S
7791155 Diab Sep 2010 B2
7801581 Diab Sep 2010 B2
7822452 Schurman et al. Oct 2010 B2
RE41912 Parker Nov 2010 E
7844313 Kiani et al. Nov 2010 B2
7844314 Al-Ali Nov 2010 B2
7844315 Al-Ali Nov 2010 B2
7865222 Weber et al. Jan 2011 B2
7873497 Weber et al. Jan 2011 B2
7880606 Al-Ali Feb 2011 B2
7880626 Al-Ali et al. Feb 2011 B2
7891355 Al-Ali et al. Feb 2011 B2
7894868 Al-Ali et al. Feb 2011 B2
7899507 Al-Ali et al. Mar 2011 B2
7899518 Trepagnier et al. Mar 2011 B2
7904132 Weber et al. Mar 2011 B2
7909772 Popov et al. Mar 2011 B2
7910875 Al-Ali Mar 2011 B2
7919713 Al-Ali et al. Apr 2011 B2
7937128 Al-Ali May 2011 B2
7937129 Mason et al. May 2011 B2
7937130 Diab et al. May 2011 B2
7941199 Kiani May 2011 B2
7951086 Flaherty et al. May 2011 B2
7957780 Lamego et al. Jun 2011 B2
7962188 Kiani et al. Jun 2011 B2
7962190 Diab et al. Jun 2011 B1
7976472 Kiani Jul 2011 B2
7988637 Diab Aug 2011 B2
7990382 Kiani Aug 2011 B2
7991446 Ali et al. Aug 2011 B2
8000761 Al-Ali Aug 2011 B2
8008088 Bellott et al. Aug 2011 B2
RE42753 Kiani-Azarbayjany et al. Sep 2011 E
8019400 Diab et al. Sep 2011 B2
8028701 Al-Ali et al. Oct 2011 B2
8029765 Bellott et al. Oct 2011 B2
8036727 Schurman et al. Oct 2011 B2
8036728 Diab et al. Oct 2011 B2
8046040 Ali et al. Oct 2011 B2
8046041 Diab et al. Oct 2011 B2
8046042 Diab et al. Oct 2011 B2
8048040 Kiani Nov 2011 B2
8050728 Al-Ali et al. Nov 2011 B2
RE43169 Parker Feb 2012 E
8118620 Al-Ali et al. Feb 2012 B2
8126528 Diab et al. Feb 2012 B2
8128572 Diab et al. Mar 2012 B2
8130105 Al-Ali et al. Mar 2012 B2
8145287 Diab et al. Mar 2012 B2
8150487 Diab et al. Apr 2012 B2
8152441 Hofmann Apr 2012 B2
8175672 Parker May 2012 B2
8180420 Diab et al. May 2012 B2
8182443 Kiani May 2012 B1
8185180 Diab et al. May 2012 B2
8190223 Al-Ali et al. May 2012 B2
8190227 Diab et al. May 2012 B2
8203438 Kiani et al. Jun 2012 B2
8203704 Merritt et al. Jun 2012 B2
8204566 Schurman et al. Jun 2012 B2
8219172 Schurman et al. Jul 2012 B2
8224411 Al-Ali et al. Jul 2012 B2
8228181 Al-Ali Jul 2012 B2
8229532 Davis Jul 2012 B2
8229533 Diab et al. Jul 2012 B2
8233955 Al-Ali et al. Jul 2012 B2
8244325 Al-Ali et al. Aug 2012 B2
8255026 Al-Ali Aug 2012 B1
8255027 Al-Ali et al. Aug 2012 B2
8255028 Al-Ali et al. Aug 2012 B2
8260577 Weber et al. Sep 2012 B2
8265723 McHale et al. Sep 2012 B1
8274360 Sampath et al. Sep 2012 B2
8280473 Al-Ali Oct 2012 B2
8301217 Al-Ali et al. Oct 2012 B2
8306596 Schurman et al. Nov 2012 B2
8310336 Muhsin et al. Nov 2012 B2
8315683 Al-Ali et al. Nov 2012 B2
RE43860 Parker Dec 2012 E
8337403 Al-Ali et al. Dec 2012 B2
8346330 Lamego Jan 2013 B2
8353842 Al-Ali et al. Jan 2013 B2
8355766 MacNeish, III et al. Jan 2013 B2
8359080 Diab et al. Jan 2013 B2
8364223 Al-Ali et al. Jan 2013 B2
8364226 Diab et al. Jan 2013 B2
8374665 Lamego Feb 2013 B2
8385995 Al-Ali et al. Feb 2013 B2
8385996 Smith et al. Feb 2013 B2
8388353 Kiani et al. Mar 2013 B2
8399822 Al-Ali Mar 2013 B2
8401602 Kiani Mar 2013 B2
8405608 Al-Ali et al. Mar 2013 B2
8414499 Al-Ali et al. Apr 2013 B2
8418524 Al-Ali Apr 2013 B2
8423106 Lamego et al. Apr 2013 B2
8428967 Olsen et al. Apr 2013 B2
8430817 Al-Ali et al. Apr 2013 B1
8437825 Dalvi et al. May 2013 B2
8455290 Siskavich Jun 2013 B2
8457703 Al-Ali Jun 2013 B2
