The present disclosure relates generally to computer-based modeling of physical properties. In particular, the present disclosure relates to computer-based trend modeling of reservoir properties using uncertainty ranges based on known data.
The objective of geological reservoir modeling is to build 3D models of petrophysical properties (typically types of sediment formations, as well as properties of such formations such as porosity, and permeability, and sometimes water saturation) that reservoir engineers can use to run flow simulation, forecast future hydrocarbon production and ultimate recovery, and design well development plans. In most geological environments, especially in clastic environments, porosity and permeability heterogeneity is primarily driven by facies depositional events. As such, porosity and permeability distributions can be mainly characterized through the geometry and spatial distribution of facies geobodies, for example sinuous sand channels. Therefore geomodelers very often first build 3D facies models (depositional facies, and sometimes lithofacies), and then populate porosity and permeability values within those models.
3D geomodels are usually built in 3D stratigraphic grids generated from a structural and stratigraphic framework, i.e. a set of interpreted faults and stratigraphic horizons. Various sources of information are used by geomodelers to build facies and petrophysical property models, including core and well log data, as well as seismic and dynamic data when available. In addition to actual reservoir data, geomodelers may borrow information from reservoir analogues, e.g., more mature reservoirs (that have more well-known characteristics) that are expected to have characteristics and features similar to the reservoir to be modeled. The selection of analogues is a highly subjective decision from geomodelers, based on their interpretation of actual reservoir data (mainly core and seismic data), and their experience with similar reservoirs. Even though such selection is very subjective, the information borrowed from analogues by geomodelers is critical in reservoirs with sparse well data, because it represents the best data available to predict facies and petrophysical properties between wells, and away from wells.
Numerous methods are available to build facies or petrophysical property models. Typically, such methods require target facies proportions and target property histograms for various properties, which may be derived from well data and adjusted for bias based on a preference to drill in areas with high porosity and/or permeability. Such methods further require a model of facies or property continuity or correlation. This can be determined from a variogram model inferred from well data or training image based on an analogous subsurface area. Finally, such methods may also optionally require trend models to control spatial distribution of facies or porosity/permeability values.
In the case of continuous properties, which are properties that take any value from among a range of values, for example porosity, which may take any value along a continuum from 0-100%, the most common types of trend models are 1D property trend curves and 2D property trend maps. Property trend curves provide a target average property value that the modeling method should try to honor in each layer of a grid of columns and layers in which a model is to be built. In each grid layer, that target average property value can be initialized as the average value of well data present in the layer, and then edited by the modeler to address limited well data. Furthermore, property trend maps provide a target average property value that the modeling method should try to honor along each column of a grid in which a model is to be built. In each column, that target average property value can be initialized as the average value of well data present in the column, or, if such well data is not present in the column, can be based on an interpolated average value based on previously computed columns, such as those columns including well data. This interpolation can be based, for example, on inverse distance or a kriging computation. A user, typically a geomodeler, can then edit that initial property trend map computed from well data, particularly in areas away from well data.
In the case of discrete properties, which are properties that have a state selected from among a plurality of discrete states, for example facies, where the facies values could be selected from among sand and shale, the most common types of trend models are 1D facies proportion curves and 2D facies proportion maps. Facies proportion curves provide target facies proportion values that the modeling method should try to honor in each layer of the modeling grid, whereas facies proportion maps provide target facies proportion values that the modeling method should try to honor in each column of the modeling grid. Initial facies proportion maps and curves can be computed from well data, and then edited to include additional information such as seismic data or user's geological interpretation.
The editing, by geomodelers, of initial trend maps or trend curves initially computed from well data is highly subjective, and highly uncertain. To represent that uncertainty, users of modeling software may build several maps or curves representing alternative geological scenarios (e.g. two alternative trend curves to account, or not, for the presence of a user-interpreted shale layer). Low/mid/high case scenarios (sometimes called P10/P50/P90 scenarios) are typically developed to represent different reservoir global facies proportion estimations or different reservoir property average estimations, or to illustrate different reservoir interpretations.
