Resecting and coagulating tissue

Information

  • Patent Grant
  • 10869714
  • Patent Number
    10,869,714
  • Date Filed
    Friday, February 24, 2017
    7 years ago
  • Date Issued
    Tuesday, December 22, 2020
    3 years ago
Abstract
The invention generally relates to a tissue ablation system including an ablation device to be delivered to a target site and achieve both resection and coagulation of tissue. The ablation device can be used during an electrosurgical resection procedure to both resect tissue and further selectively coagulate surrounding tissue in the resection site so as to prevent or stop fluid accumulation (e.g., blood from vessel(s)) as a result of the resection of tissue.
Description
FIELD

The present disclosure relates generally to medical devices, and, more particularly, to an ablation device configured to achieve simultaneous resection and coagulation, or hemostatic sealing, of a tissue.


BACKGROUND

There are many medical procedures in which tissue is cut or carved away for diagnostic or therapeutic reasons. For example, during hepatic transection, one or more lobes of a liver containing abnormal tissue, such as malignant tissue or fibrous tissue caused by cirrhosis, are cut away. There are a number of available electrosurgical devices for carrying out resection of tissue. However, regardless of the electrosurgical device used, extensive bleeding can occur, which can obstruct the surgeon's view and lead to dangerous blood loss levels, requiring transfusion of blood, which increases the complexity, time, and expense of the resection procedure.


In order to prevent extensive bleeding or accumulation of fluid, hemostatic mechanisms, such as blood inflow occlusion, coagulants, as well as energy coagulation (e.g., electrosurgical coagulation or argon-beam coagulation) can be used. Unlike resection, which involves application of highly intense and localized heating sufficient enough to break intercellular bonds, energy coagulation of tissue involves the application of low level current that denatures cells to a sufficient depth without breaking intercellular bonds, i.e., without cutting the tissue.


Because of their natural coagulation capability, ease of use, and ubiquity, electrosurgical modalities may be used to resect tissue. However, when electrosurgically resecting tissue, care must be taken to prevent the heat generated by the electrode from charring the tissue, which generates an undesirable odor, results in tissue becoming stuck on the electrosurgical probe, and most importantly, increases tissue resistance, thereby reducing the efficiency of the procedure. Current electrosurgical modalities, however, may generally lack the ability to be selectively and efficiently operated in a resecting mode and a coagulation mode, or both, so as to effectively resect tissue, while preventing tissue charring and maintaining hemostasis at the treatment site.


SUMMARY

The present invention relates to an ablation device configured to achieve both resection and coagulation of tissue. The ablation device can be used during an electrosurgical resection procedure to both resect tissue and further selectively coagulate surrounding tissue in the resection site so as to prevent or stop fluid accumulation (e.g., blood from vessel(s)) as a result of the resection of tissue. Accordingly, the ablation device of the present invention may be particularly useful in procedures involving the removal of unhealthy, or otherwise undesired, tissue from any part of the body in which resection may be beneficial. Thus, tumors, both benign and malignant, may be removed via surgical intervention with an ablation device described herein.


The tissue ablation device of the present invention generally includes a probe including an elongated shaft configured as a handle and adapted for manual manipulation and a nonconductive distal portion, or distal tip, coupled to the shaft. The nonconductive distal tip includes an electrode array configured to operate in a coagulation mode. The electrode array is composed of a plurality of conductive wires, wherein one or more of the wires may receive energy in the form of electrical current from a source (e.g., RF generator) and emit RF energy in response, resulting in coagulation of tissue in contact therewith. The nonconductive distal tip further includes a single cutting, or resecting, conductive wire. The cutting wire is configured to receive energy in the form of electrical current from the source (e.g., RF generator) and emit RF energy in response, thereby resulting in the resection of a tissue. The device may include a device controller, for example, configured to selectively control the supply of electrical current to the coagulation electrode array and the cutting wire, thereby allowing the device to operate in a cutting mode, a coagulation mode, or both such that the device can simultaneously resect and coagulate tissue at the target site.


The ability of the device to provide both resection and coagulation of tissue is dependent, not only on the nature of the electrical energy delivered to the conductive wires of the electrode array or the single cutting wire, but also on the geometry of the conductive wires along the nonconductive tip. The smaller the surface area of an electrode in proximity to the tissue, the greater the current density of an electrical arc generated by the electrode, and thus the more intense the thermal effect, thereby cutting the tissue. In contrast, the greater the surface area of the electrode in proximity to the tissue, the less the current density of the electrical arc generated by the electrode, thereby coagulating the tissue.


As such, the distal tip has a specific geometry that plays an important role in determining the current density (i.e., the amount of current distributed over an area) of energy emitted by the electrode array and cutting wire. In particular, the distal tip includes at least two opposing sides or faces sharing a common distal-facing edge. Each of the opposing sides of the distal tip includes a generally planar surface providing a relatively large surface area upon which the electrode array is positioned. The distal-facing edge has a leading end and a trailing end, wherein the leading end extends further from the distal tip than the trailing end. The cutting wire is positioned along, and generally follows the length of, the distal-facing edge. Accordingly, a portion of the cutting wire adjacent to the leading end of the edge has a relatively small surface area (when compared to the electrode array surface area) forming an energy focusing portion. Thus, because of the arrangement of the cutting wire along the distal-facing edge, including the energy-focusing portion at the leading end of the edge, the cutting wire can be placed in proximity to the tissue and cut the tissue. In contrast, positioning of the coagulation electrode array on the relatively large surface area of the planar sides or faces of the distal tip allows the electrode array to coagulate tissue.


The ablation device of the present invention is further configured to provide a conductive fluid, such as saline, to the distal tip, which may include one or more ports (e.g., ports through which conductive wires are threaded, additional fluid ports, etc.). The saline weeping through the ports and to an outer surface of the distal tip is able to carry electrical current from electrode array and/or the cutting wire, such that energy is transmitted from the electrode array, or cutting wire, to the tissue by way of the saline weeping from the ports, thereby creating a virtual electrode. Accordingly, upon the fluid weeping through the ports, a pool or thin film of fluid is formed on the exterior surface of the distal tip and is configured to resect and/or coagulate surrounding tissue via the electrical current carried from the electrode array.





BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantages of the claimed subject matter will be apparent from the following detailed description of embodiments consistent therewith, which description should be considered with reference to the accompanying drawings, wherein:



FIG. 1 is a schematic illustration of an ablation system consistent with the present disclosure;



FIG. 2 is a perspective view of one embodiment of an ablation device compatible with the ablation system of FIG. 1;



FIGS. 3A, 3B, 3C, and 3D are perspective and side views of the nonconductive distal tip of the ablation device of FIG. 2 in greater detail;



FIG. 4 is a perspective view of another embodiment of an ablation device compatible with the ablation system of FIG. 1; and



FIGS. 5A and 5B are perspective and side views of the nonconductive distal tip of the ablation device of FIG. 4 in greater detail.





For a thorough understanding of the present disclosure, reference should be made to the following detailed description, including the appended claims, in connection with the above-described drawings. Although the present disclosure is described in connection with exemplary embodiments, the disclosure is not intended to be limited to the specific forms set forth herein. It is understood that various omissions and substitutions of equivalents are contemplated as circumstances may suggest or render expedient.


DETAILED DESCRIPTION

By way of overview, the present disclosure is generally directed to a tissue ablation system including an ablation device to be delivered to a target site and achieve both resection and coagulation of tissue. The ablation device can be used during an electrosurgical resection procedure to both resect tissue and further selectively coagulate surrounding tissue in the resection site so as to prevent or stop fluid accumulation (e.g., blood from vessel(s)) as a result of the resection of tissue. Accordingly, the ablation device of the present invention may be particularly useful in procedures involving the removal of unhealthy, or otherwise undesired, tissue from any part of the body in which resection may be beneficial. Thus, tumors, both benign and malignant, may be removed via surgical intervention with an ablation device described herein.


The tissue ablation device of the present invention generally includes a probe including an elongated shaft configured as a handle and adapted for manual manipulation and a nonconductive distal portion (also referred to herein as “distal tip”) coupled to the shaft. The nonconductive distal tip includes an electrode array configured to operate in a coagulation mode. The electrode array is composed of a plurality of conductive wires, wherein one or more of the wires may receive energy in the form of electrical current from a source (e.g., RF generator) and emit RF energy in response, resulting in coagulation of tissue in contact therewith. The nonconductive distal tip further includes a single cutting, or resecting, conductive wire. The cutting wire is configured to receive energy in the form of electrical current from the source (e.g., RF generator) and emit RF energy in response, thereby resulting in the resection of a tissue. The device may include a device controller, for example, configured to selectively control the supply of electrical current to the coagulation electrode array and the cutting wire, thereby allowing the device to operate in a cutting mode, a coagulation mode, or both such that the device can simultaneously resect and coagulate tissue at the target site.


The ability of the device to provide both resection and coagulation of tissue is dependent, not only on the nature of the electrical energy delivered to the conductive wires of the electrode array or the single cutting wire, but also on the geometry of the conductive wires along the nonconductive tip. The smaller the surface area of an electrode in proximity to the tissue, the greater the current density of an electrical arc generated by the electrode, and thus the more intense the thermal effect, thereby cutting the tissue. In contrast, the greater the surface area of the electrode in proximity to the tissue, the less the current density of the electrical arc generated by the electrode, thereby coagulating the tissue.


As such, the distal tip has a specific geometry that plays an important role in determining the current density (i.e., the amount of current distributed over an area) of energy emitted by the electrode array and cutting wire. In particular, the distal tip includes at least two opposing sides or faces sharing a common distal-facing edge. Each of the opposing sides of the distal tip includes a generally planar surface providing a relatively large surface area upon which the electrode array is positioned. The distal-facing edge has a leading end and a trailing end, wherein the leading end extends further from the distal tip than the trailing end. The cutting wire is positioned along, and generally follows the length of, the distal-facing edge. Accordingly, a portion of the cutting wire adjacent to the leading end of the edge has a relatively small surface area (when compared to the electrode array surface area) forming an energy focusing portion. Thus, because of the arrangement of the cutting wire along the distal-facing edge, including the energy-focusing portion at the leading end of the edge, the cutting wire can be placed in proximity to the tissue and cut the tissue. In contrast, positioning of the coagulation electrode array on the relatively large surface area of the planar sides or faces of the distal tip allows the electrode array to coagulate tissue.


The ablation device of the present invention is further configured to provide a conductive fluid, such as saline, to the distal tip, which may include one or more ports (e.g., ports through which conductive wires are threaded, additional fluid ports, etc.). The saline weeping through the ports and to an outer surface of the distal tip is able to carry electrical current from electrode array and/or the cutting wire, such that energy is transmitted from the electrode array, or cutting wire, to the tissue by way of the saline weeping from the ports, thereby creating a virtual electrode. Accordingly, upon the fluid weeping through the ports, a pool or thin film of fluid is formed on the exterior surface of the distal tip and is configured to resect and/or coagulate surrounding tissue via the electrical current carried from the electrode array.


The devices and systems of the present disclosure can help to ensure that target tissue can be removed via resection while further providing a coagulation capability for addressing any fluid accumulation issues or extensive bleeding as a result of the resection, thereby improving a surgeon's ability to carry out the resection procedure. For example, when a blood vessel is encountered, RF energy can be applied via the electrode array operating in the coagulation mode, so as to shrink the collagen in the blood vessel, thereby closing the blood lumen and achieving hemostasis. In some instances, the cutting wire may be used to hemostatically seal smaller blood vessels (e.g., less than 3 mm in diameter). For example, hemostasis may be achieved via the cutting wire, for example, by utilizing the energy-focusing point in contact with the blood vessel. During or after resection of the tissue, RF energy can be applied to any “bleeders” (i.e., vessels from which blood flows or oozes) to provide complete hemostasis for the resected organ.