8457707 Kiani Jun 2013 B2
8463349 Diab et al. Jun 2013 B2
8466286 Bellott et al. Jun 2013 B2
8471713 Poeze et al. Jun 2013 B2
8473020 Kiani et al. Jun 2013 B2
8483787 Al-Ali et al. Jul 2013 B2
8489364 Weber et al. Jul 2013 B2
8498684 Weber et al. Jul 2013 B2
8504128 Blank et al. Aug 2013 B2
8509867 Workman et al. Aug 2013 B2
8515509 Bruinsma et al. Aug 2013 B2
8523781 Al-Ali Sep 2013 B2
8529301 Al-Ali et al. Sep 2013 B2
8532727 Ali et al. Sep 2013 B2
8532728 Diab et al. Sep 2013 B2
D692145 Al-Ali et al. Oct 2013 S
8547209 Kiani et al. Oct 2013 B2
8548548 Al-Ali Oct 2013 B2
8548549 Schurman et al. Oct 2013 B2
8548550 Al-Ali et al. Oct 2013 B2
8560032 Al-Ali et al. Oct 2013 B2
8560034 Diab et al. Oct 2013 B1
8570167 Al-Ali Oct 2013 B2
8570503 Vo et al. Oct 2013 B2
8571617 Reichgott et al. Oct 2013 B2
8571618 Lamego et al. Oct 2013 B1
8571619 Al-Ali et al. Oct 2013 B2
8577431 Lamego et al. Nov 2013 B2
8581732 Al-Ali et al. Nov 2013 B2
8584345 Al-Ali et al. Nov 2013 B2
8588880 Abdul-Hafiz et al. Nov 2013 B2
8600467 Al-Ali et al. Dec 2013 B2
8606342 Diab Dec 2013 B2
8626255 Al-Ali et al. Jan 2014 B2
8630691 Lamego et al. Jan 2014 B2
8634889 Al-Ali et al. Jan 2014 B2
8641631 Sierra et al. Feb 2014 B2
8652060 Al-Ali Feb 2014 B2
8663107 Kiani Mar 2014 B2
8666468 Al-Ali Mar 2014 B1
8667967 Al-Ali et al. Mar 2014 B2
8670811 O'Reilly Mar 2014 B2
8670814 Diab et al. Mar 2014 B2
8676286 Weber et al. Mar 2014 B2
8682407 Al-Ali Mar 2014 B2
RE44823 Parker Apr 2014 E
RE44875 Kiani et al. Apr 2014 E
8688183 Bruinsma et al. Apr 2014 B2
8690799 Telfort et al. Apr 2014 B2
8700112 Kiani Apr 2014 B2
8702627 Telfort et al. Apr 2014 B2
8706179 Parker Apr 2014 B2
8712494 MacNeish, III et al. Apr 2014 B1
8715206 Telfort et al. May 2014 B2
8718735 Lamego et al. May 2014 B2
8718737 Diab et al. May 2014 B2
8718738 Blank et al. May 2014 B2
8720249 Al-Ali May 2014 B2
8721541 Al-Ali et al. May 2014 B2
8721542 Al-Ali et al. May 2014 B2
8723677 Kiani May 2014 B1
8740792 Kiani et al. Jun 2014 B1
8754776 Poeze et al. Jun 2014 B2
8755535 Telfort et al. Jun 2014 B2
8755856 Diab et al. Jun 2014 B2
8755872 Marinow Jun 2014 B1
8761850 Lamego Jun 2014 B2
8764671 Kiani Jul 2014 B2
8768423 Shakespeare et al. Jul 2014 B2
8771204 Telfort et al. Jul 2014 B2
8777634 Kiani et al. Jul 2014 B2
8781543 Diab et al. Jul 2014 B2
8781544 Al-Ali et al. Jul 2014 B2
8781549 Al-Ali et al. Jul 2014 B2
8788003 Schurman et al. Jul 2014 B2
8790268 Al-Ali Jul 2014 B2
8801613 Al-Ali et al. Aug 2014 B2
8821397 Al-Ali et al. Sep 2014 B2
8821415 Al-Ali et al. Sep 2014 B2
8830449 Lamego et al. Sep 2014 B1
8831700 Schurman et al. Sep 2014 B2
8840549 Al-Ali et al. Sep 2014 B2
8847740 Kiani et al. Sep 2014 B2
8849365 Smith et al. Sep 2014 B2
8852094 Al-Ali et al. Oct 2014 B2
8852994 Wojtczuk et al. Oct 2014 B2
8868147 Stippick et al. Oct 2014 B2
8868150 Al-Ali et al. Oct 2014 B2
8870792 Al-Ali et al. Oct 2014 B2
8886271 Kiani et al. Nov 2014 B2
8888539 Al-Ali et al. Nov 2014 B2
8888708 Diab et al. Nov 2014 B2
8892180 Weber et al. Nov 2014 B2
8897847 Al-Ali Nov 2014 B2
8909310 Lamego et al. Dec 2014 B2
8911377 Al-Ali Dec 2014 B2
8912909 Al-Ali et al. Dec 2014 B2
8920317 Al-Ali et al. Dec 2014 B2
8921699 Al-Ali et al. Dec 2014 B2
8922382 Al-Ali et al. Dec 2014 B2
