Reputation report with score

Information

  • Patent Grant
  • 10180966
  • Patent Number
    10,180,966
  • Date Filed
    Thursday, March 13, 2014
    10 years ago
  • Date Issued
    Tuesday, January 15, 2019
    5 years ago
Abstract
An online reputation assessment of an individual is performed. A reputation score is determined based on the performed online reputation assessment. The reputation score is provided as output. In some cases, the reputation score is provided to an entity that is not the individual, for example, based on the receipt of an authorization from the individual to disclose the score to the entity.
Description
BACKGROUND OF THE INVENTION

Increasingly, when a first person chooses to learn more about a second person, the first person will perform an online search with respect to the second person. Unfortunately, the search results may be inaccurate or provide an incomplete picture of the second person. The first person may make important and potentially erroneous decisions about the second person based on the search results.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the following detailed description and the accompanying drawings.



FIG. 1 illustrates an embodiment of an environment in which reputation reports are provided.



FIG. 2 illustrates an embodiment of a reputation report platform.



FIG. 3 illustrates an example of a process for generating a reputation report.



FIG. 4 illustrates an embodiment of an interface for coding documents.



FIG. 5 illustrates an embodiment of a reputation report.



FIG. 6 illustrates a portion of a reputation report.



FIG. 7 illustrates a portion of a reputation report.





DETAILED DESCRIPTION

The invention can be implemented in numerous ways, including as a process; an apparatus; a system; a composition of matter; a computer program product embodied on a computer readable storage medium; and/or a processor, such as a processor configured to execute instructions stored on and/or provided by a memory coupled to the processor. In this specification, these implementations, or any other form that the invention may take, may be referred to as techniques. In general, the order of the steps of disclosed processes may be altered within the scope of the invention. Unless stated otherwise, a component such as a processor or a memory described as being configured to perform a task may be implemented as a general component that is temporarily configured to perform the task at a given time or a specific component that is manufactured to perform the task. As used herein, the term ‘processor’ refers to one or more devices, circuits, and/or processing cores configured to process data, such as computer program instructions.


A detailed description of one or more embodiments of the invention is provided below along with accompanying figures that illustrate the principles of the invention. The invention is described in connection with such embodiments, but the invention is not limited to any embodiment. The scope of the invention is limited only by the claims and the invention encompasses numerous alternatives, modifications and equivalents. Numerous specific details are set forth in the following description in order to provide a thorough understanding of the invention. These details are provided for the purpose of example and the invention may be practiced according to the claims without some or all of these specific details. For the purpose of clarity, technical material that is known in the technical fields related to the invention has not been described in detail so that the invention is not unnecessarily obscured.



FIG. 1 illustrates an embodiment of an environment in which reputation reports are provided. In the example shown, the user of client device 104 (hereinafter referred to as “Alice”) and the user of client device 106 (hereinafter referred to as “Bob”) each interact with reputation report platform 102 (via network 120) to create and obtain reports that help them assess their online reputations. Further, if authorized by Bob, the user of client device 108 (hereinafter referred to as “Charlie”) can view Bob's reputation report, or portions thereof. As will be described in more detail below, an individual's reputation report can include recommendations for improving the individual's reputation, and can also include one or more reputation scores.


Reputation report platform 102 is configured to obtain data pertaining to Alice and Bob from a variety of sources. As shown, such sources include search engines 132-134, blog server 138, and social networking site 136, other sources can also be used, such as news sites, people search sites. Data can include text (in various formats) as well as image or other applicable types of information. Reputation report platform 102 can obtain the data from sources 132-138 in a variety of ways, including by scraping publicly available information, by using one or more Application Programming Interfaces (APIs), and/or by using authorization/credentials provided by individuals such as Alice and Bob. As one example of the latter case, Bob may have an account on social networking site 136 but have privacy settings on his profile that limit the profile's visibility to the public. Bob can provide credentials or other authorization to reputation report platform 102 so that platform 102 can access Bob's profile, and also, potentially, view other information on site 136 that would be visible to Bob when logged into the site but not otherwise visible to platform 102.



FIG. 2 illustrates an embodiment of a reputation report platform. In the example shown in FIG. 2, platform 102 comprises standard commercially available server hardware (e.g., having a multi-core processor 202, 8G+ of RAM 204, gigabit network interface adaptor(s) 206, and hard drive(s) 208) running a typical server-class operating system (e.g., Linux). In various embodiments, platform 102 is implemented across a scalable infrastructure comprising multiple such servers, solid state drives, and/or other applicable high-performance hardware. Whenever platform 102 is described as performing a task, either a single component or a subset of components or all components of platform 102 may cooperate to perform the task. Similarly, whenever a component of platform 102 is described as performing a task, a subcomponent may perform the task and/or the component may perform the task in conjunction with other components. In various embodiments, portions of platform 102 are provided by one or more separate devices, including devices provided by third parties.


