The present disclosure pertains to automotive fluid reservoirs, in particular an automotive coolant reservoir with a top-mount level indicator.
An automobile will have a variety of fluid reservoirs (i.e. coolant reservoirs, washer fluid reservoirs, etc.) located in the engine compartment. Historically, these reservoirs were positioned at elevated locations in the engine compartment, to enable easy access and/or to permit for visual inspection, generally with respect to the fluid levels contained therein. For some fluid reservoirs, in particular those containing coolant fluid, a fluid level (i.e. Max/Min) indicator was provided on the side of the reservoir, to indicate a safe operational range for the fluid contained therein.
In modern engines, the engine compartment has undergone a considerable redesign, with the available packaging space for reservoirs becoming quite limited. Consequently, many reservoirs are now being located lower within the engine compartment, with oftentimes only the top portion of the reservoir being visible. In addition, many automotive manufacturers now incorporate an engine trim cover, not only to enhance the overall aesthetics of the engine compartment, but as a means for management of noise, temperature and a variety of other operational parameters.
As a result of these changes, it is becoming increasingly difficult for the operator to easily assess fluid levels. This could potentially lead to a low fluid level situation, which in certain cases (i.e. with coolant) could lead to engine damage and/or failure.
According to an aspect of the disclosure, provided is fluid reservoir. The fluid reservoir comprises a body having an inlet, an outlet, a fill aperture, and a fluid level indicator assembly. The fluid level indicator assembly is configured such at least an upper portion thereof extends external and above the body of the coolant reservoir.
The foregoing and other features and advantages of the disclosure will be apparent from the following description of the disclosure as illustrated in the accompanying drawings. The accompanying drawings, which are incorporated herein and form a part of the specification, further serve to explain the principles of the disclosure and to enable a person skilled in the pertinent art to make and use the disclosure. The drawings are not to scale.
Specific embodiments of the present disclosure will now be described with reference to the Figures, wherein like reference numbers indicate identical or functionally similar elements. The following detailed description is merely exemplary in nature and is not intended to limit the disclosure or the application and uses of the disclosure. A person skilled in the relevant art will recognize that other configurations and arrangements can be used without departing from the scope of the disclosure. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, brief summary or the following detailed description.
Turning now to
The coolant reservoir 10 is generally mounted within the engine compartment or other area of the vehicle where the operator has access to the fill aperture 26 and closure. Also considered in the placement of the coolant reservoir 10 is the ability of the operator to view the fluid level indicator 30. In some instances however, the placement of the coolant reservoir 10 presents certain challenges for accessibility, in particular with respect to viewing the fluid level indicator 30. For example, where the coolant reservoir is partially shrouded by a trim panel (shown in dot at TP), the fluid level indicator 30 may not be easily seen, or seen at all, without removal of the trim panel TP.
Turning now to
The coolant reservoir 110 provides a fluid level indicator assembly 136. The indicator assembly 136 includes a housing 138, a lower portion 140 of which extends into the interior volume of the body 120, and an upper portion 142, which extends external and above the body 120 as shown. As the coolant reservoir 110 is intended to operate under pressure, the housing 138 is sealed at the distal end 144 of the upper portion 142. On the opposite end, that is at the distal end 146 of the lower portion 140, the housing 138 is open such that the interior space 148 delimited by the housing 138 is in fluid communication with the interior volume of the body 120. Accordingly, the fluid level within the body 120, as well as any changes in fluid level that may occur will correspond to fluid levels in the housing 138. As shown, the walls defining the boundary of the housing 138 are aligned generally perpendicular to the plane P1 defined by the surface of the coolant fluid contained within the coolant reservoir 110. Stated differently, as the plane P1 will generally align to horizontal, the walls defining the boundary of the housing 138 will generally be vertical.
The fluid level indicator assembly 136 also provides a float assembly 150. The float assembly 150 includes a float body 152 and a buoyant member 154 attached to a lower portion of the float body 152. Float assembly 150 is positioned within the housing 138, and is dimensioned to permit for free displacement upward and downward therein. The displacement of the float assembly 150 is proportional to the coolant fluid level, through the buoyant action of the buoyant member 154 relative to the coolant fluid within the coolant reservoir 110. As coolant fluid levels increase within the coolant reservoir 110, the buoyant member 154 causes the float assembly 150 displaces proportionally upward within the housing 138 of the fluid level indicator assembly 136. Conversely, as the coolant fluid levels decrease within the coolant reservoir, the buoyant member 154 causes the float assembly 150 displaces proportionally downward within the housing 138 of the fluid level indicator assembly 136. Accordingly, the fluid level indicator assembly 136, in particular the upper portion 142 provides a max/min fluid level indicator 130. The float body 152 is dimensioned and calibrated such that a top region 156 thereof serves as an indicator reference point relative to the max/min fluid level indicator 130. It will be appreciated that the markings provided on the max/min fluid level indicator 130 will be selected based on the predetermined operational limits for maximum and minimum fluid levels.