8929964 Al-Ali et al. Jan 2015 B2
8942777 Diab et al. Jan 2015 B2
8948834 Diab et al. Feb 2015 B2
8948835 Diab Feb 2015 B2
8965471 Lamego Feb 2015 B2
8983564 Al-Ali Mar 2015 B2
8989831 Al-Ali et al. Mar 2015 B2
8996085 Kiani et al. Mar 2015 B2
8998809 Kiani Apr 2015 B2
9028429 Telfort et al. May 2015 B2
9037207 Al-Ali et al. May 2015 B2
9060721 Reichgott et al. Jun 2015 B2
9066666 Kiani Jun 2015 B2
9066680 Al-Ali et al. Jun 2015 B1
9072474 Al-Ali et al. Jul 2015 B2
9078560 Schurman et al. Jul 2015 B2
9084569 Weber et al. Jul 2015 B2
9095316 Welch et al. Aug 2015 B2
9106038 Telfort et al. Aug 2015 B2
9107625 Telfort et al. Aug 2015 B2
9107626 Al-Ali et al. Aug 2015 B2
9113831 Al-Ali Aug 2015 B2
9113832 Al-Ali Aug 2015 B2
9119595 Lamego Sep 2015 B2
9131881 Diab et al. Sep 2015 B2
9131882 Al-Ali et al. Sep 2015 B2
9131883 Al-Ali Sep 2015 B2
9131917 Telfort et al. Sep 2015 B2
9138180 Coverston et al. Sep 2015 B1
9138182 Al-Ali et al. Sep 2015 B2
9138192 Weber et al. Sep 2015 B2
9142117 Muhsin et al. Sep 2015 B2
9153112 Kiani et al. Oct 2015 B1
9153121 Kiani et al. Oct 2015 B2
9161696 Al-Ali et al. Oct 2015 B2
9161713 Al-Ali et al. Oct 2015 B2
9167995 Lamego et al. Oct 2015 B2
9176141 Al-Ali et al. Nov 2015 B2
9186102 Bruinsma et al. Nov 2015 B2
9192312 Al-Ali Nov 2015 B2
9192329 Al-Ali Nov 2015 B2
9192351 Telfort et al. Nov 2015 B1
9195385 Al-Ali et al. Nov 2015 B2
9211072 Kiani Dec 2015 B2
9211095 Al-Ali Dec 2015 B1
9218454 Kiani et al. Dec 2015 B2
9226696 Kiani Jan 2016 B2
9241662 Al-Ali et al. Jan 2016 B2
9245668 Vo et al. Jan 2016 B1
9259185 Abdul-Hafiz et al. Feb 2016 B2
9267572 Barker et al. Feb 2016 B2
9277880 Poeze et al. Mar 2016 B2
9289167 Diab et al. Mar 2016 B2
9295421 Kiani et al. Mar 2016 B2
9307928 Al-Ali et al. Apr 2016 B1
9323894 Kiani Apr 2016 B2
D755392 Hwang et al. May 2016 S
9326712 Kiani May 2016 B1
9333316 Kiani May 2016 B2
9339220 Lamego et al. May 2016 B2
9341565 Lamego et al. May 2016 B2
9351673 Diab et al. May 2016 B2
9351675 Al-Ali et al. May 2016 B2
9364181 Kiani et al. Jun 2016 B2
9368671 Wojtczuk et al. Jun 2016 B2
9370325 Al-Ali et al. Jun 2016 B2
9370326 McHale et al. Jun 2016 B2
9370335 Al-Ali et al. Jun 2016 B2
9375185 Ali et al. Jun 2016 B2
9386953 Al-Ali Jul 2016 B2
9386961 Al-Ali et al. Jul 2016 B2
9392945 Al-Ali et al. Jul 2016 B2
9397448 Al-Ali et al. Jul 2016 B2
9408542 Kinast et al. Aug 2016 B1
9436645 Al-Ali et al. Sep 2016 B2
9445759 Lamego et al. Sep 2016 B1
9466919 Kiani et al. Oct 2016 B2
9474474 Lamego et al. Oct 2016 B2
9480422 Al-Ali Nov 2016 B2
9480435 Olsen Nov 2016 B2
9492110 Al-Ali et al. Nov 2016 B2
9510779 Poeze et al. Dec 2016 B2
9517024 Kiani et al. Dec 2016 B2
9532722 Lamego et al. Jan 2017 B2
9538949 Al-Ali et al. Jan 2017 B2
9538980 Telfort et al. Jan 2017 B2
9549696 Lamego et al. Jan 2017 B2
9554737 Schurman et al. Jan 2017 B2
9560996 Kiani Feb 2017 B2
9560998 Al-Ali et al. Feb 2017 B2
9566019 Al-Ali et al. Feb 2017 B2
9579039 Jansen et al. Feb 2017 B2
9591975 Dalvi et al. Mar 2017 B2
9622692 Lamego et al. Apr 2017 B2
9622693 Diab Apr 2017 B2
D788312 Al-Ali et al. May 2017 S
9649054 Lamego et al. May 2017 B2
9697928 Al-Ali et al. Jul 2017 B2
9717458 Lamego et al. Aug 2017 B2
9724016 Al-Ali et al. Aug 2017 B1