Generating a Reputation Report



FIG. 3 illustrates an example of a process for generating a reputation report. In some embodiments, process 300 is performed by reputation report platform 102. The process begins at 302 when a request for a reputation report for an individual is received. As one example, suppose Alice visits platform 102 by directing a web browser on client device 104 to a web interface provided by platform 102. Through the interface, Alice instructs platform 102 that she would like to obtain an online reputation report (e.g., by selecting an appropriate option from a menu). Alice's request is received at 302 by report coordinator 210. In some embodiments, a request is received at 302 via a third party. For example, instead of directly interacting with the interface, a representative of platform 102 could interact with the interface on Alice's behalf (e.g., during a phone call or chat session with Alice).


At 304, documents potentially associated with the individual whose reputation report has been requested are retrieved. As one example, after receiving Alice's request at 302, report coordinator 210 instructs search module 212 to perform a search via search engine 132 for documents pertaining to Alice (e.g., by instructing search module 212 to perform a search for “Alice Smith”). In some embodiments, prior to the commencement of process 300, Alice has registered for an account on platform 102 and has filled out profile information (e.g., listing her full name as “Alice Smith.”) In other embodiments, process 300 commences when Alice types her full name into an interface provided by platform 102, irrespective of whether Alice has signed up for an account.


The results returned by search engine 132 are an example of documents retrieved at 302. Portion 304 of the process can be performed in a variety of manners, and can be performed before and/or after the processing performed at 302. For example, in some embodiments search module 212 queries multiple sources (e.g. search engines 132 and 134) regarding Alice. Search module 212 can also be configured to query different types of sources (e.g. search engines and social networking sites). Search results can be obtained and stored (e.g., in storage 208), in which case at least some documents retrieved at 304 are retrieved from storage 208 rather than a service such as search engine 132.


At 306, a set of codings for at least some of the documents retrieved at 304 is performed. In some embodiments, Alice is asked to code at least some of the documents. An interface for performing the coding is shown in FIG. 4. As will be explained in more detail below, examples of codings include “this document does not pertain to me,” and “this is negative information about me.” In some embodiments, a default coding of “neutral” is employed. Also as will be explained in more detail below, the codings can be multi-dimensional. For example, a newspaper article describing Alice's volunteer work at a local animal shelter can be coded as a “positive” document from a “trustworthy” source, while a social networking rant by a former boyfriend can be coded as a “negative” document pertaining to her “romantic life.” Also, as explained above, a third party can use the interface shown in FIG. 4 on Alice's behalf.


In some embodiments, the documents are at least partially coded by platform 102. For example, a classifier 214 can be employed to determine a preliminary coding of at least some of the documents, and Alice can optionally be asked to confirm or adjust the preliminary coding. As one example, classifier 214 can use sentiment analysis techniques to determine whether a document is positive or negative. As another example, classifier 214 can be configured to use the domain from which a result is retrieved to impute a coding. For example, classifier 214 can be configured with a list of “positive” sites and “negative” sites, such that if an individual's name appears on a charitable organization's page (i.e. “positive”) the result can be automatically coded as positive and if it appears on a sex-offender registry site (i.e. “negative”) the result can be automatically coded as negative. As yet another example, classifier 214 can be configured to automatically code domains as “trustworthy” or not (or neutral) based on a predefined list, or based on other information, such as a site's Page Rank. As yet another example, classifier 214 can be configured to automatically code results as “credible” or not based on their age. For example, an article that has been available online for a long period of time can be treated as more credible than one that was recently added. Classifier 214's coding can also be used without confirmation from Alice. As another example, platform 102 can be configured to use a service such as Amazon's Mechanical Turk to perform coding and/or preliminary coding.


At 308, a reputation assessment is made by assessor 216 based at least in part on the coded documents, and at 310, a report is generated. An example of a reputation report is shown in FIG. 5. In some embodiments, the report includes recommendations, such as recommendations for improving one's online reputation. The report can also include one or more reputation scores, discussed in more detail below.



FIG. 4 illustrates an embodiment of an interface for coding documents. In some embodiments, interface 400 is shown to an individual requesting a reputation report, as part of a report generation process. For example, interface 400 is shown to Alice in conjunction with portion 306 of process 300. Specifically, the top results of a search performed by search module 212 are presented to Alice, and she is asked to code those results. The top results (i.e., the ones returned first by a search engine) are the ones most likely to be viewed by other individuals trying to find out more about Alice, and therefore particularly important to her online reputation.


The first result (402) is about a different Alice Smith, so Alice selects “This is not me” from dropdown 412. Name confusion can cause the reputations of others (i.e., other Alice Smiths) to impact Alice's reputation. The second result (404) is a positive news article about Alice, so she selects “Positive” from dropdown 414. The third result (406) is a third party website page that reveals Alice's telephone number, so she selects “Private Info Exposed” from dropdown 416. Other examples of labels Alice can use to code documents include “Negative” (indicating that the document says harmful things about Alice) and “Worth Monitoring” (indicating that the document is worth monitoring to make sure it does not become an issue in the future). Also included for each result presented in interface 400 is a checkbox (e.g. 430) that allows Alice to indicate whether she controls the content. For example, if a result displayed in interface 400 is from Alice's personal blog (e.g. hosted on server 138) or her profile on a social networking site (e.g., site 136), Alice would check the checkbox adjacent to that result. If the result displayed was authored by someone else (e.g. appearing in a newspaper), Alice would not check the checkbox. In some embodiments, whether or not Alice controls a result is determined by platform 102. For example, if the result is Alice's profile on a social networking site, platform 102 can automatically conclude that Alice is able to modify the result.