FIG. 1 is a schematic illustration of an ablation system 10 for providing improved resection and coagulation of tissue during a resection procedure in a patient 12. The ablation system 10 generally includes an ablation device 14, which includes a probe having a distal tip or portion 16 and an elongated catheter shaft 17 to which the distal tip 16 is connected. The catheter shaft 17 may generally include a nonconductive elongated member including a fluid delivery lumen. The ablation device 14 may further be coupled to a device controller 18 and an ablation generator 20 over an electrical connection (electrical line 32 shown in FIG. 2), and an irrigation pump or drip 22 over a fluid connection (fluid line 36 shown in FIG. 2).


The device controller 18 may include hardware/software configured to provide a user with the ability to control electrical output to the ablation device 14 in a manner so as to control the resection or coagulation of tissue. For example, as will be described in greater detail herein, the ablation device may be configured to operate in a “cutting mode”, a “coagulation mode”, or both modes simultaneously depending on input from a user. In some embodiments, the ablation device may be configured to operate in other modes, in addition to the “cutting” and “coagulation” modes. For example, in some embodiments, the device may be configured to operate in a “measurement mode” in which data can be collected, such as certain measurements (e.g., temperature, conductivity (impedance), etc.) can be taken and further used by the controller 18 so as to provide an estimation of the state of tissue during a electrosurgical resection procedure, as will be described in greater detail herein.


Further still, the device controller 18 may include a custom ablation shaping (CAS) system configured to provide a user with custom ablation shaping, which includes the creation of custom, user-defined ablation geometries or profiles from the ablation device 14. The CAS system may further be configured to provide ablation status mapping based on real-time data collection (e.g., measurements) collected by the device, wherein such a CAS system is described in co-pending U.S. application Ser. No. 15/419,269, filed Jan. 30, 2017, the entirety of which is incorporated by reference herein. In some cases, the device controller 18 may be housed within the ablation device 14. The ablation generator 20 may also connected to a return electrode that is attached to the skin of the patient 12.


As will be described in greater detail herein, during a resection procedure, the ablation generator 20 may generally provide RF energy (e.g., electrical energy in the radiofrequency (RF) range (e.g., 350-800 kHz)) to an electrode array of the ablation device 14, as controlled by the device controller 18. At the same time, saline may also be released from the distal tip 16. The RF energy travels through the blood and tissue of the patient 12 to the return electrode and, in the process, ablates the region(s) of tissues adjacent to portions of the electrode array that have been activated.



FIG. 2 is a perspective view of ablation device 14. As previously described, the ablation device 14 includes a probe 17 including an elongated shaft configured as a handle and adapted for manual manipulation. Accordingly, as shown in FIG. 2, the probe 17 is in the form of a handle having a distal end 24 to which the distal tip 16 is coupled and a proximal end 26. As shown, the proximal end 26 of the probe 17 may be coupled to the ablation generator 20 and/or irrigation pump 22 via an electrical line 32 and a fluid line 36, respectively. Each of the electrical line 32 and fluid line 36 may include an adaptor end 34, 38 configured to couple the associated lines with a respective interface on the ablation generator 20 and irrigation pump 22.


In some examples, the ablation device 14 may further include a user interface 28 serving as the device controller 18 and in electrical communication with the ablation generator 20 and the ablation device 14. The user interface 28 may include, for example, selectable buttons 30a, 30b for providing a user with one or more operating modes with respect to controlling the resection and coagulation output of the device 14, as will be described in greater detail herein. For example, the selectable buttons 30a, 30b allow a user to control electrical output to the ablation device 14 in a manner so as to control the resection or coagulation of tissue, such that selection of button 30a results in a cutting mode (e.g., energizing cutting wire) and selection of button 30b results in a coagulation mode (energizing electrode array).


The nonconductive distal tip includes an electrode array 40 configured to operate in a coagulation mode and a single and separate cutting, or resecting, conductive wire 42 configured to operate in a cutting mode. The electrode array 40 is generally composed of a plurality of conductive wires (shown as four separate conductive wires), wherein one or more of the wires may receive energy in the form of electrical current from the RF generator 20 and emit RF energy in response, resulting in coagulation of tissue in contact therewith. The cutting wire 42 is configured to receive energy in the form of electrical current from the source (e.g., RF generator) and emit RF energy in response, thereby resulting in the resection of a tissue. As previously described, a user need only provide input (e.g., select one of buttons 30a, 30b) so as to operate the ablation device 14 in the cutting mode, coagulation mode, or both, in which a supply of electrical current is provided to the cutting wire 42 or one or more of the conductive wires of the coagulation electrode array 40, or both.


The distal tip 16 may include a non-conductive material (e.g., a polyamide) as a layer on at least a portion of an internal surface, an external surface, or both an external and internal surface. In other examples, the tip 16 may be formed from a non-conductive material. Additionally or alternatively, the tip 16 material can include an elastomeric material or a shape memory material. In some embodiments, the tip 16 may be rigid, and thus may maintain a default shape.


The distal tip 16 includes a specific geometry or shape that plays an important role in determining the current density (i.e., the amount of current distributed over an area) of energy emitted by the electrode array 40 and cutting wire 42. The ability of the device 14 to provide both resection and coagulation of tissue is dependent, not only on the nature of the electrical energy delivered to the conductive wires of the electrode array 40 or the single cutting wire 42, but also on the geometry of the conductive wires along the tip 16. The smaller the surface area of an electrode in proximity to the tissue, the greater the current density of an electrical arc generated by the electrode, and thus the more intense the thermal effect, thereby cutting the tissue. In contrast, the greater the surface area of the electrode in proximity to the tissue, the less the current density of the electrical arc generated by the electrode, thereby coagulating the tissue.



