Repurposing novel selective drugs for treatment and decolonization of vancomycin resistant enterococci

Information

  • Research Project
  • 10224788
  • ApplicationId
    10224788
  • Core Project Number
    R01AI148523
  • Full Project Number
    5R01AI148523-04
  • Serial Number
    148523
  • FOA Number
    PA-19-056
  • Sub Project Id
  • Project Start Date
    9/19/2019 - 5 years ago
  • Project End Date
    8/31/2024 - 4 months ago
  • Program Officer Name
    XU, ZUOYU
  • Budget Start Date
    9/1/2021 - 3 years ago
  • Budget End Date
    8/31/2022 - 2 years ago
  • Fiscal Year
    2021
  • Support Year
    04
  • Suffix
  • Award Notice Date
    8/10/2021 - 3 years ago

Repurposing novel selective drugs for treatment and decolonization of vancomycin resistant enterococci

Project Abstract: Vancomycin-resistant enterococci (VRE) is the second leading cause of drug-resistant hospital-acquired infections (HAIs) in the US, triggering the Centers for Disease Control and Prevention to classify VRE as a serious healthcare threat. Despite the prevalence and severity of VRE infections, there are limited number of effective therapeutic options available for treatment. Moreover, the drugs that are available are also detrimental to the normal gut microbiota ultimately contributing the problematic cycle of microbial imbalance known as dysbiosis, which enterococcus takes advantage of in the first place. Thus, there is a significant need for a treatment that can be used to clear both symptomatic and asymptomatic enterococcus colonization without damaging the homeostasis of normal gut flora. Unlike the costly and time-consuming process of de novo drug discovery, drug repurposing is a novel method to reduce the time, cost and risk associated with drug innovation. Studies proposed in this application build upon discoveries of the potent and narrow spectrum antimicrobial activity of the FDA-approved drugs, carbonic anhydrase inhibitors (CAIs) (acetazolamide, dorzolamide, brinzolamide, ethoxzolamide, methazolamide, and dichlorphenamide), in an applicable clinical range, against highly multidrug-resistant enterococci, including VRE. We have demonstrated both in vitro and in vivo that CAIs are superior to drug of choice, linezolid, and can be used for treatment of serious VRE infections as well as VRE decolonization without harming gut microbiota. In addition, we were able to identify a novel antimicrobial target specific for enterococci that could be exploited in future screening campaigns for new inhibitory scaffolds. Our team has embarked upon medicinal chemistry optimization and improved the potency of the scaffold versus VRE by 570-fold (MIC = 0.007 µg/ml for most potent analog) while maintaining no antibacterial activity against normal gut microbiota. We propose to continue lead optimization and assess the in vivo efficacy in various VRE mouse models as well evaluate the novel inhibitor?s safety and PK profiles to support future lead selection and investigational new drug enabling studies.

IC Name
NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES
  • Activity
    R01
  • Administering IC
    AI
  • Application Type
    5
  • Direct Cost Amount
    495742
  • Indirect Cost Amount
    150229
  • Total Cost
    645971
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    855
  • Ed Inst. Type
    SCHOOLS OF VETERINARY MEDICINE
  • Funding ICs
    NIAID:645971\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    DDR
  • Study Section Name
    Drug Discovery and Mechanisms of Antimicrobial Resistance Study Section
  • Organization Name
    VIRGINIA POLYTECHNIC INST AND ST UNIV
  • Organization Department
    VETERINARY SCIENCES
  • Organization DUNS
    003137015
  • Organization City
    BLACKSBURG
  • Organization State
    VA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    240616100
  • Organization District
    UNITED STATES