Having regard to
Turning now to
In comparison to the coolant reservoir 110 of
In all other respects, the coolant reservoir 210 operates as previously described having regard to coolant reservoir 110. Accordingly, having regard to
It will be appreciated that the coolant reservoirs 110, 210 may include additional features as deemed suitable for an intended purpose and application. For example, the fluid level indicator assembly, in particular an upper region of the lower portion of the housing that extends into the interior volume of the body may provide one or more apertures above the maximum permissible fluid level to facilitate headspace venting, and therein fluid level equilibrium relative to the fluid level in the interior volume of the body. As shown in
The coolant reservoirs 110, 210 may additionally comprise a plurality of lobes provided on a lower region of an inside surface of the housing, to reduce the surface contact between the buoyant member and the inside surface. With specific reference to
The coolant reservoirs 110, 210 are shown using a first embodiment of the float assembly 150. As stated previously, the float assembly 150 includes the float body 152 and the buoyant member 154 attached to the lower portion of the float body 152. With reference to
Referring now to
The coolant reservoirs disclosed herein may be made of any suitable thermoplastic, including but not limited to polypropylene, polyethylene, and polycarbonate. The thermoplastic may also include various fillers known in the art, including but not limited to mineral fillers (i.e. calcium carbonate, talc, etc.) as well as additives, including but not limited to fibrous additives (i.e. glass fibers, carbon fibers, etc.). The embodiments as presented would be injection molded from two or more reservoir members with post-mold assembly, although alternative manufacturing methodologies may be suitably implemented to achieve the desired form. In some embodiments, the thermoplastic selected will be selected for a particular translucency/opacity characteristic, in particular to achieve a desired visibility of the float assembly in the fluid level indicator assembly. In some embodiments, the float assembly, in particular the float body or portions thereof may be colored or patterned to enhance visualization of the float assembly during use. For example, in some embodiments, the float body or an upper portion thereof may be colored orange. The buoyant member of the float assembly may be formed of any material that exhibits buoyancy relative to the fluid contained in the reservoir. For example, the buoyant member may be of hollow thermoplastic construction. The buoyant member may also be formed of foamed material.
Although the above disclosure has exemplified the technology with respect to coolant reservoirs, the addition of a fluid level indicator assembly as taught herein to other reservoir systems is also contemplated. For example, the fluid level indicator assembly may be suitably applied to brake fluid reservoirs, washer bottles, or any other fluid reservoir requiring a fluid level indicator that permits for viewing on an upper portion thereof. Despite exemplifying the technology with respect to automotive coolant reservoirs, there is no intention to restrict the teachings of the present disclosure to automotive coolant systems, as other automotive fluid systems may find useful application of the technology.
Relative terms should be construed as such. For example, the term “upper” is meant to be relative to the term “lower,” the term “horizontal” is meant to be relative to the term “vertical”, the term “top” is meant to be relative to the term “bottom”, “inside” is relative to the term “outside”, “upwards” is meant to be relative to the term “downwards”, and so forth. Unless specifically stated otherwise, the terms “first,” “second,” “third,” and “fourth” are meant solely for purposes of designation and not for order or for limitation.
While various embodiments have been described above, it should be understood that they have been presented only as illustrations and examples of the present disclosure, and not by way of limitation. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made therein without departing from the spirit and scope of the disclosure. Thus, the breadth and scope of the present disclosure should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the appended claims and their equivalents. It will also be understood that each feature of each embodiment discussed herein, and of each reference cited herein, can be used in combination with the features of any other embodiment. All patents and publications discussed herein are incorporated by reference herein in their entirety.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/516,983 filed 8 Jun. 2017, which is hereby incorporated by reference in its entirety for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CA2018/050687 | 6/8/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/223239 | 12/13/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1745031 | Scott | Jan 1930 | A |
20160069726 | Pettigrew | Mar 2016 | A1 |
20170350307 | Kerkewitz | Dec 2017 | A1 |
20190070931 | Oh | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
200165688 | Jan 2000 | KR |
Entry |
---|
International Search Report dated Sep. 18, 2018 in corresponding International Patent Application No. PCT/CA2018/050687. |
Written Opinion of the international Searching Authority dated Sep. 18, 2018 in corresponding International Patent Application No. PCT/US PCT/CA2018/050687. |
Number | Date | Country | |
---|---|---|---|
20200198457 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
62516983 | Jun 2017 | US |