As mentioned above, in some embodiments, platform 102 supports multi-dimensional coding. Using result 404 as an example, an example of a multi-dimensional coding is “Positive” and “Trustworthy.” The second dimension (trustworthy) indicates that the source—a newspaper—is considered a trustworthy source of information. As a contrasting example, a blog page set up under a pseudonym on a free site might be coded as “Untrustworthy.” Other examples of second dimensions (i.e., combined with “Positive” or “Negative” to form multi-dimensional codings) include topical/biographical areas, such as “Health,” “Romantic Relationships,” “Ethics,” “Competence,” and “Finance.” An article praising a surgeon's good outcomes could be coded as “Positive—Competence” and a blog post ridiculing an individual for losing a large sum of money in Las Vegas could be coded as “Negative—Finance.”


As Alice scrolls down the page presented in interface 400, she will be presented with additional results to code. For example, the top 20 results returned by search engine 132 are presented in interface 400. In some embodiments, if Alice codes more than a threshold number of results as not pertaining to her (412) additional results are shown (i.e. the next 20 results) and she is asked to code those as well. As needed, results from other sources can also be presented to ensure that a sufficient number of results pertaining to Alice have been coded. For example, the top 20 results from search engine 132 are presented, followed by the top 10 results from search engine 134, and any results found on server 138 or site 136.



FIG. 5 illustrates an embodiment of a reputation report. In some embodiments, a report such as report 500 is generated at portion 310 of process 300. As shown, report 500 is rendered in a browser. Report 500 can also be provided in other forms, such as by being emailed to Alice as a PDF document. In region 502 of the report, the number of times Alice's name has been searched for in a month (e.g., in search engine 132, or across multiple sites, as applicable) is presented. According to report 500, “Alice Smith” has been searched for seven times in the last month. This can help indicate to Alice how important her online reputation is (i.e., the more people performing searches for “Alice Smith,” the more people will be exposed to the results and form opinions about Alice based on the results.) The data included in region 502 may be obtainable directly from/in cooperation with sites such as site 132, and can also be computed/extracted as needed where the sites do not expose the information. For example, suppose as a seller of advertisements, search engine 132 makes available an interface that potential advertisers can use to see how often a given search time is used. That interface can be used by platform 102 to determine how many times “Alice Smith” has been searched for in a given time period.


In region 504 of the report, the percentage of results (e.g. the top 20 results reviewed by Alice in interface 400) that are negative/harmful is displayed. According to report 500, 5% of the top results for “Alice Smith” are negative.


In region 506 of the report, the percentage of results (e.g., the top 20 results reviewed by Alice in interface 400) that are controllable/editable by Alice are shown. According to report 500, 30% of the top results for “Alice Smith” are pages such as blog posts written by Alice, Alice's profile on social networking site 136, and/or other places where Alice can modify what appears there.


In region 508, Alice is alerted that personal information about her is exposed. In example report 500, region 508 shows either a “yes” or a “no.” Alice's report includes a “yes” in this region because her phone number is publicly available on a people search site. In other embodiments, region 508 displays other information, such as by explicitly stating which information is exposed (e.g., phone number, birthday, home address) and/or the number of sites that expose her information.


In region 510, Alice is alerted that at least some of the results in the top 20 results for “Alice Smith” are not about her, but are about at least one other individual named Alice Smith. As with region 508, the information presented in region 510 can take a variety of forms. For example, in some embodiments region 510 indicates the percentage of pages about Alice vs. other people sharing her name.


Region 520 of report 500 includes an assessment of Alice's reputation. In particular, it highlights to her that one of the results in the top 20 results is negative and explains why that is problematic. Additional assessment information (e.g., warning her about the exposure of her personal information) is available to Alice by clicking on region 522.


Region 524 of report 500 includes individualized recommendations for how Alice can improve her online reputation, based on an analysis of the top results. In particular, Alice owns (i.e., can edit) a fair amount of the top results. A recommendation is made to Alice that she can push the one negative result lower (i.e. from appearing in the top 20 results to a lower position) by authoring more content, such as more blog posts on her blog (528) or by signing up for professional services. If a result is coded as negative, and also is coded as being controllable/editable by Alice, a recommendation would be made that Alice edit/otherwise remove the negative material, since she has the ability to do so.



FIG. 6 illustrates a portion of a reputation report. In addition to the summary information presented in report 500, details regarding each of the top results can be shown to Alice. For example, Alice can be shown the information presented in FIG. 6 when she scrolls down (530) in report 500 (or, where the report is a document, such as a PDF, as she flips through the pages). For each of the top results, a recommendation associated with the result is displayed. For example, result 9 (602) is a positive result, and a recommendation (604) is made to Alice to maintain the source. As another example, result 10 (608) is a harmful result, and a recommendation (610) is made to Alice that she should bury the result by authoring more content (or having it authored on her behalf).