9724024 Al-Ali Aug 2017 B2
9724025 Kiani et al. Aug 2017 B1
9749232 Sampath et al. Aug 2017 B2
9750442 Olsen Sep 2017 B2
9750461 Telfort Sep 2017 B1
9775545 Al-Ali et al. Oct 2017 B2
9778079 Al-Ali et al. Oct 2017 B1
9782077 Lamego et al. Oct 2017 B2
9787568 Lamego et al. Oct 2017 B2
9808188 Perea et al. Nov 2017 B1
9839379 Al-Ali et al. Dec 2017 B2
9839381 Weber et al. Dec 2017 B1
9847749 Kiani et al. Dec 2017 B2
9848800 Lee et al. Dec 2017 B1
9861298 Eckerbom et al. Jan 2018 B2
9861305 Weber et al. Jan 2018 B1
9877650 Muhsin et al. Jan 2018 B2
9891079 Dalvi Feb 2018 B2
9924897 Abdul-Hafiz Mar 2018 B1
9936917 Poeze et al. Apr 2018 B2
9955937 Telfort May 2018 B2
9965946 Al-Ali et al. May 2018 B2
D820865 Muhsin et al. Jun 2018 S
9986952 Dalvi et al. Jun 2018 B2
D822215 Al-Ali et al. Jul 2018 S
D822216 Barker et al. Jul 2018 S
10010276 Al-Ali et al. Jul 2018 B2
10086138 Novak, Jr. Oct 2018 B1
10111591 Dyell et al. Oct 2018 B2
D833624 DeJong et al. Nov 2018 S
10123729 Dyell et al. Nov 2018 B2
D835282 Barker et al. Dec 2018 S
D835283 Barker et al. Dec 2018 S
D835284 Barker et al. Dec 2018 S
D835285 Barker et al. Dec 2018 S
10149616 Al-Ali et al. Dec 2018 B2
10154815 Al-Ali et al. Dec 2018 B2
10159412 Lamego et al. Dec 2018 B2
10188348 Al-Ali et al. Jan 2019 B2
RE47218 Al-Ali Feb 2019 E
RE47244 Kiani et al. Feb 2019 E
RE47249 Kiani et al. Feb 2019 E
10205291 Scruggs et al. Feb 2019 B2
10226187 Al-Ali et al. Mar 2019 B2
10231657 Al-Ali et al. Mar 2019 B2
10231670 Blank et al. Mar 2019 B2
RE47353 Kiani et al. Apr 2019 E
10279247 Kiani May 2019 B2
10292664 Al-Ali May 2019 B2
10299720 Brown et al. May 2019 B2
10327337 Schmidt et al. Jun 2019 B2
10327713 Barker et al. Jun 2019 B2
10332630 Al-Ali Jun 2019 B2
10383520 Wojtczuk et al. Aug 2019 B2
10383527 Al-Ali Aug 2019 B2
10388120 Muhsin et al. Aug 2019 B2
D864120 Forrest et al. Oct 2019 S
10441181 Telfort et al. Oct 2019 B1
10441196 Eckerbom et al. Oct 2019 B2
10448844 Al-Ali et al. Oct 2019 B2
10448871 Al-Ali et al. Oct 2019 B2
10456038 Lamego et al. Oct 2019 B2
10463340 Telfort et al. Nov 2019 B2
10471159 Lapotko et al. Nov 2019 B1
10505311 Al-Ali et al. Dec 2019 B2
10524738 Olsen Jan 2020 B2
10532174 Al-Ali Jan 2020 B2
10537285 Shreim et al. Jan 2020 B2
10542903 Al-Ali et al. Jan 2020 B2
10555678 Dalvi et al. Feb 2020 B2
10568553 O'Neil et al. Feb 2020 B2
RE47882 Al-Ali Mar 2020 E
10608817 Haider et al. Mar 2020 B2
D880477 Forrest et al. Apr 2020 S
10617302 Al-Ali et al. Apr 2020 B2
10617335 Al-Ali et al. Apr 2020 B2
10637181 Al-Ali et al. Apr 2020 B2
D887548 Abdul-Hafiz et al. Jun 2020 S
D887549 Abdul-Hafiz et al. Jun 2020 S
10667764 Ahmed et al. Jun 2020 B2
D890708 Forrest et al. Jul 2020 S
10721785 Al-Ali Jul 2020 B2
10729362 Al-Ali et al. Aug 2020 B2
10736518 Al-Ali et al. Aug 2020 B2
10750984 Pauley et al. Aug 2020 B2
D897098 Al-Ali Sep 2020 S
10779098 Iswanto et al. Sep 2020 B2
10827961 Iyengar et al. Nov 2020 B1
10828007 Telfort et al. Nov 2020 B1
10832818 Muhsin et al. Nov 2020 B2
10849554 Shreim et al. Dec 2020 B2
10856750 Indorf Dec 2020 B2
D906970 Forrest et al. Jan 2021 S
10918281 Al-Ali et al. Feb 2021 B2
10932705 Muhsin et al. Mar 2021 B2
10932729 Kiani et al. Mar 2021 B2
10939878 Kiani et al. Mar 2021 B2