In current practice, no quality control process is performed on edited trend curves or maps to check their consistency with well data. However, any such edited trend curves or maps that are inconsistent with actual well data may lead to unrealistic facies or petrophysical property models, since they depart from the known facies data in at least some locations. Because hydrocarbon harvesting performance is highly dependent upon the subsurface sediment type, such unrealistic modeling can result in poor performance forecasting for hydrocarbon harvesting from particular locations within the reservoir.
For these and other reasons, improvements in subsurface modeling techniques are desirable.
In summary, the present disclosure relates to generation of confidence intervals associated with an initial trend model computed from known data (typically well log data) to provide guidance to users of modeling software when editing such an initial trend model. In some aspects, the confidence intervals can be used to alert such users if edited trend model values are outside of such confidence intervals.
In a first aspect, a method for trend modeling of subsurface properties is disclosed. One method includes defining a stratigraphic grid of a subsurface volume, the stratigraphic grid including a plurality of columns and a plurality of layers. In the case of a trend curve, the method further includes computing an initial average property value from the known data (typically the well data) in each of the plurality of layers for the property to be modeled. The method further includes calculating a confidence interval around that initial average property value defining a range of likely values for a target average property value in each layer. The method also includes receiving one or more edits to the initial average property value in at least some of the plurality of layers, the one or more edits resulting in the modeled target average property value in each layer, and determining whether that modeled target average property value falls within the confidence interval. In the case of a trend map, the method further includes computing an initial average property value from the known data in each column of the stratigraphic grid for the property to be modeled. The method further includes calculating a confidence interval around that initial average property value defining a range of likely values for the target average property value in each column. The method also includes receiving one or more edits to the initial average property value in one or more of the plurality of columns, the one or more edits resulting in a modeled target average property value in each column, and determining whether that modeled target average property value falls within the confidence interval.
In a second aspect, a system for trend modeling of subsurface properties is disclosed. The system includes a computing system including a processing unit and a memory communicatively connected to the processing unit. The system also includes a modeling application stored in memory and defining a stratigraphic grid of a subsurface volume, the stratigraphic grid including a plurality of columns and a plurality of layers. The modeling application is configured to, when executed, determine an initial average property value in each layer or each column of the stratigraphic grid for the property to be modeled along with a confidence interval around that average property value defining a range of likely values for a target average property value in each layer or column. The modeling application is further configured to, when executed, receive one or more edits to the initial average property value in one or more of the layers or columns of the subsurface volume by a user, the one or more edits resulting in the modeled target average property value in each layer or column and determine whether that modeled target average property value falls within the confidence interval.
In a third aspect, a computer-readable storage medium including computer-executable instructions stored thereon is disclosed which, when executed by a computing system, cause the computing system to perform a method for trend modeling of subsurface properties. The method includes defining a stratigraphic grid of a subsurface volume, the stratigraphic grid including a plurality of columns and a plurality of layers. The method further includes determining, for each layer or column, an initial average property value based at least in part on well data in the subsurface volume and a confidence interval around that initial average property value defining a range of likely values for a target average property value. The method also includes receiving one or more user-defined edits to the initial average property value in one or more of the layers or columns, the one or more edits resulting in the modeled target average property value, and determining whether that modeled target average property value falls within the confidence interval.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
As briefly described above, embodiments of the present disclosure are directed to methods and systems for providing guidance to users of modeling software for subsurface features, to maintain consistency of trend models with observed data. In some aspects, the present disclosure incorporates a computed confidence interval for target average property values based on well data or other known data, and providing guidance to users of modeling software based on whether modeled target average property values fall within the confidence interval.
In accordance with the present disclosure, the use of such guidance in assisting modelers ensures that modelers are aware of departures from likely ranges for target average property values, and as such can make a conscious choice as to whether such departures should be maintained, or whether additional changes to the trend model should be made to ensure that modeled target average property values remain within the confidence interval for that property. In particular embodiments, such properties can include petrophysical properties such as porosity, or facies present in the subsurface volume being modeled, which results in improved prediction regarding the potential presence of hydrocarbons to be harvested.
Referring now to
In the embodiment shown, the method 100 includes a definition operation 102, which defines a stratigraphic grid corresponding to the subsurface volume to be modeled. The definition operation 102 can define a stratigraphic grid including plurality of layers and a corresponding plurality of columns of a predetermined or varying size. A stratigraphic grid corresponds generally to a three-dimensional representation of a particular volume of interest, as depicted in
A computation operation 104 builds an initial trend model from existing well data or other data associated with the subsurface volume to be modeled.