Additional Examples of Assessments and Recommendations

The following are additional examples of assessments that can be made about an individual's online reputation, and examples of recommended actions those individuals can take.


Example 1: Individual has at Least One Negative Result in the Top 20

ASSESSMENT: You have negative content in the search results seen by 99% of people who look for you online. According to ACME Interactive, 3 out of 4 individuals would refuse to interact with a person after finding negative information about them online.


RECOMMENDATION: You have a highly-rated blog. Write more posts or hire us to bury the negative content using ReputationDefender: our experts strategically create professional content for you, you review and approve our writing, and we promote this material online using our technologies. Positive content goes up and negative content goes down.


Example 2: Individual has Private Information Exposed

ASSESSMENT: Your personal information is easily accessible through people-search sites. This type of personal data can be used by identity thieves and stalkers to hurt you and your family. Identity theft costs American consumers $37 billion every year (ACME Research). The personal data can also be used, unfairly, by those looking to employ, date, or do business with you (e.g., to make decisions based on what part of town you live in or your age).


RECOMMENDATION: Request that your information be removed from the following sites. We can simplify the safeguarding of your personal information using our one-click MyPrivacy program. We automatically remove your personal information from the top people-search sites and prevent them from re-adding you again in the future. We also block Web tracking, telemarketers, and unsolicited postal mail.


Example 3: Many of the Results are for a Person that is not the Individual

ASSESSMENT: Your search results include a lot of information about somebody else. People could think these results are about you, giving them a bad impression. According to ACME Interactive, 3 out of 4 individuals would refuse to interact with a person after finding negative information about them online.


RECOMMENDATION: You need there to be more results about you in the top results for your name. Create more of your own content, or have us help you bury the misleading items using ReputationDefender: our experts strategically create professional content for you, you review and approve our writing, and we promote this material online using our technologies. Quality items go up and misleading content goes down.


Example 4: Individual has Few Positive Results

ASSESSMENT: You have a limited online presence and are vulnerable to misrepresentation. Search results can change overnight, and surveys show that 3 out of 4 individuals would refuse to interact with a person after finding negative information about them online (ACME Interactive).


RECOMMENDATION: Expand your online presence by authoring more content, such as by starting a blog or signing up for social networking sites. You can also use ReputationDefender: our experts strategically create professional content for you, you review and approve our writing, and we promote this material online using our technologies. Quality items go up and any misleading content goes down.


Example 5: Individual has Many Positive Results

ASSESSMENT: Congratulations, you currently have a strong online presence. However, search results can change overnight, and surveys show that 3 out of 4 individuals would refuse to interact with a person after finding negative information about them online (ACME Interactive). Make sure to invest into upkeep for your online reputation.


RECOMMENDATION: Allow us to monitor your results. If we notice a significant change in your online reputation, we'll contact you immediately and help correct the situation.


Example 6: Individual has Both Negative Content and Privacy Issues

ASSESSMENT: You have negative content in your search results, as well as people-search sites that make you vulnerable to identity theft. Three out of four individuals would refuse to interact with a person after finding negative information about them online (ACME Interactive), and identity theft costs American consumers $37 billion every year (ACME Research).


RECOMMENDATION: Bury the negative content by writing more blog posts, or by using our ReputationDefender technology; safeguard your personal information by opting out of people-search sites. We can make it easy with our one-click MyPrivacy program.


Reputation Scoring


In some embodiments, reputation report platform 102 includes a scoring engine 218 configured to generate one or more reputation scores. As one example, a general reputation score (e.g. “85/100”) can be determined for Alice by assigning scores to each of the values appearing in regions 502-510 and summing, multiplying, or otherwise aggregating the results. The five factors can be weighted differently, e.g. with “Percent Negative” being given more weight than “Searches on Your Name.” The score can be saved (e.g., in storage 208), periodically recomputed, and used to help an individual such as Alice understand how her reputation has changed over time, and what factors contribute most to how she is likely to be perceived by someone trying to find out more about her online.


Reputation scores can be included in a report, such as reputation report 500, and can also be provided by themselves, without any additional information (and, for example, without a recommendation), omitting or modifying portion 310 of the process shown in FIG. 3. In some embodiments, instead of a specific value (e.g., 85% or 85/100), a threshold value is applied, and a person having a reputation above the threshold is acknowledged by platform 102 as being considered “reputable,” while someone with a score not meeting the threshold will not receive such an acknowledgment. Further, multiple types of reputation scores can be computed, e.g., pertaining to different aspects of an individual's reputation. As one example, where multi-dimensional coding is used (e.g., at 306), a subset of coded documents can be used in the analysis performed (e.g., at 308) rather than the entire set. For example, only those results coded (whether positive, negative, or neutral) pertaining to a person's professional competence, or to the person's romantic life, can be used.


In the following example, suppose that Bob would like to conduct business with Charlie. In particular, Bob would like to sell his car to Charlie, whom he met by placing a “for sale” advertisement on an online classified advertisement site. Charlie would like assurance that Bob is a reputable individual. Embodiments of reputation report platform 102 can be used in a variety of ways, both by Bob, and by Charlie, to help Charlie feel more comfortable about transacting with Bob.