FIGS. 3A, 3B, 3C, and 3D are various views of the nonconductive distal tip 16 of the ablation device 14 in greater detail. FIG. 3A shows a perspective view of the distal tip 16. As shown, the distal tip 16 generally includes at least two opposing sides or faces 44 (44a, 44b in FIG. 3C) sharing a common distal-facing edge 46. Each of the opposing sides 44 of the distal tip 16 includes a generally planar surface providing a relatively large surface area upon which the electrode array 40 is positioned. As illustrated in the figures, the electrode array includes at least four conductive wires, thus the electrode array 40 may include a plurality of conductive wires. It should be noted, however, that the electrode array 40 may include any number of conductive wires and is not limited to four or more. The plurality of conductive wires extend within the distal tip 16, through one or more ports 45 provided on the side 44 and along an external surface of the side 44. The conductive wires generally extend along the longitudinal length of the side 44 (in a vertical direction) and are spaced apart from each other. The conductive wires transmit RF energy from the ablation generator and can be formed of any suitable conductive material (e.g., a metal such as stainless steel, nitinol, or aluminum). In some examples, the conductive wires are metal wires.


It should be noted that other electrode array configurations are contemplated herein. For example, although shown to be arranged in a vertical fashion, the conductive wires of the electrode array 40 may be arranged in a different configuration. For example, in one embodiment, the conductive wires may be positioned substantially parallel to the distal-facing edge 46 or may be oriented at an angle relative to the distal-facing edge 46.


In some embodiments, one or more of the conductive wires can be electrically isolated from one or more of the remaining conductive wires, such that the electrical isolation enables various operation modes for the ablation device 14. For example, ablation energy may be supplied to one or more conductive wires in a bipolar mode, a unipolar mode, or a combination bipolar and unipolar mode. In the unipolar mode, ablation energy is delivered between one or more conductive wires of the electrode array 40 and a return electrode, for example. In bipolar mode, energy is delivered between at least two of the conductive wires, while at least one conductive wire remains neutral. In other words, at least, one conductive wire functions as a grounded conductive wire (e.g., electrode) by not delivering energy over at least one conductive wire.


Since each conductive wire in the electrode array 40 is electrically independent, each conductive wire can be connected in a fashion that allows for impedance measurements using bipolar impedance measurement circuits. For example, the conductive wires can be configured in such a fashion that tetrapolar or guarded tetrapolar electrode configurations can be used. For instance, one pair of conductive wires could function as the current driver and the current return, while another pair of conductive wires could function as a voltage measurement pair. Accordingly, a dispersive ground pad can function as current return and voltage references. Their placement dictate the current paths and thus having multiple references can also benefit by providing additional paths for determining the ablation status of the tissue. The impedance measurement capability of the device is described in co-pending U.S. application Ser. No. 15/337,334, filed on Oct. 28, 2016 and U.S. application Ser. No. 15/419,269, filed Jan. 30, 2017, the entireties of which are incorporated by reference herein.



FIG. 3B is a side view of the distal tip 16 with the electrode array 40 removed so as to better illustrate a planar surface side 44 of the distal tip 16. As shown in FIG. 3B, the distal-facing edge 46 has a trailing end 50 and a leading end 52, wherein the leading end 52 extends further from the distal tip 16 than the trailing end 50. The cutting wire 42 is positioned along, and generally follows the length of, the distal-facing edge 46. The distal-facing edge 46 may have a length L between 0.5 cm to 5 cm, and, in some embodiments, the length L of the distal-facing edge 46 may be approximately 1 cm. In some embodiments, the distal-facing edge 46 may include a groove 54 formed along a length thereof and configured to receive and provide a guide along which the cutting wire 42 may sit (see FIG. 3D). Accordingly, a portion of the cutting wire 42 adjacent to the leading end 52 of the edge 46 has a relatively small surface area (when compared to the electrode array 40 surface area on side 44), thereby forming an energy focusing portion 48. Thus, because of the arrangement of the cutting wire 42 along the distal-facing edge 46, including the energy-focusing portion 48 at the leading end 52 of the edge 46, the cutting wire can be placed in proximity to the tissue and cut the tissue. In contrast, positioning of the coagulation electrode array 40 on the relatively large surface area of the planar sides or faces 44a, 44b of the distal tip 16 allows the electrode array to coagulate tissue.


It should be noted that the ablation device 14 of the present disclosure may include different distal tip geometries or shapes. For example, FIG. 4 is a perspective view of another embodiment of a distal tip 16b for use with the ablation device 14 of the present invention. As shown, all elements of the ablation device 14 of FIG. 4 are identical to the ablation device 14 illustrated in FIG. 2, while the distal tip 16 has a different shape. FIGS. 5A and 5B are perspective and side views of the nonconductive distal tip 16b of the ablation device 14 of FIG. 4 in greater detail. In the embodiment shown in FIGS. 5A and 5B, the distal tip has a more squared-off shape, as opposed to the somewhat rounded off shape of distal tip 16 of FIGS. 2 and 3A-3D. In either case, the distal tip 16b has opposing sides 44 providing a substantially planar surface for the electrode array 40 and a distal-facing edge 46 for the cutting wire 42.


As previously described, the ablation device 14 of the present invention is further configured to provide a conductive fluid, such as saline, to the distal tip 16, which may include one or more ports 45 (e.g., ports through which conductive wires are threaded, additional fluid ports, etc.). The saline weeping through the ports 45 and to an outer surface of the distal tip 16 is able to carry electrical current from electrode array 40 and/or the cutting wire 42, such that energy is transmitted from the electrode array 40, or cutting wire 42, to the tissue by way of the saline weeping from the ports, thereby creating a virtual electrode. Accordingly, upon the fluid weeping through the ports, a pool or thin film of fluid is formed on the exterior surface of the distal tip 16 and is configured to resect and/or coagulate surrounding tissue via the electrical current carried from the electrode array.


As generally understood, the distal tip may be formed from two or more pieces configured to be coupled to one another to form the unitary distal tip 16, such as a configuration, including internal components and connections, as described in co-pending U.S. application Ser. No. 15/337,334, filed on Oct. 28, 2016 and U.S. application Ser. No. 15/419,269, filed Jan. 30, 2017, the entireties of which are incorporated by reference herein, the entireties of which are incorporated by reference.


Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.