10956950 Al-Ali et al. Mar 2021 B2
D916135 Indorf et al. Apr 2021 S
D917550 Indorf et al. Apr 2021 S
D917564 Indorf et al. Apr 2021 S
D917704 Al-Ali et al. Apr 2021 S
10987066 Chandran et al. Apr 2021 B2
10991135 Al-Ali et al. Apr 2021 B2
D919094 Al-Ali et al. May 2021 S
D919100 Al-Ali et al. May 2021 S
11006867 Al-Ali May 2021 B2
D921202 Al-Ali et al. Jun 2021 S
11024064 Muhsin et al. Jun 2021 B2
11026604 Chen et al. Jun 2021 B2
D925597 Chandran et al. Jul 2021 S
D927699 Al-Ali et al. Aug 2021 S
11076777 Lee et al. Aug 2021 B2
11114188 Poeze et al. Sep 2021 B2
D933232 Al-Ali et al. Oct 2021 S
11145408 Sampath et al. Oct 2021 B2
11147518 Al-Ali et al. Oct 2021 B1
11185262 Al-Ali et al. Nov 2021 B2
11191484 Kiani et al. Dec 2021 B2
D946596 Ahmed Mar 2022 S
D946597 Ahmed Mar 2022 S
D946598 Ahmed Mar 2022 S
D946617 Ahmed Mar 2022 S
11272839 Al-Ali et al. Mar 2022 B2
11289199 Al-Ali Mar 2022 B2
RE49034 Ai-Ali Apr 2022 E
11298021 Muhsin et al. Apr 2022 B2
D950580 Ahmed May 2022 S
D950599 Ahmed May 2022 S
D957648 Al-Ali Jul 2022 S
11389093 Triman et al. Jul 2022 B2
11406286 Al-Ali et al. Aug 2022 B2
11417426 Muhsin et al. Aug 2022 B2
11439329 Lamego Sep 2022 B2
20010034477 Mansfield et al. Oct 2001 A1
20010039483 Brand et al. Nov 2001 A1
20020010401 Bushmakin et al. Jan 2002 A1
20020058864 Mansfield et al. May 2002 A1
20020133080 Apruzzese et al. Sep 2002 A1
20030004403 Drinan et al. Jan 2003 A1
20030013975 Kiani Jan 2003 A1
20030018243 Gerhardt et al. Jan 2003 A1
20030135099 Al-Ali Jul 2003 A1
20030144582 Cohen et al. Jul 2003 A1
20030156288 Barnum et al. Aug 2003 A1
20030212312 Coffin, IV et al. Nov 2003 A1
20040106163 Workman, Jr. et al. Jun 2004 A1
20050055276 Kiani et al. Mar 2005 A1
20050101848 Al-Ali et al. May 2005 A1
20050234317 Kiani Oct 2005 A1
20060073719 Kiani Apr 2006 A1
20060161054 Reuss et al. Jul 2006 A1
20060189871 Al-Ali et al. Aug 2006 A1
20070073116 Kiani et al. Mar 2007 A1
20070177771 Tanaka et al. Aug 2007 A1
20070180140 Welch et al. Aug 2007 A1
20070244377 Cozad et al. Oct 2007 A1
20070282478 Al-Ali et al. Dec 2007 A1
20080064965 Jay et al. Mar 2008 A1
20080088467 Al-Ali Apr 2008 A1
20080094228 Welch et al. Apr 2008 A1
20080221418 Al-Ali et al. Sep 2008 A1
20090036759 Ault et al. Feb 2009 A1
20090093687 Telfort et al. Apr 2009 A1
20090095926 MacNeish, III Apr 2009 A1
20090247984 Lamego et al. Oct 2009 A1
20090275813 Davis Nov 2009 A1
20090275844 Al-Ali Nov 2009 A1
20100004518 Vo et al. Jan 2010 A1
20100030040 Poeze et al. Feb 2010 A1
20100099964 O'Reilly et al. Apr 2010 A1
20100234718 Sampath et al. Sep 2010 A1
20100270257 Wachman et al. Oct 2010 A1
20110028806 Merritt et al. Feb 2011 A1
20110028809 Goodman Feb 2011 A1
20110040197 Welch et al. Feb 2011 A1
20110082711 Poeze et al. Apr 2011 A1
20110087081 Kiani et al. Apr 2011 A1
20110105854 Kiani et al. May 2011 A1
20110118561 Tari et al. May 2011 A1
20110125060 Telfort et al. May 2011 A1
20110137297 Kiani et al. Jun 2011 A1
20110172498 Olsen et al. Jul 2011 A1
20110208015 Welch et al. Aug 2011 A1
20110213212 Al-Ali Sep 2011 A1
20110230733 Al-Ali Sep 2011 A1
20110237969 Eckerbom et al. Sep 2011 A1
20110288383 Diab Nov 2011 A1
20120041316 Al Ali et al. Feb 2012 A1
20120046557 Kiani Feb 2012 A1
20120059267 Lamego et al. Mar 2012 A1
