The present invention relates to a technology of reproduction of sound by a speaker.
When an acoustic signal is reproduced by a speaker installed in an automobile, it may be difficult for a user sitting in a seat to hear the reproduction sound due to wind noise, engine noise, traveling noise, and the like. Non-Patent Literature 1 is known as a related-art technology that realizes reproduction sound that is easy to hear for a user by reproducing an acoustic signal by a speaker installed in a headrest of a seat of an automobile, for example.
However, in the case of Non-Patent Literature 1, the reproduction sound may leak to a seat other than the seat in which the user is sitting. For example, when the reproduction of an instruction voice (for example, “please turn to the right at the next intersection”) of a navigation system or a hands-free call sound is performed for a driver and music or the sound of a movie is reproduced in the other seat, it is preferred that the instruction voice of the navigation system and the hands-free call sound reproduced in the driver's seat be not heard in the other seat. However, when a normal speaker such as that in Non-Patent Literature 1 is used, a problem in that the sound leaks to the other seat and it becomes difficult to hear the sound desired to be heard in the seat occurs.
An object of the present invention is to provide a reproduction apparatus that realizes reproduction of which sound leakage is small with use of a speaker installed in a place near a head, and a method and a program thereof.
In order to solve the abovementioned problem, according to one aspect of the present invention, a reproduction apparatus is used in a seat. The reproduction apparatus includes: at least two speakers; an acquisition unit that acquires, from a predetermined sound source, an acoustic signal of which sound is emitted by the reproduction apparatus; and a control unit that controls the acoustic signal acquired by the acquisition unit such that reproduction sound is only transmitted to a first seat and the reproduction sound is not transmitted to a second seat, the speakers each emit sound of the acoustic signal controlled by the control unit, and the speakers are disposed so as to be closer to an ear of a user that sits in the first seat than to the second seat.
According to the present invention, the effect in which the sound leakage is reduced is exhibited.
An embodiment of the present invention is described below. In the drawings used in the description below, configuration units having the same functions and steps for performing the same processing are denoted by the same characters, and overlapping description thereof is omitted. In the description below, processing performed in units of elements of vectors and matrices is applied to all of the elements of those vectors and matrices unless otherwise noted.
A reproduction apparatus 100 includes an acquisition unit 110, a control unit 120, and a number of N speakers 130-n. Here, N is any integer equal to or more than 2, and n=1, 2, . . . , N is satisfied.
The reproduction apparatus 100 acquires an acoustic signal x via the acquisition unit 110, performs predetermined signal processing on the acoustic signal x acquired in the control unit 120, and reproduces the signal after the signal processing by the number of N speakers 130-n.
The reproduction apparatus (hereinafter also referred to as a “signal processing device”) excluding the number of N speakers 130-n is a special device configured by causing a special program to be read in a well-known or a dedicated computer having a central processing unit (CPU), a main storage device (RAM: random access memory), and the like, for example. The signal processing device executes each processing under the control of the central processing unit, for example. Data input to the signal processing device and data acquired in each processing are stored in the main storage device, for example, and the data stored in the main storage device is used in other processing by being read out to the central processing unit as needed. At least a part of each processing unit of the signal processing device may be configured by hardware such as an integrated circuit. Each of storage units included in the signal processing device can be configured by a main storage device such as a random access memory (RAM) or middleware such as a key-value store and a relational database, for example. Each of the storage units does not necessarily need to be included in the signal processing device on the inside thereof and may be configured by an auxiliary storage device configured by a hard disk, an optical disc, or a semiconductor memory element such as a flash memory and may be included on the outside of the signal processing device.
Each unit is described below.
<Number of N Speakers 130-n>
The speakers 130-n emit sound of an acoustic signal controlled by the control unit 120 described below (S130). The number of N speakers 130-n are disposed so as to be closer to the ear of a user sitting in a first seat than to a second seat. The first seat is a seat in which the user (listener) is sitting, and the second seat is a seat in which a passenger other than the user is sitting. For example, at least two speakers 130-n are disposed such that the position of either one of the ears of the user (listener) sitting in the first seat and the center of each of at least two speakers 130-n are arranged on one straight line. The speakers 130-n may be attached to the front surface of a backrest or a headrest of the seat or may be embedded therein. The speakers may be attached to or embedded in a ceiling, a wall surface, or the like. In short, the abovementioned positional relationship only needs to be satisfied.
In
In
In
In
<Acquisition Unit 110>
The acquisition unit 110 acquires, from a predetermined sound source, the acoustic signal x of which sound is emitted by the reproduction apparatus 100 (S110), and outputs the acoustic signal x to the control unit 120. The acquisition unit 110 is a reading unit capable of acquiring an acoustic signal recorded in a recording medium (predetermined sound source) readable by a computer, a communication unit that can acquire an acoustic signal recorded in another computer (predetermined sound source) over a network, or an input unit into which an acoustic signal obtained by collecting sound emitted from a predetermined sound source by a sound collection device such as a microphone is input, for example.