In some embodiments, the computation operation 104 generates an average property value in each layer or column of the stratigraphic grid. As noted above, in some instances, the modeled properties may be discrete properties that have a state selected from among a plurality of discrete states. Example discrete properties may be facies, where the facies values could be selected for example from among sand and shale. In such cases, a trend model will consist of target facies proportions that are to be honored in the facies model. In other instances, the properties being modeled may be continuous properties that may take any value from among a range of values. Porosity represents an example of continuous property as porosity may take any value along a continuum from 0-100%. In such cases, a trend model will include target average property values that are to be honored in the property model. A confidence interval calculation operation 106 generates a confidence interval around each of the average property values initially computed during computation operation 104. The confidence interval can be used during the trend modeling process to determine when or if a geomodeler (e.g., a user of a modeling software application) selects unlikely target average property values in one or more layers or columns of the stratigraphic grid. In example embodiments, a confidence interval can be calculated using P10 and P90 target average property values estimated in each individual layer or column. This corresponds to the 80% most likely values for the target average property value to be modeled. As discussed further below, if a modeler opts a model that results in a target average property value outside of the confidence interval, in some embodiments the modeler may be required (or suggested) to provide an explanation of why a trend model having a “less likely” value was selected. An example illustrating use of a property trend curve to develop a confidence interval in a particular layer is described in further detail below in connection with
A model editing operation 108 receives an edit to the initial trend model from a modeler. This can include, for example, increasing or decreasing the target proportion of a particular facies at a particular location within the model. The edits made by the user can be made, for example, in a trend map or trend curve. A feedback operation 110 presents to the modeler one or more indications of whether the selected edit to the initial trend model results in a modeled target average property value to fall outside of an expected range for that property. For example, in cases where porosity is high at a particular level, it may be likely that a greater proportion of sand than shale is present. Accordingly, the modeler may increase the target sand proportion at that level. To the extent a modeler opts to model a large proportion of shale at that particular level, the feedback operation 110 may indicate to the modeler that their model departs from expected target average property values, and requests a reason for such departure. Example feedback is illustrated in
A constraint operation 112 constrains simulation of property models on the stratigraphic grid using an edited trend model. This can correspond to, for example, constraining simulation on one or both of a trend map and a trend curve. In the case of discrete properties, the simulation method can include, for example, Multiple-Point Statistics (MPS) simulation, in which case a training image such as shown in
It is further noted that, although MPS simulation and SGS simulation are discussed above, other types of simulation may be used to build a property model constrained by a trend model. Accordingly, the present disclosure is not limited to such MPS or SGS simulation, but could relate to any simulation mechanism by which a trend model is used to control the spatial distribution of model values of discrete or continuous properties throughout a volume.
For example, the constraint operation 112 can use a facies proportion curve to constrain a MPS simulation to honor target facies proportions in each layer of the facies model. An example of application of a facies proportion curve constraint at each of a plurality of layers is illustrated in
Referring to
It is noted that in various embodiments of the present disclosure, use of a trend model to constrain the spatial distribution of property values within a model can be accomplished in a number of ways. For example, when building a 3D property model, the user can use a trend map, or a trend curve, or both. The trend map will control the spatial distribution of property values along the horizontal, while a trend curve will control the spatial distribution of property values along the vertical. When both a trend map and a trend curve are used, those aspects can be combined into a three-dimensional trend cube, or probability cube (in the case of discrete properties such as facies).
It is further noted that although above the terms trend curve or trend map are used, such terms are intended to encompass trend maps or curves of either continuous properties, such as porosity and permeability, or discrete properties, such as facies. To the extent such discrete properties are referred to specifically, such curves can instead be referred to herein as a proportion curve or proportion map.