20120088984 Al-Ali et al. Apr 2012 A1
20120123231 O'Reilly May 2012 A1
20120165629 Merritt et al. Jun 2012 A1
20120209082 Al-Ali Aug 2012 A1
20120209084 Olsen et al. Aug 2012 A1
20120226117 Lamego et al. Sep 2012 A1
20120283524 Kiani et al. Nov 2012 A1
20120296178 Lamego et al. Nov 2012 A1
20120319816 Al-Ali Dec 2012 A1
20130023775 Lamego et al. Jan 2013 A1
20130041591 Lamego Feb 2013 A1
20130046204 Lamego et al. Feb 2013 A1
20130060147 Welch et al. Mar 2013 A1
20130096405 Garfio Apr 2013 A1
20130096936 Sampath et al. Apr 2013 A1
20130243021 Siskavich Sep 2013 A1
20130253334 Al-Ali et al. Sep 2013 A1
20130267804 Al-Ali Oct 2013 A1
20130274572 Al-Ali et al. Oct 2013 A1
20130296672 O'Neil et al. Nov 2013 A1
20130296713 Al-Ali et al. Nov 2013 A1
20130324808 Al-Ali et al. Dec 2013 A1
20130331660 Al-Ali et al. Dec 2013 A1
20130331670 Kiani Dec 2013 A1
20130345921 Al-Ali et al. Dec 2013 A1
20140012100 Al-Ali et al. Jan 2014 A1
20140034353 Al-Ali et al. Feb 2014 A1
20140051953 Lamego et al. Feb 2014 A1
20140066783 Kiani et al. Mar 2014 A1
20140077956 Sampath et al. Mar 2014 A1
20140081100 Muhsin et al. Mar 2014 A1
20140081175 Telfort Mar 2014 A1
20140100434 Diab et al. Apr 2014 A1
20140114199 Lamego et al. Apr 2014 A1
20140120564 Workman et al. May 2014 A1
20140121482 Merritt et al. May 2014 A1
20140127137 Bellott et al. May 2014 A1
20140129702 Lamego et al. May 2014 A1
20140135588 Al-Ali et al. May 2014 A1
20140142401 Al-Ali et al. May 2014 A1
20140163344 Al-Ali Jun 2014 A1
20140163402 Lamego et al. Jun 2014 A1
20140166076 Kiani et al. Jun 2014 A1
20140171763 Diab Jun 2014 A1
20140180038 Kiani Jun 2014 A1
20140180154 Sierra et al. Jun 2014 A1
20140180160 Brown et al. Jun 2014 A1
20140187973 Brown et al. Jul 2014 A1
20140213864 Abdul-Hafiz et al. Jul 2014 A1
20140266790 Al-Ali et al. Sep 2014 A1
20140275808 Poeze et al. Sep 2014 A1
20140275835 Lamego et al. Sep 2014 A1
20140275871 Lamego et al. Sep 2014 A1
20140275872 Merritt et al. Sep 2014 A1
20140276115 Dalvi et al. Sep 2014 A1
20140288400 Diab et al. Sep 2014 A1
20140316217 Purdon et al. Oct 2014 A1
20140316218 Purdon et al. Oct 2014 A1
20140316228 Blank et al. Oct 2014 A1
20140323825 Al-Ali et al. Oct 2014 A1
20140323897 Brown et al. Oct 2014 A1
20140323898 Purdon et al. Oct 2014 A1
20140330092 Al-Ali et al. Nov 2014 A1
20140330098 Merritt et al. Nov 2014 A1
20140330099 Al-Ali et al. Nov 2014 A1
20140336481 Shakespeare et al. Nov 2014 A1
20140357966 Al-Ali et al. Dec 2014 A1
20150005600 Blank et al. Jan 2015 A1
20150011907 Purdon et al. Jan 2015 A1
20150012231 Poeze et al. Jan 2015 A1
20150025406 Al-Ali Jan 2015 A1
20150032029 Al-Ali et al. Jan 2015 A1
20150038859 Dalvi et al. Feb 2015 A1
20150045637 Dalvi Feb 2015 A1
20150051462 Olsen Feb 2015 A1
20150073241 Lamego Mar 2015 A1
20150080754 Purdon et al. Mar 2015 A1
20150087936 Al-Ali et al. Mar 2015 A1
20150094546 Al-Ali Apr 2015 A1
20150097701 Muhsin et al. Apr 2015 A1
20150099950 Al-Ali et al. Apr 2015 A1
20150099951 Al-Ali et al. Apr 2015 A1
20150099955 Al-Ali et al. Apr 2015 A1
20150101844 Al-Ali et al. Apr 2015 A1
20150106121 Muhsin et al. Apr 2015 A1
20150112151 Muhsin et al. Apr 2015 A1
20150116076 Al-Ali et al. Apr 2015 A1
20150126830 Schurman et al. May 2015 A1