<Control Unit 120>
The acoustic signal x is input to the control unit 120, and the control unit 120 controls the acoustic signal x such that the reproduction sound is only transmitted to the first seat and the reproduction sound is not transmitted to the second seat (S120).
For example, as illustrated in
For example, when the acoustic signal x is in a stereo channel or channels equal to or more than the stereo channel, the control unit 120 includes a number of N×M FIR filters 121-n-m and a number of N addition units 122-n as illustrated in
As illustrated in
A method of designing a FIR filter is described below with reference to
When there are a transmission characteristic Gnj(ω) from each of the speakers 130-n to the positions (the positions of the black dots) of the ears 10-L and 10-R and a transmission characteristic Hnk(ω) from each of the speakers 130-n to suppression positions (the positions of the black quadrangles), a filter coefficient Fn(ω) of the FIR filter is designed such that the transmission characteristic synthesized by the number of N speakers 130-n in the positions of the ears 10-L and 10-R becomes 1, and the transmission characteristic synthesized by the number of N speakers 130-n in the suppression positions becomes 0. Here, j represents the number of the ear position and includes J positions, and k represents the number of the suppression position and includes K positions. The abovementioned second seat corresponds to any of the suppression positions.
When the above is expressed in expressions, a solution that satisfies a simultaneous equation consisting of a number of J+K expressions below as much as possible only needs to be obtained.
For example, the filter coefficient Fn(ω) can be obtained by a least-squares method and the like.
The transmission characteristic Gnj(ω) from each of the speakers 130-n to the positions of the ears 10-L and 10-R (the positions of the black dots) and the transmission characteristic Hnk(ω) from each of the speakers to the suppression positions (the positions of the black quadrangles) may be obtained by simulating the arrival time difference of sound known from the arrangement of the speakers or reflection known from the shape of the space, or may be characteristics actually measured in an anechoic room or a usage environment.
Either the transmission characteristic that takes reflection into consideration or the transmission characteristic that does not take reflection into consideration may be used, or a combination of the two transmission characteristics may be used. For example, as illustrated in
By the configuration above, sound that is easy to hear for the listener can be reproduced, and sound leakage to people other than the listener is reduced.
In the present embodiment, at least two speakers 130-n are disposed such that the position of either one of the ears of the user (listener) sitting in the first seat and the center of each of at least two speakers 130-n are arranged on one straight line, and hence it is easy to perform setting such that the directional characteristics become strong on the straight line. Reproduction, which is easy to hear for the listener having an ear on the straight line and of which sound leakage is small for other passengers sitting in the other seats, can be realized.
The present invention is not limited to the abovementioned embodiment and modified examples. For example, various processing described above is not only executed in chronological order in accordance with the description and may be executed in parallel or individually in accordance with the processing capability of the device that executes the processing or as needed. Other than the above, changes can be made, as appropriate, without departing from the gist of the present invention.
<Program and Recording Medium>
The various processing (the acquisition processing S110 and the control processing S120) described above can be performed by causing a storage unit 2020 of a computer illustrated in
The program in which the processing content is described can be recorded in a recording medium readable by the computer. The recording medium readable by the computer may be any medium, for example, a magnetic recording device, an optical disc, a magneto-optical recording medium, or a semiconductor memory.
The distribution of the program is performed, for example, by selling, transferring, or lending, for example, a portable recording medium such as a DVD, a CD-ROM, and the like on which the program is recorded. The program may be stored in a storage device of a server computer, and the program may be distributed by transmitting the program to another computer from the server computer over a network.
The computer that executes the program as above temporarily stores the program recorded on the portable recording medium or the program transmitted from the server computer into a storage device of itself first, for example. When the processing is executed, the computer reads the program stored in the recording medium of itself and executes processing in accordance with the read program. As another execution form of the program, the computer may directly read the program from the portable recording medium and execute processing in accordance with the program. Further, each time a program is transmitted to the computer from the server computer, processing in accordance with the received program may be successively executed. The abovementioned processing may be executed by a so-called application service provider (ASP) service in which transmission of the program from the server computer to the computer is not performed and the processing function is realized by only the execution instruction and result acquisition thereof. The present form includes information (data and the like having a nature of specifying the processing of a computer but is not a direct instruction for the computer) which is provided for processing performed by an electronic computer and which is equivalent to a program.
In the present form, the present device is configured by executing a predetermined program on a computer. However, at least a part of the processing content may be realized in a hardware-like manner.
The reproduction processing S130 can be performed by reproducing an acoustic signal output via the output unit 2040 by a speaker built in or connected to the computer illustrated in
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2020/015055 | 4/1/2020 | WO |