The terms and expressions which have been employed herein are used as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding any equivalents of the features shown and described (or portions thereof), and it is recognized that various modifications are possible within the scope of the claims. Accordingly, the claims are intended to cover all such equivalents.


As used in any embodiment herein, the term “controller”, “module”, “subsystem”, or the like, may refer to software, firmware and/or circuitry configured to perform any of the aforementioned operations. Software may be embodied as a software package, code, instructions, instruction sets and/or data recorded on non-transitory computer readable storage medium. Firmware may be embodied as code, instructions or instruction sets and/or data that are hard-coded (e.g., nonvolatile) in memory devices. “Circuitry”, as used in any embodiment herein, may comprise, for example, singly or in any combination, hardwired circuitry, programmable circuitry such as computer processors comprising one or more individual instruction processing cores, state machine circuitry, and/or firmware that stores instructions executed by programmable circuitry. The controller or subsystem may, collectively or individually, be embodied as circuitry that forms part of a larger system, for example, an integrated circuit (IC), system on-chip (SoC), desktop computers, laptop computers, tablet computers, servers, smart phones, etc.


Any of the operations described herein may be implemented in a system that includes one or more storage mediums having stored thereon, individually or in combination, instructions that when executed by one or more processors perform the methods. Here, the processor may include, for example, a server CPU, a mobile device CPU, and/or other programmable circuitry.


Also, it is intended that operations described herein may be distributed across a plurality of physical devices, such as processing structures at more than one different physical location. The storage medium may include any type of tangible medium, for example, any type of disk including hard disks, floppy disks, optical disks, compact disk read-only memories (CD-ROMs), compact disk rewritables (CD-RWs), and magneto-optical disks, semiconductor devices such as read-only memories (ROMs), random access memories (RAMs) such as dynamic and static RAMs, erasable programmable read-only memories (EPROMs), electrically erasable programmable read-only memories (EEPROMs), flash memories, Solid State Disks (SSDs), magnetic or optical cards, or any type of media suitable for storing electronic instructions. Other embodiments may be implemented as software modules executed by a programmable control device. The storage medium may be non-transitory.


As described herein, various embodiments may be implemented using hardware elements, software elements, or any combination thereof. Examples of hardware elements may include processors, microprocessors, circuits, circuit elements (e.g., transistors, resistors, capacitors, inductors, and so forth), integrated circuits, application specific integrated circuits (ASIC), programmable logic devices (PLD), digital signal processors (DSP), field programmable gate array (FPGA), logic gates, registers, semiconductor device, chips, microchips, chip sets, and so forth.


Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.


The terms and expressions which have been employed herein are used as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding any equivalents of the features shown and described (or portions thereof), and it is recognized that various modifications are possible within the scope of the claims. Accordingly, the claims are intended to cover all such equivalents.

Claims
  • 1. A device for selectively resecting and coagulating tissue, the device comprising: a probe comprising: a nonconductive elongated shaft including at least one lumen extending therethrough; anda nonconductive distal tip extending from the shaft and in fluid communication with the at least one lumen and configured to receive a fluid therefrom, the nonconductive distal tip having a plurality of ports configured to allow passage of the fluid to an external surface of the distal tip and at least two opposing sides, each of the at least two opposing sides defining a substantially planar surface, and a distal-facing edge along which the at least two opposing sides converge, the distal-facing edge having a leading end and a trailing end, wherein the leading end extends further from the nonconductive distal tip than the trailing end;an electrode array comprising a plurality of independent conductive wires, each positioned along the external surface of the planar surface of at least one of the at least two opposing sides of the nonconductive distal tip, wherein the plurality of ports comprises a plurality of proximal ports and a plurality of distal ports and each of the plurality of independent conductive wires passes through one of the proximal ports and through a corresponding one of the distal ports, wherein one or more of the plurality of independent conductive wires is configured to receive an electrical current and conduct energy to be carried by the fluid passing through one or more of the plurality of ports for coagulation of a target tissue; anda single conductive cutting wire independent from the electrode array, positioned and extending along an entire length of the distal-facing edge of the nonconductive distal tip, wherein the cutting wire passes through another one of the proximal ports, the cutting wire configured to receive an electrical current to cause activation of the cutting wire, and having an energy focusing portion adjacent the leading end of the distal-facing edge, the energy focusing portion having a relatively smaller surface area than the surface area of the electrode array and configured, upon receipt of the electrical current, to convey a focused amount of energy to be carried by the fluid passing through the another proximal port away from the nonconductive distal tip sufficient for at least one of resection and coagulation of the target tissue, the focused amount of energy being greater than an amount of energy conveyed to the tissue by the electrode array.
  • 2. The device of claim 1, wherein, upon receipt of the electrical current, the energy focusing portion is configured to convey the focused amount of energy away from the nonconductive distal tip sufficient for resection of the target tissue, wherein the energy is RF energy.
  • 3. The device of claim 1, wherein the distal-facing edge of the nonconductive distal tip comprises a groove formed along a length thereof and configured to receive and retain the cutting wire within.
  • 4. The device of claim 1, wherein, upon receipt of the electrical current, at least one of the plurality of independent conductive wires of the electrode array is configured to convey energy away from the nonconductive distal tip sufficient for coagulation of the target tissue, wherein the energy is RF energy.
  • 5. The device of claim 1, further comprising a controller configured to receive input to and selectively control supply of electrical current to the electrode array and the cutting wire and to receive input.
  • 6. The device of claim 5, wherein the controller is configured to provide an operating mode upon receipt of input, wherein the operating mode is at least one of a coagulation operating mode and a resection operating mode.
  • 7. The device of claim 6, wherein the controller is configured to provide a measurement mode in which at least one of the electrode array and the cutting wire is configured to serve a portion of a sensor assembly configured to measure impedance.
  • 8. The device of claim 6, wherein, upon receipt of input selecting the coagulation operating mode, the controller is configured to selectively control the supply of electrical current to the electrode array.
  • 9. The device of claim 6, wherein, upon receipt of input selecting the resection operating mode, the controller is configured to selectively control the supply of electrical current to the cutting wire.
  • 10. The device of claim 6, wherein the controller is configured to control one or more parameters associated with the supply of electrical current to the electrode array and the cutting wire depending on the operating mode.
  • 11. The device of claim 10, wherein the one or more parameters include at least one of a level of electrical current to be supplied, a length of time in which the electrical current is to be supplied, one or more intervals over which the electrical current is to be supplied, or a combination thereof.
  • 12. The device of claim 1, wherein each of the plurality of distal ports corresponds to one of the plurality of proximal ports such that a wire passing through a set of corresponding distal and proximal ports has a length that extends along the external surface of the planar surface of at least one of the at least two opposing sides of the nonconductive distal tip.
  • 13. The device of claim 12, wherein each of the plurality of independent conductive wires of the electrode array translates along at least one of the at least two opposing sides of the nonconductive distal tip in a direction substantially parallel with a longitudinal axis of the device.
  • 14. The device of claim 1, wherein each of the plurality of independent conductive wires of the electrode array extends through a different one of the plurality of distal ports and each of the plurality of independent conductive wires of the electrode array extends through a different one of the plurality of proximal ports.
  • 15. The device of claim 1, wherein the cutting wire is configured to conduct electrical current to be carried by the conductive fluid along the external surface of the nonconductive distal tip for at least one of coagulation and resection of the target tissue.
  • 16. The device of claim 1, wherein the external surface of the nonconductive distal tip comprises at least one portion of surface texturing to enhance fluid distribution.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of, and priority to, U.S. Provisional Application No. 62/301,907, filed Mar. 1, 2016, the content of which is hereby incorporated by reference herein in its entirety.