As explained above, in some embodiments, platform 102 is configured to receive credentials (or other access authorization) from an individual such as Bob, with respect to a variety of services. For example, Bob can provide to platform 102 his credentials for social networking site 136, allowing platform 102 to access (304) and analyze (306, 308) any private posts made by or about Bob. In this scenario, all posts will be applicable to Bob (and not, for example, someone else sharing his name), so Bob will not need to code the results as belonging to him or not. Further, classifier 214 can perform sentiment analysis on the posts, and Bob need not code the documents (e.g., as positive or negative) himself Not enlisting Bob's assistance in coding documents can be done, both as a convenience to Bob, and also (e.g., where Bob shares information collected by platform 102 with others, such as Charlie) to help ensure that Bob does not attempt to game or otherwise tamper with his reputation information.


As another example, Bob could provide his credentials for an online auction site to demonstrate his ownership of a particular account on the auction site having particular feedback. Any credentials provided by Bob, and any information scraped from site 136 or the auction site can be stored in storage 208 as applicable. The documents pertaining to Bob can be used to generate a score that is sharable with Charlie in a variety of ways. As one example, Bob could provide Charlie's email address to platform 102 and platform 102 could email Charlie Bob's reputation score. As another example, Bob could instruct platform 102 to make available his score to Charlie for a limited amount of time (e.g. via a web interface).


In various embodiments, some, but not all aspects of Bob's reputation are considered by platform 102 when performing analysis (and scoring) and/or made available to Charlie. For example, suppose Bob has an account on a dating website and has been subject to negative feedback from several of his dates due to his appearance. If Bob's entire reputation was assessed by platform 102 to determine a single reputation score, Bob's score might appear quite low due to the negative dating reviews. However, Bob's reputation as a prospective date likely has very little bearing on whether or not he is sufficiently reputable to sell a car to Charlie. Indeed, other aspects of Bob's reputation (e.g., determined from blog posts, news articles, data from professional networking sites, and online auction sites) might be very positive and much more probative. A report, for a particular purpose (e.g., “transact business with” vs. “date”) can be generated by platform 102 accordingly, by including or excluding certain documents from analysis based on their coding.


Additional examples of reputation assessments for specific purposes, including reputation for employment, renting real estate, loan/financing, credit-worthiness, and admitting to school (e.g., each of which might exclude romantic reputation information but include all other aspects). A further example includes pet adoption (e.g., excluding job/other professional information, but including reputation information indicative of good character/kindness).


An example of a reputation report that includes a variety of scores is depicted in FIG. 7. In particular, FIG. 7 includes an overall score for Bob (702), as well as scores that focus on his reputation with respect to various aspects of his life (704-708). Bob can learn how each of the scores was determined (and, e.g. the top positive and negative documents contributing to each) by clicking on a “See why” link (e.g., link 710). In some embodiments, if Bob clicks on link 710, he will be shown content similar to that depicted in FIG. 6 (i.e., listing individual results and providing recommendations pertinent to the results).


In some embodiments, Bob can provide the output generated by platform 102 (e.g. a report similar to report 500 and/or one or more scores) to a prospective employer (or other entity interested in Bob's reputation), allowing the employer to verify that Bob is an upstanding member of society (including on social networks) without requiring Bob to divulge his credentials to the prospective employer or otherwise compromise his privacy. For example, suppose Bob clicks a “Share” link (e.g., link 712) in the interface shown in FIG. 7. In response, platform 102 can ask Bob a series of questions, such as who he would like to share the information with, at what level of detail, and in what manner. As one example, Bob could ask platform 102 to mail score 708 to Charlie. As another example, Bob could obtain from platform 102 a temporary link to give to Charlie, that will allow Charlie to view Bob's score 708 for a limited period of time (e.g., one viewing, one day, or one week). As yet another example, Bob could request platform 102 to generate a report (e.g. as a PDF) and mail it to Charlie.


Although the foregoing embodiments have been described in some detail for purposes of clarity of understanding, the invention is not limited to the details provided. There are many alternative ways of implementing the invention. The disclosed embodiments are illustrative and not restrictive.