20150133755 Smith et al. May 2015 A1
20150141781 Weber et al. May 2015 A1
20150165312 Kiani Jun 2015 A1
20150196237 Lamego Jul 2015 A1
20150216459 Al-Ali et al. Aug 2015 A1
20150230755 Al-Ali et al. Aug 2015 A1
20150238722 Al-Ali Aug 2015 A1
20150245773 Lamego et al. Sep 2015 A1
20150245794 Al-Ali Sep 2015 A1
20150257689 Al-Ali et al. Sep 2015 A1
20150272514 Kiani et al. Oct 2015 A1
20150351697 Weber et al. Dec 2015 A1
20150351704 Kiani et al. Dec 2015 A1
20150359429 Al-Ali et al. Dec 2015 A1
20150366472 Kiani Dec 2015 A1
20150366507 Blank et al. Dec 2015 A1
20150374298 Al-Ali et al. Dec 2015 A1
20150380875 Coverston et al. Dec 2015 A1
20160000362 Diab et al. Jan 2016 A1
20160007930 Weber et al. Jan 2016 A1
20160029932 Al-Ali Feb 2016 A1
20160045118 Kiani Feb 2016 A1
20160051205 Al-Ali et al. Feb 2016 A1
20160058338 Schurman et al. Mar 2016 A1
20160058347 Reichgott et al. Mar 2016 A1
20160066823 Al-Ali et al. Mar 2016 A1
20160066824 Al-Ali et al. Mar 2016 A1
20160066879 Telfort et al. Mar 2016 A1
20160072429 Kiani et al. Mar 2016 A1
20160081552 Wojtczuk et al. Mar 2016 A1
20160095543 Telfort et al. Apr 2016 A1
20160095548 Al-Ali et al. Apr 2016 A1
20160103598 Al-Ali et al. Apr 2016 A1
20160113527 Al-Ali Apr 2016 A1
20160143548 Al-Ali May 2016 A1
20160166182 Al-Ali et al. Jun 2016 A1
20160166183 Poeze et al. Jun 2016 A1
20160166188 Bruinsma et al. Jun 2016 A1
20160166210 Al-Ali Jun 2016 A1
20160192869 Kiani et al. Jul 2016 A1
20160196388 Lamego Jul 2016 A1
20160197436 Barker et al. Jul 2016 A1
20160213281 Eckerbom et al. Jul 2016 A1
20160228043 O'Neil et al. Aug 2016 A1
20160233632 Scruggs et al. Aug 2016 A1
20160234944 Schmidt et al. Aug 2016 A1
20160270735 Diab et al. Sep 2016 A1
20160283665 Sampath et al. Sep 2016 A1
20160287090 Al-Ali et al. Oct 2016 A1
20160287786 Kiani Oct 2016 A1
20160296169 McHale et al. Oct 2016 A1
20160310052 Al-Ali et al. Oct 2016 A1
20160314260 Kiani Oct 2016 A1
20160324486 Al-Ali et al. Nov 2016 A1
20160324488 Olsen Nov 2016 A1
20160327984 Al-Ali et al. Nov 2016 A1
20160328528 Al-Ali et al. Nov 2016 A1
20160331332 Al-Ali Nov 2016 A1
20160367173 Dalvi et al. Dec 2016 A1
20170007134 Al-Ali et al. Jan 2017 A1
20170007190 Al-Ali et al. Jan 2017 A1
20170007198 Al-Ali et al. Jan 2017 A1
20170014084 Al-Ali et al. Jan 2017 A1
20170021099 Al-Ali et al. Jan 2017 A1
20170024748 Haider Jan 2017 A1
20170027456 Kinast et al. Feb 2017 A1
20170042488 Muhsin Feb 2017 A1
20170055847 Kiani et al. Mar 2017 A1
20170055851 Al-Ali Mar 2017 A1
20170055882 Al-Ali et al. Mar 2017 A1
20170055887 Al-Ali Mar 2017 A1
20170055896 Al-Ali Mar 2017 A1
20170079594 Telfort et al. Mar 2017 A1
20170086723 Al-Ali et al. Mar 2017 A1
20170173632 Al-Ali Jun 2017 A1
20170251974 Shreim et al. Sep 2017 A1
20170311891 Kiani et al. Nov 2017 A1
20180103874 Lee et al. Apr 2018 A1
20180199871 Pauley et al. Jul 2018 A1
20180242926 Muhsin et al. Aug 2018 A1
20180247353 Al-Ali et al. Aug 2018 A1
20180247712 Muhsin et al. Aug 2018 A1
20180256087 Al-Ali et al. Sep 2018 A1
20180296161 Shreim et al. Oct 2018 A1
20180300919 Muhsin et al. Oct 2018 A1
20180310822 Indorf et al. Nov 2018 A1
20180310823 Al-Ali et al. Nov 2018 A1
20180317826 Muhsin et al. Nov 2018 A1
20190015023 Monfre Jan 2019 A1