Referring now to
The memory 204 can include any of a variety of memory devices, such as using various types of computer-readable or computer storage media. A computer storage medium or computer-readable medium may be any medium that can contain or store the program for use by or in connection with the instruction execution system, apparatus, or device. By way of example, computer storage media may include dynamic random access memory (DRAM) or variants thereof, solid state memory, read-only memory (ROM), electrically-erasable programmable ROM, optical discs (e.g., CD-ROMs, DVDs, etc.), magnetic disks (e.g., hard disks, floppy disks, etc.), magnetic tapes, and other types of devices and/or articles of manufacture that store data. Computer storage media generally includes at least one or more tangible media or devices. Computer storage media can, in some embodiments, include embodiments including entirely non-transitory components. In the embodiment shown, the memory 204 stores a trend modeling application 212, discussed in further detail below. The computing system 200 can also include a communication interface 208 configured to receive and transmit data, for example well data or other real world data required for modeling purposes. Additionally, a display 210 can be used for presenting the modeling graphics, or allowing a user to define model parameters for a subsurface volume.
In the embodiment shown, the trend modeling application 212 includes an initial trend computation from well data component 214, a confidence interval calculation component 216, a trend editing component 218, a confidence interval checking component 220, and a constraint definition component 222.
The initial computation component 214 presents to a modeling user a user interface (e.g., via display 210) on which that user can compute initial average property values from well data in each layer or column of the stratigraphic grid representing the subsurface volume to be modeled. The initial computation component 214 allows the user to compute initial trend curves or maps for properties such as facies, porosity, or other types of discrete or continuous properties of a subsurface volume, and presents feedback to the user in the form of a graphical display representative of outputs from the various other components 216-222.
The confidence interval calculation component 216 can, in embodiments, determine a confidence interval around each initial average property value. The confidence interval can, as noted above, correspond to an interval of likely values for target average property values in each layer or column of a stratigraphic grid. In example implementations, a typical 80% of values can be defined as representing a confidence interval, bounded by P10 and P90 data values. Of course, other sizes of confidence intervals could be used as well, and can be provided to the modeling component for feedback to a user to indicate whether modifications to the initial trend model by a user results in target average property values outside of a likely range of values.
The trend editing component 218 can, in embodiments, allow the user to determine target average property values in each layer or column of a stratigraphic grid by editing initial values computed from well data using the initial computation component 214.
The confidence interval checking component 220 checks if a target average property value determined by the user in a particular layer or column falls within the confidence interval calculated for that layer or column,
The constraint definition component 222 can be used to impose, for each area (e.g., each column and/or layer) within the volume, a target average property value. For example, the constraint definition component can, in some embodiments, be used to honor a facies proportion curve, or a facies proportion map.
Referring now to
Referring specifically to
As seen in
Referring to
Of course, if a continuous property were to be modeled, the corresponding initial property trend curve could be similarly generated from an average of the well data values in each layer. In any case, an initial property trend curve, for facies, porosity, or other properties, may be then edited by the geomodeler to compensate for the limited number of available well data. For example, the initial trend curve can be smoothed if deemed too heterogeneous, or it can be locally modified according to the geomodeler's geological interpretation (e.g., by adjusting for a likelihood of a decreasing porosity trend in lower layers due to compaction).
Extending the example facies proportion curve concept from
Referring to
As above regarding the proportion curve, a trend map could be generated for a property other than facies. For example, trend maps could be generated for porosity or permeability, or other continuous variables.
As seen in
Once an initial facies proportion map is computed from well data, that facies proportion map can then be edited by the geomodeler to compensate for limited well data that may be available, in particular in areas away from well control. In such instances, secondary data, such as seismic data, or reservoir facies deposition interpretation, or other secondary data sources could be used to edit initial facies proportions.
Once a facies proportion map is developed, it can be applied to control horizontal distribution of facies in an MPS model, as illustrated in
In the case of discrete properties such as facies, several percentile maps, one per facies, could be generated. Such percentile maps could be used, and would be similar to the percentile map computed for the property trend map displayed in
Typically, a geomodeler will smooth trend curves or maps initially computed from well data to remove small scale variability considered as a statistical artefact due to the limited number of well data. Such geomodelers may also model the trend curve or map using a parametric function, typically a linear trend model. When looking at the resulting percentile map, the geomodeler, or a reviewer, immediately sees areas where the trend map seems to be quite low or quite high compared to the well data, which may require some explanation from the geomodeler. Preferably, by editing trend maps in the user interface 1000, the geomodeler can maintain many values within the P10 and P90 range.