Claims
  • 1. A system, comprising: one or more processors configured to: perform an automated preliminary coding of a document, wherein the automated preliminary coding of the document is based at least in part on at least one of an amount of time that the document has been available online and a domain from which the document was retrieved;perform an assessment of an online reputation of an individual, wherein the assessment pertains to a particular aspect of the individual's online reputation, and wherein the assessment is performed based at least in part on the automated preliminary coding of the document; andbased at least in part on the performed online reputation assessment, generate a reputation score pertaining to the particular aspect of the individual's online reputation; andprovide the reputation score as output; anda memory coupled to the one or more processors and configured to provide the one or more processors with instructions.
  • 2. The system of claim 1 wherein the one or more processors are configured to generate the reputation score based at least in part on a plurality of factors, wherein a first factor includes a number of times a search for the individual was performed during a time period.
  • 3. The system of claim 1 wherein the document is coded along a plurality of dimensions.
  • 4. The system of claim 1 wherein the one or more processors are configured to generate the reputation score based at least in part on a plurality of factors, wherein a first factor includes a percentage of coded documents that have been coded as being positive.
  • 5. The system of claim 1 wherein the one or more processors are configured to generate the reputation score based at least in part on a plurality of factors, wherein a first factor includes a percentage of coded documents that have been coded as being negative.
  • 6. The system of claim 1 wherein the one or more processors are configured to generate the reputation score based on a plurality of factors, wherein a first factor includes a percentage of coded documents that have been coded as containing content editable by the individual.
  • 7. The system of claim 1 wherein the one or more processors are configured to generate a plurality of reputation scores pertaining to different aspects of the individual's online reputation.
  • 8. The system of claim 7 wherein, in response to receiving an authorization by the individual, the one or more processors are configured to make available a subset of the plurality of reputation scores to an entity that is different from the individual and not make available to the entity at least one reputation score in the plurality of reputation scores.
  • 9. The system of claim 7 wherein a first reputation score included in the plurality comprises a financial reputation score.
  • 10. The system of claim 7 wherein a first reputation score included in the plurality comprises a relationship reputation score.
  • 11. The system of claim 7 wherein a first reputation score included in the plurality comprises a legal reputation score.
  • 12. The system of claim 7 wherein generating the reputation scores includes weighting a first reputation score and a second reputation score differently.
  • 13. The system of claim 12 wherein the weighting is performed at least in part in response to a selection by user of a report type.
  • 14. The system of claim 1 wherein the one or more processors are further configured to receive an authorization from the individual and to make the reputation score available to an entity other than the individual in response to receiving the authorization.
  • 15. The system of claim 1 wherein the reputation score is made available to an entity other than the individual for a period of time specified by the individual.
  • 16. The system of claim 1 wherein the one or more processors are configured to determine the reputation score pertaining to the particular aspect of the individual's online reputation at least in part by using a subset of coded documents pertaining to the particular aspect of the individual's online reputation.
  • 17. The system of claim 1 wherein performing the automated preliminary coding of the document comprises performing sentiment analysis.
  • 18. A method, comprising: performing an automated preliminary coding of a document, wherein the automated preliminary coding of the document is based at least in part on at least one of an amount of time that the document has been available online and a domain from which the document was retrieved;performing, using one or more processors, an assessment of an online reputation of an individual, wherein the assessment pertains to a particular aspect of the individual's online reputation, and wherein the assessment is performed based at least in part on the automated preliminary coding of the document;based at least in part on the performed online reputation assessment, generating a reputation score pertaining to the particular aspect of the individual's online reputation; andproviding the reputation score as output.
  • 19. The method of claim 18, wherein the document is coded along a plurality of dimensions.
  • 20. The method of claim 18 further comprising generating a plurality of reputation scores pertaining to different aspects of the individual's online reputation.
  • 21. The method of claim 20 further comprising receiving an authorization by the individual, and in response to receiving the authorization, making available a subset of the plurality of reputation scores to an entity that is different from the individual and not making available to the entity at last one reputation score in the plurality of reputation scores.
  • 22. The method of claim 20 wherein a first reputation score included in the plurality comprises a financial reputation score.
  • 23. The method of claim 20 wherein a first reputation score included in the plurality comprises a relationship reputation score.
  • 24. The method of claim 20 wherein a first reputation score included in the plurality comprises a legal reputation score.
  • 25. The method of claim 20 wherein generating the reputation scores includes weighting a first reputation score and a second reputation score differently.
  • 26. The method of claim 25 wherein the weighting is performed at least in part in response to a selection by user of a report type.
  • 27. The method of claim 18 wherein the reputation score is generated based at least in part on a plurality of factors, and wherein a first factor includes a number of times a search for the individual was performed during a time period.
  • 28. The method of claim 18 wherein the reputation score is generated based at least in part on a plurality of factors, and wherein a first factor includes a percentage of coded documents that have been coded as being positive.
  • 29. The method of claim 18 wherein the reputation score is generated based at least in part on a plurality of factors, and wherein a first factor includes a percentage of coded documents that have been coded as being negative.
  • 30. The method of claim 18 wherein the reputation score is generated based on a plurality of factors, and wherein a first factor includes a percentage of coded documents that have been coded as containing content editable by the individual.
  • 31. The method of claim 18 further comprising receiving an authorization from the individual and making the reputation score available to an entity other than the individual in response to receiving the authorization.
  • 32. The method of claim 18 wherein the reputation score is made available to an entity other than the individual for a period of time specified by the individual.
  • 33. The method of claim 18 wherein the reputation score pertaining to the particular aspect of the individual's online reputation is determined at least in part by using a subset of coded documents pertaining to the particular aspect of the individual's online reputation.
  • 34. The method of claim 18 wherein performing the automated preliminary coding of the document comprises performing sentiment analysis.
  • 35. A computer program product embodied in a tangible non-transitory computer readable storage medium and comprising computer instructions for: performing an automated preliminary coding of a document, wherein the automated preliminary coding of the document is based at least in part on at least one of an amount of time that the document has been available online and a domain from which the document was retrieved;performing, using one or more processors, an assessment of an online reputation of an individual, wherein the assessment pertains to a particular aspect of the individual's online reputation, and wherein the assessment is performed based at least in part on the automated preliminary coding of the document;based at least in part on the performed online reputation assessment, generating a reputation score pertaining to the particular aspect of the individual's online reputation; andproviding the reputation score as output.
CROSS REFERENCE TO OTHER APPLICATIONS

