This application claims priority to Japanese Patent Application No. 2008-180148, filed on Jul. 10, 2008, which is incorporated herein by reference in its entirety.
1. Field of the Invention
The present invention relates to technology of a reserve tank used in a cooling system for cooling an object to be cooled.
2. Description of the Related Art
Auxiliary machines such as engines, motor generators, inverters, air compressors, and air-conditioning units provided on vehicles such as hybrid cars and electric cars generate heat at the time of driving. Vehicles such as hybrid cars and electric cars are provided with a cooling system for cooling with coolant to maintain proper temperature of heat-generating auxiliary machines (objects to be cooled).
Although the cooling system will be described in detail later, the pump 58 is operated to cause the heat exchange between the coolant water circulating the circulating paths 66a, 66b, 66c, and 66d (flow of the coolant water is represented by arrows shown in
When the above cooling system 2 is operated, gas may mix into the coolant. Mixing the gas into the coolant causes deterioration of the heat exchange rate of the cooling system (substantially, the radiator 62) and abnormal noise and damage of the pump 58. Therefore, the reserve tank 64 having a gas-liquid separating ability is conventionally used to separate the gas in the coolant.
For example, Japanese Patent Application Laid-Open Publication No. 2005-120906 proposes a reserve tank provided with an eddy suppressing means that constrains the occurrence of eddies in the coolant at the rear face of a partition wall adjacent to a through-hole formed in the partition wall to improve the air-liquid separating performance of the reserve tank.
For example, Japanese Patent Application Laid-Open Publication No. 2004-301084 proposes a reserve tank provided with a partition wall that partitions the inside of the tank into the inflow port side and the outflow port side within a height range at a position lower than the inflow port and higher than the upper end of the outflow port, and the partition wall is provided with a flow path that communicates the inflow port side and the outflow port side at a height including at least the upper end of the outflow port or higher, to improve the air-liquid separating performance of the reserve tank.
Recently, since the generated heat temperature of the object to be cooled is increased due to the higher power output of the object to be cooled (such as an inverter), a flow rate of coolant must be increased in the cooling system. Cooling systems increasingly employ an electric pump having excellent performance aspect (performance, controllability, and quietness) compared to conventional mechanical pumps. Therefore, a large amount of gas may mix into the coolant at the time of operation of the cooling system.
A liquid level (liquid level 90 shown in
It is therefore the object of the present invention to provide a reserve tank capable of constraining the mixing of gas into the coolant.
According to a major aspect of the present invention there is provided a reserve tank comprising a tank main body that has a plurality of chambers partitioned by partition walls, an inflow port that allows coolant to flow into the tank main body, and an outflow port that allows the coolant to flow out of the tank main body, the plurality of chambers including a first chamber and a second chamber partitioned by the partition walls, and a third chamber that accumulates the coolant that should flow from the inflow port into the first chamber, the first chamber having a first communicating portion formed to allow the coolant to flow into the second chamber, the third chamber having a second communicating portion formed to allow the accumulated coolant to flow into the first chamber, the flow rate of the coolant passing through the second communicating portion being set smaller than the flow rate of the coolant passing through the first communicating portion.
In the reserve tank, the capacity of the third chamber is preferably smaller than the capacity of the first chamber.
In the reserve tank, from the viewpoint of tank molding, the second communicating portion is preferably formed between the partition wall partitioning the first chamber from the third chamber and a side wall of the tank main body.
According to the present invention, the mixing of gas into coolant may be constrained even when a liquid level of coolant is tilted due to a traveling condition, a road surface condition, etc., of a vehicle.
An embodiment of the present invention will now be described.
The circulating path 18a connects a discharge port (not shown) of the radiator 14 with an entry tube 20 of the reserve tank 16; the circulating path 18b connects an exit tube 22 of the reserve tank 16 with the suction side (not shown) of the pump 10; the circulating path 18c connects the delivery side (not shown) of the pump 10 with a supply port (not shown) of the inverter 12; and the circulating path 18c connects a discharge port (not shown) of the inverter 12 with a supply port (not shown) of the radiator 14.
The operation of the cooling system 1 shown in
The tank main body 24 has a plurality of chambers partitioned by partition walls 28a and 28b. The plurality of chambers includes a first chamber 32, a second chamber 36, and a third chamber 42; the first chamber 32 and the second chamber 36 are partitioned by the partition wall 28a; and the first chamber 32 and the third chamber 42 are partitioned by the partition wall 28b. The third chamber 42 is provided with an inflow port 30 that allows the coolant to flow into the tank main body 24 and accumulates the coolant that should flow from the inflow port 30 into the first chamber 32. The second chamber 36 is provided with an outflow port 34 that allows the coolant to flow out of the tank main body 70. As shown in
In this embodiment, a partition wall may be further provided in the tank main body so as to form a plurality of chambers between the first chamber 32 and the second chamber 36 or after the second chamber 36.