US Referenced Citations (218)
Number Name Date Kind
4699147 Chilson et al. Oct 1987 A
4976711 Parins et al. Dec 1990 A
4979948 Geddes et al. Dec 1990 A
5045056 Behl Sep 1991 A
5100423 Fearnot Mar 1992 A
5117828 Metzger et al. Jun 1992 A
5163938 Kambara Nov 1992 A
5334193 Nardella Aug 1994 A
5429605 Richling et al. Jul 1995 A
5471982 Edwards et al. Dec 1995 A
5472441 Edwards et al. Dec 1995 A
5486161 Lax et al. Jan 1996 A
5536267 Edwards et al. Jul 1996 A
5562720 Stern et al. Oct 1996 A
5657760 Ying et al. Aug 1997 A
5672153 Lax et al. Sep 1997 A
5672173 Gough et al. Sep 1997 A
5672174 Gough et al. Sep 1997 A
5683384 Gough et al. Nov 1997 A
5713942 Stern et al. Feb 1998 A
5728143 Gough et al. Mar 1998 A
5772590 Webster, Jr. Jun 1998 A
5782827 Gough et al. Jul 1998 A
5827276 LeVeen et al. Oct 1998 A
5840076 Swanson et al. Nov 1998 A
5846239 Swanson et al. Dec 1998 A
5855576 LeVeen et al. Jan 1999 A
5863290 Gough et al. Jan 1999 A
5868736 Swanson et al. Feb 1999 A
5868776 Wright Feb 1999 A
5871483 Jackson et al. Feb 1999 A
5888198 Eggers et al. Mar 1999 A
5891136 McGee et al. Apr 1999 A
5893847 Kordis Apr 1999 A
5913855 Gough et al. Jun 1999 A
5928229 Gough et al. Jul 1999 A
5935123 Edwards et al. Aug 1999 A
5961513 Swanson et al. Oct 1999 A
5980517 Gough Nov 1999 A
6009877 Edwards Jan 2000 A
6032077 Pomeranz Feb 2000 A
6036689 Tu et al. Mar 2000 A
6053913 Tu et al. Apr 2000 A
6053937 Edwards et al. Apr 2000 A
6063081 Mulier et al. May 2000 A
6071278 Panescu et al. Jun 2000 A
6071280 Edwards et al. Jun 2000 A
6099526 Whayne et al. Aug 2000 A
6112123 Kelleher et al. Aug 2000 A
6123718 Tu et al. Sep 2000 A
6142993 Whayne et al. Nov 2000 A
6221071 Sherry et al. Apr 2001 B1
6241666 Pomeranz et al. Jun 2001 B1
6251109 Hassett et al. Jun 2001 B1
6258087 Edwards et al. Jul 2001 B1
6309352 Oraevsky et al. Oct 2001 B1
6312408 Eggers Nov 2001 B1
6312429 Burbank et al. Nov 2001 B1
6358248 Mulier et al. Mar 2002 B1
6379353 Nichols Apr 2002 B1
6409722 Hoey et al. Jun 2002 B1
6425877 Edwards Jul 2002 B1
6454766 Swanson et al. Sep 2002 B1
6491710 Satake Dec 2002 B2
6494902 Hoey et al. Dec 2002 B2
6503247 Swartz et al. Jan 2003 B2
6522930 Schaer et al. Feb 2003 B1
6537248 Mulier et al. Mar 2003 B2
6537272 Christopherson et al. Mar 2003 B2
6544262 Fleischman Apr 2003 B2
6551310 Ganz et al. Apr 2003 B1
6585732 Mulier et al. Jul 2003 B2
6623481 Garbagnati et al. Sep 2003 B1
6638275 McGaffigan et al. Oct 2003 B1
6648883 Francischelli et al. Nov 2003 B2
6663622 Foley et al. Dec 2003 B1
6692466 Chow et al. Feb 2004 B1
6736810 Hoey et al. May 2004 B2
6736811 Panescu et al. May 2004 B2
6743226 Cosman et al. Jun 2004 B2
6764487 Mulier et al. Jul 2004 B2
6770072 Truckai et al. Aug 2004 B1
6780183 Jimenez, Jr. et al. Aug 2004 B2
6805131 Kordis Oct 2004 B2
6826421 Beatty et al. Nov 2004 B1
6849073 Hoey et al. Feb 2005 B2
6872206 Edwards et al. Mar 2005 B2
6878149 Gatto Apr 2005 B2
6955641 Lubock Oct 2005 B2
6978788 Klimberg et al. Dec 2005 B2
6984232 Vanney et al. Jan 2006 B2
7104989 Skarda Sep 2006 B2
7150745 Stern et al. Dec 2006 B2
7156845 Mulier et al. Jan 2007 B2
7169144 Hoey et al. Jan 2007 B2
7247155 Hoey et al. Jul 2007 B2
7276061 Schaer et al. Oct 2007 B2
7306593 Keidar et al. Dec 2007 B2
7326208 Vanney et al. Feb 2008 B2
7344535 Stern et al. Mar 2008 B2
7364579 Mulier et al. Apr 2008 B2
7367972 Francischelli et al. May 2008 B2
7371231 Rioux et al. May 2008 B2
7399299 Daniel et al. Jul 2008 B2
7416552 Paul et al. Aug 2008 B2
7419489 Vanney et al. Sep 2008 B2
7556628 Utley et al. Jul 2009 B2
7632268 Edwards et al. Dec 2009 B2
7717909 Strul et al. May 2010 B2
7769432 Klimberg et al. Aug 2010 B2
7776034 Kampa Aug 2010 B2
7828793 Thompson et al. Nov 2010 B2
7862498 Nguyen et al. Jan 2011 B2
7879030 Paul et al. Feb 2011 B2
7942873 Kwan et al. May 2011 B2
7959628 Schaer et al. Jun 2011 B2
7959631 DiCarlo Jun 2011 B2
8034022 Boatman Oct 2011 B2
8043289 Behl et al. Oct 2011 B2
8048069 Skwarek et al. Nov 2011 B2
8114071 Woloszko et al. Feb 2012 B2
8224416 de la Rama et al. Jul 2012 B2
8303584 Burdio Pinilla et al. Nov 2012 B2
8388573 Cox Mar 2013 B1
8398624 Rioux et al. Mar 2013 B2