This application is a continuation of co-pending U.S. patent application Ser. No. 13/725,863, entitled REPUTATION REPORT WITH SCORE filed Dec. 21, 2012 which is incorporated herein by reference for all purposes.

US Referenced Citations (142)
Number Name Date Kind
5197004 Sobotka et al. Mar 1993 A
5819258 Vaithyanathan et al. Oct 1998 A
5857179 Vaithyanathan et al. Jan 1999 A
5873081 Harel Feb 1999 A
5987457 Ballard Nov 1999 A
6006218 Breese et al. Dec 1999 A
6178419 Legh-Smith et al. Jan 2001 B1
6182066 Marques Jan 2001 B1
6324650 Ogilvie Nov 2001 B1
6484068 Yamamoto et al. Nov 2002 B1
6510432 Doyle Jan 2003 B1
6513031 Fries et al. Jan 2003 B1
6532459 Berson Mar 2003 B1
6611825 Billheimer et al. Aug 2003 B1
6678690 Kobayashi et al. Jan 2004 B2
6766316 Caudill et al. Jul 2004 B2
6775677 Ando et al. Aug 2004 B1
6968333 Abbott et al. Nov 2005 B2
6985896 Perttunen Jan 2006 B1
7028026 Yang et al. Apr 2006 B1
7076558 Dunn Jul 2006 B1
7117207 Kerschberg et al. Oct 2006 B1
7191138 Roy et al. Mar 2007 B1
7289971 O'Neil et al. Oct 2007 B1
7571110 Tarr et al. Aug 2009 B2
7631032 Refuah et al. Dec 2009 B1
7634810 Goodman et al. Dec 2009 B2
7640434 Lee et al. Dec 2009 B2
7653646 Horn et al. Jan 2010 B2
7792816 Funes et al. Sep 2010 B2
7805354 Coleman et al. Sep 2010 B2
7970872 Liu et al. Jun 2011 B2
8185531 Nakano May 2012 B2
8364605 Rosenthal Jan 2013 B2
8484041 Yang Jul 2013 B2
20020016910 Wright et al. Feb 2002 A1
20020091689 Wiens et al. Jul 2002 A1
20020111847 Smith Aug 2002 A1
20020174230 Gudorf et al. Nov 2002 A1
20020178381 Lee et al. Nov 2002 A1
20030014402 Sealand et al. Jan 2003 A1
20030014633 Gruber Jan 2003 A1
20030069874 Hertzog et al. Apr 2003 A1
20030093260 Dagtas et al. May 2003 A1
20030135725 Schirmer et al. Jul 2003 A1
20030147536 Andivahis et al. Aug 2003 A1
20030229668 Malik Dec 2003 A1
20040019584 Greening et al. Jan 2004 A1
20040019846 Castellani et al. Jan 2004 A1
20040063111 Shiba et al. Apr 2004 A1
20040078363 Kawatani Apr 2004 A1
20040082839 Haugen Apr 2004 A1
20040088308 Bailey et al. May 2004 A1
20040093414 Orton May 2004 A1
20040122926 Moore et al. Jun 2004 A1
20040169678 Oliver Sep 2004 A1
20040210820 Tarr Oct 2004 A1
20040267717 Slackman Dec 2004 A1
20050005168 Dick Jan 2005 A1
20050050009 Gardner et al. Mar 2005 A1
20050071632 Pauker et al. Mar 2005 A1
20050114313 Campbell et al. May 2005 A1
20050160062 Howard et al. Jun 2005 A1
20050177559 Nemoto Aug 2005 A1
20050216443 Morton et al. Sep 2005 A1
20050234877 Yu Oct 2005 A1
20050251536 Harik Nov 2005 A1
20050256866 Lu et al. Nov 2005 A1
20060004716 Hurst-Hiller et al. Jan 2006 A1
20060009994 Hogg et al. Jan 2006 A1
20060015942 Judge et al. Jan 2006 A1
20060026593 Canning et al. Feb 2006 A1
20060042483 Work et al. Mar 2006 A1
20060047725 Bramson Mar 2006 A1
20060116896 Fowler et al. Jun 2006 A1
20060152504 Levy Jun 2006 A1
20060149708 Lavine Jul 2006 A1
20060161524 Roy et al. Jul 2006 A1
20060173828 Rosenberg Aug 2006 A1
20060174343 Duthie et al. Aug 2006 A1
20060212931 Shull et al. Sep 2006 A1
20060253423 McLane et al. Nov 2006 A1
20060253458 Dixon et al. Nov 2006 A1
20060253578 Dixon et al. Nov 2006 A1
20060253580 Dixon et al. Nov 2006 A1
20060253582 Dixon et al. Nov 2006 A1
20060253583 Dixon et al. Nov 2006 A1
20060253584 Dixon et al. Nov 2006 A1
20060271524 Tanne et al. Nov 2006 A1
20060287980 Liu et al. Dec 2006 A1
20060294085 Rose et al. Dec 2006 A1
20060294086 Rose et al. Dec 2006 A1
20070027859 Harney et al. Feb 2007 A1