A first communicating portion 38 allowing the coolant to flow into the second chamber 36 is formed in the first chamber 32. The first communicating portion 38 is a through-hole formed in the partition wall 28a. The coolant in the first chamber 32 moves through the first communicating portion 38 into the second chamber 36. A position, a size, etc., of the first communicating portion 38 are suitably set depending on a size, etc., of the reserve tank 16.
In this embodiment, a second communicating portion 44 allowing the accumulated coolant to flow into the first chamber 32 is formed in the third chamber 42. A size of the second communicating portion 44 is prescribed such that the flow rate of the coolant passing through the second communicating portion 44 is set smaller than the flow rate of the coolant passing through the first communicating portion 38. Since the above configuration generates a difference between the pressure loss of the coolant in the first chamber 32 and the pressure loss of the coolant in the third chamber 42, when the coolant flows from the inflow port 30 into the tank main body 24, the water level of the coolant in the third chamber 42 may be elevated higher than the water levels of the coolant in other chambers.
The coolant introduced through the inflow port 30 into the reserve tank with the above configuration passes through the third chamber 42 partitioned by the partition wall 28b and the second communicating portion 44 and moves into the first chamber 32 (an arrow A shown in
Although the capacity of the third chamber 42 is not particularly limited as long as the flow rate of the coolant passing through the second communicating portion 44 is smaller than the flow rate of the coolant passing through the first communicating portion 38, it is preferable to set the capacity of the third chamber 42 smaller than the capacity of the first chamber 32 in that the water level of the third chamber 42 may rapidly be elevated without affecting the water levels of other chambers. The capacity of the third chamber 42 is preferably ⅓ to ⅕ of the capacity of the first chamber 32. If the capacity of the third chamber 42 is greater than the above range, the water levels of other chambers may be reduced and sufficient air-liquid separating performance may not be realized. If the capacity of the third chamber 42 is smaller than the above range, the water level of the third chamber 42 is abruptly elevated and waves may be formed on the liquid surface and cause the involvement of gas. Since the third chamber 42 includes a portion of the flow of the coolant in the third chamber 42 forming a flow toward the air in the third chamber 42 (an arrow B shown in
The coolant flows from the third chamber 42 to the first chamber 32 is discharged from the outflow port 34 through the first communicating portion 38 and the second chamber 36. A portion of the flow of the coolant in the first chamber 32 forms a flow smaller than that in the third chamber 42 toward the air in the first chamber 32.
Another embodiment of the present invention will hereinafter be described.
In this embodiment, a second communicating portion 52 allowing the accumulated coolant to flow into the first chamber 32 is formed in the third chamber 42, and the second communicating portion 52 is formed between the partition wall 28b and a side wall of the tank main body 24. Although the second communicating portion 52 may be formed in a portion of an area between the partition wall 28b and the tank main body 24, the second communicating portion 52 is preferably formed in the entire area between the partition wall 28b and the tank main body 24 for ease of manufacturing. A size of the second communicating portion 52 is prescribed such that the flow rate of the coolant passing through the second communicating portion 52 is set smaller than the flow rate of the coolant passing through the first communicating portion 38 as above.
As shown in
Although the reserve tank of the embodiment has been described by taking a cooling system for an inverter to be cooled as an example, the reserve tank is not limited to the above description and may be those used with cooling systems for maintaining proper temperature of auxiliary machines such as engines, motor generators, air compressors, and air-conditioning units, for example. The pump 10 of the embodiment may be a mechanical pump, an electric pump, etc., and is not particularly limited.
As above, in the third chamber accumulating coolant that should flow from the inflow port into the first chamber in the reserve tank of the embodiment, the second communicating portion allowing the accumulated coolant to flow into the first chamber 32 is formed, and the water level of the coolant in the third chamber may be elevated higher than the water levels of the coolant in other chambers when the coolant flows from the inflow port into the tank main body by setting the flow rate of the coolant passing through the second communicating portion smaller than the flow rate of the coolant passing through the first communicating portion (allowing the coolant to flow from the first chamber to the second chamber). As a result, the liquid surface may be stabilized and the involvement of gas may be constrained. Even when the liquid level of the coolant in the reserve tank is tilted due to a traveling condition such as rapid start or sudden stop of a vehicle and a road surface condition such as an ascending road or a descending road, the exposure of the inflow port to the air may be constrained to prevent gas from mixing into the coolant since the water level of the coolant in the third chamber is elevated. By setting the capacity of the third chamber smaller than the capacity of the first chamber, the water level of the third chamber 42 may be rapidly elevated without affecting the water levels of other chambers.
Number | Date | Country | Kind |
---|---|---|---|
JP2008-180148 | Jul 2008 | JP | national |