In alternative embodiments, although P10-P90 confidence ranges are commonly computed, geomodelers may decide to compute a more conservative P1-P99 range. In such cases, selecting values outside the confidence interval may require additional scrutiny or strong evidence that such departures would be justified.
In calculating a confidence interval, there are some particular cases in which such central limit theorem techniques may not be accurate. For example, in cases where wells are close to each other, the well data cannot be considered as independent. Declustering data techniques can be used to assign relative weights to each well datum as a function of its proximity to other well data. Such declustering weights should be accounted for to compute a weighted property average and corresponding standard deviation from the well data. Then an “equivalent” number of independent data can be estimated and used in the mathematical formulation of the standard error.
In still further embodiments, other statistical methods than the t-student distribution can be considered. For example, in presence of more than 30 well data per layer, a Gaussian distribution for the property average probability distribution can be used. Furthermore, it is noted that, when computing confidence intervals for facies proportions in layers where the average facies proportions computed from the well data are close to 0 or 1, a standard error method fails in such cases, and may be replaced by, for example, a Clopper-Pearson method.
In the examples shown, the confidence interval is determined for a trend curve or a trend map on a layer-by-layer or column-by-column basis, and represents a range of target average property values that are likely in a particular layer or column. In some example embodiments, a confidence interval is computed at any location (i, j), where i represents the column and j the layer for the particular property.
One optional arrangement for deriving a confidence interval consists in displaying an average value curve for a target property, which corresponds to the medium case proportion curve shown in
It is noted that the proportion curve illustrated as used in
For categorical properties, such as facies, a similar approach can be used for each category to guide user's editing. Computing a P10 or P90 trend curve/map/3D model, may require however an iterative process to ensure that categorical proportions add up to 1 for each simulation grid column/layer/cell.
Referring to
Alternatively, the facies probability cube can be column-wise averaged to produce a facies proportion map, or layer-wise averaged to produce a facies proportion curve, and the previous guidance techniques can be used to check the consistency of those facies proportion maps/curves with well data. Similarly, the property trend cube can be column-wise averaged to produce a property trend map, or layer-wise averaged to produce a property trend curve, and the previous guidance techniques can be used to check the consistency of those property trend maps/curves with well data.
Referring to
For one dimensional trend curves, one uncertainty range per simulation grid layer can be estimated; that uncertainty measure can be derived from the concepts of central limit theorem, standard error and effective number of data, as a function of sample variance and number of data available. It is possible that declustered weights could be used if the curve was simply computed by averaging well property values in each simulation grid layer.
An analogous methodology could be used for three dimensional trend models, in which case one uncertainty range per simulation grid cell would be estimated, based for example on the local kriging variance if a kriging is used to compute the 3D trend model by interpolating between well data.
Such local P10/P90 values generated for 1D trend curves, 2D trend maps, or 3D trend models, can be used as a guide for modelers. Editing a curve, a map, or a 3D model, beyond the local P10-P90 range is expected to require strong geological arguments (e.g. seismic data interpretation).
It is noted that, in connection with
Referring to
Furthermore, as the modeler edits trend values, corresponding percentiles can also be computed from local uncertainty ranges. The resulting percentile curve, map, or 3D property, can be used by project reviewers to understand how much manual editing was performed by a geomodeler.
Embodiments of the present invention, for example, are described above with reference to block diagrams and/or operational illustrations of methods, systems, and computer program products according to embodiments of the invention. The functions/acts noted in the blocks may occur out of the order as shown in any flowchart. For example, two blocks shown in succession may in fact be executed substantially concurrently or the blocks may sometimes be executed in the reverse order, depending upon the functionality/acts involved.
The description and illustration of one or more embodiments provided in this application are not intended to limit or restrict the scope of the invention as claimed in any way. The embodiments, examples, and details provided in this application are considered sufficient to convey possession and enable others to make and use the best mode of claimed invention. The claimed invention should not be construed as being limited to any embodiment, example, or detail provided in this application. Regardless of whether shown and described in combination or separately, the various features (both structural and methodological) are intended to be selectively included or omitted to produce an embodiment with a particular set of features. Having been provided with the description and illustration of the present application, one skilled in the art may envision variations, modifications, and alternate embodiments falling within the spirit of the broader aspects of the general inventive concept embodied in this application that do not depart from the broader scope of the claimed invention.