8409193 Young et al. Apr 2013 B2
8444638 Woloszko et al. May 2013 B2
8465484 Davalos et al. Jun 2013 B2
8465486 Danek et al. Jun 2013 B2
8588886 de la Rama et al. Nov 2013 B2
8591461 Boatman Nov 2013 B2
8617158 Garabedian et al. Dec 2013 B2
8647339 Satake Feb 2014 B2
8657814 Werneth et al. Feb 2014 B2
8734439 Gough et al. May 2014 B2
8814855 DiCarlo et al. Aug 2014 B2
8834461 Werneth et al. Sep 2014 B2
8979838 Woloszko Mar 2015 B2
8979841 Kunis et al. Mar 2015 B2
9078665 Moss et al. Jul 2015 B2
9131980 Bloom Sep 2015 B2
9839472 Rioux et al. Dec 2017 B2
9848936 Rioux et al. Dec 2017 B2
9855098 Rioux Jan 2018 B2
20010031941 Edwards et al. Oct 2001 A1
20020026186 Woloszko et al. Feb 2002 A1
20020062123 McClurken et al. May 2002 A1
20020087208 Koblish et al. Jul 2002 A1
20020095152 Ciarrocca Jul 2002 A1
20020115992 Utley et al. Aug 2002 A1
20020120259 Lettice Aug 2002 A1
20020120267 Phan Aug 2002 A1
20020128641 Underwood et al. Sep 2002 A1
20030009166 Moutafis et al. Jan 2003 A1
20030036680 Black Feb 2003 A1
20030130711 Pearson et al. Jul 2003 A1
20030216725 Woloszko et al. Nov 2003 A1
20030225403 Woloszko et al. Dec 2003 A1
20040087936 Stern et al. May 2004 A1
20040092960 Abrams et al. May 2004 A1
20050049454 Ouchi Mar 2005 A1
20050070894 McClurken Mar 2005 A1
20050154386 West et al. Jul 2005 A1
20050187491 Burbank Aug 2005 A1
20060212032 Daniel et al. Sep 2006 A1
20060259027 Kwan Nov 2006 A1
20070083195 Werneth et al. Apr 2007 A1
20080004534 Gelbart et al. Jan 2008 A1
20080015565 Davison Jan 2008 A1
20080103494 Rioux et al. May 2008 A1
20080140001 Globerman et al. Jun 2008 A1
20080234673 Marion Sep 2008 A1
20090171340 Young Jul 2009 A1
20090248021 McKenna Oct 2009 A1
20090292177 Eggers et al. Nov 2009 A1
20090299355 Bencini et al. Dec 2009 A1
20100114087 Edwards et al. May 2010 A1
20100256629 Wylie et al. Oct 2010 A1
20100292689 Davison et al. Nov 2010 A1
20110172485 Lubock Jul 2011 A1
20110257646 Utley et al. Oct 2011 A1
20120029510 Haverkost Feb 2012 A1
20120059437 Shalev Mar 2012 A1
20120109250 Cates et al. May 2012 A1
20120172680 Gelfand et al. Jul 2012 A1
20130085493 Bloom et al. Apr 2013 A1
20130158536 Bloom Jun 2013 A1
20130172870 Germain et al. Jul 2013 A1
20130184702 Neal, II et al. Jul 2013 A1
20130184706 Gelbart et al. Jul 2013 A1
20130253506 Rioux et al. Sep 2013 A1
20130310833 Brown Nov 2013 A1
20130338662 Weber Dec 2013 A1
20140018788 Engelman et al. Jan 2014 A1
20140018794 Anderson et al. Jan 2014 A1
20140031810 Mahvi et al. Jan 2014 A1
20140058376 Horn et al. Feb 2014 A1
20140221998 Latterell Aug 2014 A1
20140276731 Voegele et al. Sep 2014 A1
20140276748 Ku Sep 2014 A1
20140378960 Fischer Dec 2014 A1
20150018817 Willard Jan 2015 A1
20150141982 Lee May 2015 A1
20160113707 Sahakian et al. Apr 2016 A1
20160113708 Moss et al. Apr 2016 A1
20160184008 Papaioannou et al. Jun 2016 A1
20160317221 Rioux Nov 2016 A1
20170000559 Rioux et al. Jan 2017 A1
20170027633 Wham et al. Feb 2017 A1
20170119454 Rioux et al. May 2017 A1
20170172646 Patel Jun 2017 A1
20170215947 Rioux et al. Aug 2017 A1
20170215951 Wang et al. Aug 2017 A1
20170281267 Rioux et al. Oct 2017 A1
20170281271 Rioux Oct 2017 A1
20180014880 Rioux et al. Jan 2018 A1
20180078305 Rioux et al. Mar 2018 A1
20180104004 Rioux et al. Apr 2018 A1
Foreign Referenced Citations (20)
Number Date Country
2610858 Apr 2004 CN
104546124 Apr 2015 CN
102010032932 Feb 2012 DE
0777445 Jun 1999 EP
2942023 Feb 2016 EP
3040043 Jan 2018 EP
3009735 Feb 2000 JP
9510326 Apr 1995 WO
9942047 Aug 1999 WO
0051683 Sep 2000 WO
2007103986 Sep 2007 WO
2011143468 Nov 2011 WO
2012015722 Feb 2012 WO
2012050637 Apr 2012 WO
2014022379 Feb 2014 WO
2014189887 Nov 2014 WO
2015142674 Sep 2015 WO
2015163846 Oct 2015 WO
2015200518 Dec 2015 WO
2016181318 Nov 2016 WO
Non-Patent Literature Citations (33)
Entry
International Search Report and Written Opinion of the International Searching Authority dated Oct. 19, 2017 for International Application No. PCT/US2017/041501 (63 Pages).
Extended European Search Report dated Jun. 10, 2016 for European Application No. 13825361.2 (13 Pages).