20190117070 Muhsin et al. Apr 2019 A1
20190200941 Chandran et al. Jul 2019 A1
20190239787 Pauley et al. Aug 2019 A1
20190320906 Olsen Oct 2019 A1
20190374139 Kiani et al. Dec 2019 A1
20190374173 Kiani et al. Dec 2019 A1
20190374713 Kiani et al. Dec 2019 A1
20200021930 Iswanto et al. Jan 2020 A1
20200060869 Telfort et al. Feb 2020 A1
20200111552 Ahmed Apr 2020 A1
20200113435 Muhsin Apr 2020 A1
20200113488 Al-Ali et al. Apr 2020 A1
20200113496 Scruggs et al. Apr 2020 A1
20200113497 Triman et al. Apr 2020 A1
20200113520 Abdul-Hafiz et al. Apr 2020 A1
20200138288 Al-Ali et al. May 2020 A1
20200138368 Kiani et al. May 2020 A1
20200163597 Dalvi et al. May 2020 A1
20200196877 Vo et al. Jun 2020 A1
20200253474 Muhsin et al. Aug 2020 A1
20200253544 Belur Nagaraj et al. Aug 2020 A1
20200275841 Telfort et al. Sep 2020 A1
20200288983 Telfort et al. Sep 2020 A1
20200321793 Al-Ali et al. Oct 2020 A1
20200323472 Al-Ali et al. Oct 2020 A1
20200329983 Al-Ali et al. Oct 2020 A1
20200329984 Al-Ali et al. Oct 2020 A1
20200329993 Al-Ali et al. Oct 2020 A1
20200330037 Al-Ali et al. Oct 2020 A1
20210022628 Telfort et al. Jan 2021 A1
20210104173 Pauley et al. Apr 2021 A1
20210113121 Diab et al. Apr 2021 A1
20210117525 Kiani et al. Apr 2021 A1
20210118581 Kiani et al. Apr 2021 A1
20210121582 Krishnamani et al. Apr 2021 A1
20210161465 Barker et al. Jun 2021 A1
20210236729 Kiani et al. Aug 2021 A1
20210256267 Ranasinghe et al. Aug 2021 A1
20210256835 Ranasinghe et al. Aug 2021 A1
20210275101 Vo et al. Sep 2021 A1
20210290060 Ahmed Sep 2021 A1
20210290072 Forrest Sep 2021 A1
20210290080 Ahmed Sep 2021 A1
20210290120 Al-Ali Sep 2021 A1
20210290177 Novak, Jr. Sep 2021 A1
20210290184 Ahmed Sep 2021 A1
20210296008 Novak, Jr. Sep 2021 A1
20210330228 Olsen et al. Oct 2021 A1
20210386382 Olsen et al. Dec 2021 A1
20210402110 Pauley et al. Dec 2021 A1
20220026355 Normand et al. Jan 2022 A1
20220039707 Sharma et al. Feb 2022 A1
20220053892 Al-Ali et al. Feb 2022 A1
20220071562 Kiani Mar 2022 A1
20220096603 Kiani et al. Mar 2022 A1
20220151521 Krishnamani et al. May 2022 A1
20220218244 Kiani et al. Jul 2022 A1
20220287574 Telfort et al. Sep 2022 A1
Foreign Referenced Citations (2)
Number Date Country
0 850 594 Jul 1998 EP
2 544 591 Jan 2013 EP
Non-Patent Literature Citations (7)
Entry
US 9,579,050 B2, 02/2017, Al-Ali (withdrawn)
US 2022/0192529 A1, 06/2022, Al-Ali et al. (withdrawn)
EP Office Action dated Jul. 28, 2015 for Application No. 11709258.5 in 5 pages.
EP Office Action dated Jan. 16, 2018 for Application No. 11709258.5 in 4 pages.
EP Office Action dated Jan. 3, 2019 for Application No. 11709258.5 in 5 pages.
International Preliminary Report on Patentability for International Application No. PCT/US2011/027444 mailed Sep. 20, 2012.
International Search Report and Written Opinion for International Application No. PCT/US2011/027444 mailed Jun. 28, 2011.
Related Publications (1)
Number Date Country
20230019476 A1 Jan 2023 US
Provisional Applications (1)
Number Date Country
61311668 Mar 2010 US
Continuations (4)
Number Date Country
Parent 16911781 Jun 2020 US
Child 17952763 US
Parent 15592945 May 2017 US
Child 16911781 US
Parent 14078843 Nov 2013 US
Child 15592945 US
Parent 13041803 Mar 2011 US
Child 14078843 US