20070073660 Quinlan Mar 2007 A1
20070101419 Dawson May 2007 A1
20070112760 Chea et al. May 2007 A1
20070112761 Xu et al. May 2007 A1
20070121596 Kurapati et al. May 2007 A1
20070124297 Toebes May 2007 A1
20070130126 Lucovsky et al. Jun 2007 A1
20070150562 Stull et al. Jun 2007 A1
20070288468 Sundaresan et al. Dec 2007 A1
20080021890 Adelman et al. Jan 2008 A1
20080077517 Sappington Mar 2008 A1
20080077577 Byrne et al. Mar 2008 A1
20080082687 Cradick et al. Apr 2008 A1
20080104030 Choi et al. May 2008 A1
20080109244 Gupta May 2008 A1
20080109245 Gupta May 2008 A1
20080109491 Gupta May 2008 A1
20080133488 Bandaru et al. Jun 2008 A1
20080133657 Pennington Jun 2008 A1
20080165972 Worthington Jul 2008 A1
20080281807 Bartlang et al. Nov 2008 A1
20080288277 Fasciano Nov 2008 A1
20080288324 Graczynski et al. Nov 2008 A1
20090063248 Chong et al. Mar 2009 A1
20090070325 Gabriel et al. Mar 2009 A1
20090076994 Ghosh et al. Mar 2009 A1
20090125382 Delepet May 2009 A1
20090164311 Deyo Jun 2009 A1
20090276233 Brimhall et al. Nov 2009 A1
20090307762 Cudd, Jr. Dec 2009 A1
20100100950 Roberts Apr 2010 A1
20100198839 Basu et al. Aug 2010 A1
20100250515 Ozonat et al. Sep 2010 A1
20100262454 Sommer et al. Oct 2010 A1
20100262601 Dumon et al. Oct 2010 A1
20100313252 Trouw Oct 2010 A1
20110016118 Edala et al. Jan 2011 A1
20110078049 Rehman et al. Mar 2011 A1
20110112901 Fried et al. May 2011 A1
20110119225 Ghosh et al. May 2011 A1
20110153551 Gabriel et al. Jun 2011 A1
20110296179 Templin et al. Dec 2011 A1
20120023332 Gorodyansky Jan 2012 A1
20120089618 Anschutz et al. Apr 2012 A1
20120226627 Yang Sep 2012 A1
20130007014 Fertik et al. Jan 2013 A1
20130124653 Vick et al. May 2013 A1
20130185189 Stewart Jul 2013 A1
20150278225 Weiss Oct 2015 A1
Foreign Referenced Citations (1)
Number Date Country
WO2001046868 Feb 2004 WO
Non-Patent Literature Citations (9)
Entry
Liu et al., “Personalized Web Search by Mapping User Queries to Categories,” CIKM, '02, McLean, Virginia, Nov. 4-6, 2002, pp. 558-565.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2012/044668, dated Dec. 21, 2012, 11pages.
Pretschner et al., “Ontology Based Personalized Search,” Proc. 11th IEEE International Conference on Tools with Artificial Intelligence, Chicago, Illinois, Nov. 1999, pp. 391-398.
Sugiyama et al., “Adaptive Web Search Based on User Profile Constructed Without Any Effort from Users,” ACM, New York, NY, May 17-22, 2004, pp. 675-684.
Author Unknown, “Suppress Negative Content Online”, Reputation Defender, Reputation.com, www.Reputation.com, <www.archive.org>, Way Back Machine, Oct. 10, 2011, pp. 1-3.
Author Unknown, “Online Reputation Management Leader”, Reputation.com, www.Reputation.com,<www.archive.org>, Way Back Machine, Oct. 6, 2011, pp. 1-2.
Author Unknown, “Remove Your Personal Information, Name, Phone Number from the Web and Control Your Online Reputation”, MyPrivacy + My Reputation, Reputation.com, www.Reputation.com, <www.archive.org>, Way Back Machine, Oct. 8, 2011, pp. 1-3.
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2012/043392, dated Jan. 25, 2013, 10 pages.
Daranyi et al., Svensk Biblioteksforskning; Automated Text Categorization of Bibliographic Records; Boras Academic Digital Archieve (BADA); artice peer reviewed [on-line], Hogskolan I Boras, vol. 16, Issue 2, pp. 1-14 as paginated or 16-29 as unpaginated of 47 pages, 2007 [retrieved on Nov. 6, 2012].
Continuations (1)
Number Date Country
Parent 13725863 Dec 2012 US
Child 14210090 US