International Search Report and Written Opinion of the International Searching Authority dated May 16, 2017 for International Application No. PCT/US2017/015582 (11 pages).
International Search Report and Written Opinion of the International Searching Authority dated Aug. 22, 2016 for International Application No. PCT/US2016/030081 (11 Pages).
International Search Report and Written Opinion of the International Searching Authority dated Aug. 5, 2015 for International Application No. PCT/US2015/020596 (13 Pages).
International Search Report and Written Opinion of the International Searching Authority dated Nov. 29, 2013 or International Application No. PCT/US2013/052703 (11 Pages).
International Search Report and Written Opinion of the International Searching Authority dated Feb. 2, 2017 for International Application No. PCT/US2016/059345 (10 Pages).
International Search Report and Written Opinion of the International Searching Authority dated May 16, 2017 for International Application No. PCT/US2017/015584 (11 pages).
“Aquamantys System” Product Brochure, Medtronic, 2014 (12 Pages).
“Starburst Talon” Specifications Brochure, Angiodynamics, 2013 (2 Pages).
Medtronic, “Aquamantys Bipolar Sealers.” Electrosurgical Products, Jun. 2017. Retrieved Jul. 21, 2017. <http://www.medtronic.com/us-en/healthcare-professionals/products/general-surgery/electrosurgical/aquamantys-bipolar-sealers.html> (11 Pages).
International Search Report and Written Opinion of the International Searching Authority dated Nov. 1, 2018 for International Application No. PCT/US2018/043654 (10 Pages).
International Search Report and Written Opinion of the International Searching Authority dated Nov. 15, 2018 for International Application PCT/US2018/043658 (15 Pages).
Notice of Allowance dated Jul. 24, 2018 for U.S. Appl. No. 15/784,778 (12 Pages).
International Search Report and Written Opinion of the International Searching Authority dated Aug. 26, 2018 for International Application No. PCT/US2017/059850 (10 Pages).
International Search Report and Written Opinion of the Interational Searching Authority dated Feb. 27, 2018 for International Application No. PCT/US2017/056754 (11 Pages).
Non-Final Office Action dated May 7, 2018 for U.S. Appl. No. 15/142,616 (13 Pages).
International Search Report and Written Opinion dated Jun. 6, 2018 for International Application No. PCT/US2018/019151 (17 Pages).
International Search Report and Written Opinion of the International Searching Authority dated Sep. 16, 2018 for International Application No. PCT/US2018/036268 (11 Pages).
International Search Report and Written Opinion of the International Searching Authority dated Jun. 11, 2017 for International Application No. PCT/US2017/019398 (27 Pages).
Non-Final Office Action dated Aug. 11, 2017 for U.S. Appl. No. 15/337,334 (11 Pages).
Response to Non-Final Office Action Filed Sep. 20, 2017 for U.S. Appl. No. 15/337,334 (6 Pages).
Non-Final Office Action dated Aug. 11, 2017 for U.S. Appl. No. 15/624,327 (11 Pages).
Response to Non-Final Office Action Filed Sep. 19, 2017 for U.S. Appl. No. 15/624,327 (8 Pages).
Non-Final Office Action dated Aug. 4, 2017 for U.S. Appl. No. 15/624,230 (18 Pages).
Response to Non-Final Office Action Filed Sep. 20, 2017 for U.S. Appl. No. 15/624,230 (10 Pages).
Extended European Search Report issued in European Application No. 16787228.2, dated Nov. 27, 2018, 6 pages.
Extended European Search Report issued in European Application No. 16860886.7, dated Jun. 12, 2019, 8 pages.
Extended European Search Report issued in European Application No. 17747970.6, dated Jul. 16, 2019, 6 pages.
Extended European Search Report issued in European Application No. 17828289.3, dated Feb. 6, 2020, 5 pages.
Extended European Search Report issued in European Application No. 17895158.8, dated Feb. 28, 2020, 8 pages.
Extended European Search Report issued in European Application No. 19219030.4, dated Jun. 26, 2020, 6 pages.
Official Action issued in Japanese Patent Application No. 2018-540040, dated Jun. 19, 2019, 11 pages.
Related Publications (1)
Number Date Country
20170252092 A1 Sep 2017 US
Provisional Applications (1)
Number Date Country
62301907 Mar 2016 US