The present disclosure relates to a method of evaluating a residual stress improved by water jet peening, a program for performing the method, and an apparatus for performing the method.
stress corrosion cracking (SCC) is one of degradation phenomena of components (e.g. metal) that occurs in high-temperature water. If SCC is caused by tensile residual stress generated at a welding section or the like, the degradation could be prevented by applying water jet peening (hereinafter, referred to as WJP) to the component. WJP is a technique whereby the residual stress in the vicinity of the surface of the component (target) can be improved, and which can be performed under water. More specifically, in WJP, high pressure water is injected from a nozzle to the surface of a target to produce bubbles (cavitation bubbles), and the impact pressure generated at the collapse of the cavitation bubbles is made use of to create plastic deformation on the surface of the target. Through such plastic deformation, the residual pressure in the vicinity of the surface of the target is reduced, or the tensile residual stress in the vicinity of the surface thereof is improved to a compressive residual stress, and thereby SCC is suppressed.
Furthermore, some techniques have been proposed to evaluate the residual pressure of components after WJP. For instance, Patent Document 1 discloses a method of predicting the residual stress of a processed section. Specifically, in Patent Document 1, in light of the knowledge that the collapse pressure of cavitation bubbles can be obtained on the basis of a correlation between the residual stress after WJP and the collapse pressure of cavitation bubbles and cavitation energy applied to the surface of a WJP processing target, cavitation energy is calculated from the bubble inner pressure and the bubble density of cavitation bubbles obtained by analyzing a jet flow injected horn the nozzle, the collapse pressure of cavitation bubbles is calculated on the basis of the cavitation energy, and the collapse pressure is, used to calculate the residual stress of the surface of the processing target after WJP.
As described above, in Patent Document 1, the collapse pressure of cavitation. bubbles is obtained on the basis of an analysis result of cavitation energy (bubble internal pressure and bubble density of cavitation bubbles). contrast, the present disclosure focused on the generation/disappearance state of cavitation bubbles during WJP, and discovered that it is possible to predict a distribution of the actual impact pressure generated. by cavitation bubbles (impact pressure at each position on the surface of a processing target) by obtaining a correlation value correlated to the actual impact pressure generated by cavitation bubbles by analysis, and associating the analyzed correlation value with an experimental value. The residual stress after WJP is evaluated from the predicted value of the impact pressure.
In view of the above, an object of at least one embodiment of the present invention is to provide a method of evaluating a residual stress on the basis of analysis on the generation/disappearance state of cavitation bubbles during water jet peening (WJP).
(1) A method of evaluating a residual stress according to at least one embodiment of the present invention comprises: a condition setting step of setting a processing condition of water jet peeping for a processing target; an analysis step of analyzing a jet flow when a fluid is injected from a nozzle model to a processing target model in accordance with the processing condition, and obtaining a void fraction, which is a volume fraction of babbles contained in a unit volume of the fluid, and a collapse fraction, which is a volume fraction of the bubbles which collapse in a unit time in the unit volume of the fluid, at each position on a surface of the processing target model; an impact pressure correlation value calculating step of obtaining an impact pressure correlation value, which is a product of the void fraction and the collapse fraction at each position; an experimental value acquisition step of obtaining an impact pressure experimental value, which is an experimental value of an impact pressure applied to a surface of the processing target due to the water jet peening under the processing condition; a prediction step of obtaining an impact pressure predicted value, which is a predicted value of the impact pressure applied to each position on the surface of the processing target due to the water jet peening under the processing condition, by associating the impact pressure correlation value at each position on the surface of the processing target model with the impact pressure experimental value applied to the surface of the processing target by the water jet peeping under the processing condition; and a residual-stress evaluation step of calculating a residual stress of the processing target after the water jet peening under the processing condition by using the impact pressure predicted value obtained in the prediction step as an input condition.
With the above configuration (1), the generation/disappearance state of cavitation bubbles during water jet peening (WJP) is analyzed, and thereby it is possible to predict the actual distribution of impact pressure (impact pressure at each position on the surface of a processing target) of WJP generated in the vicinity of the surface of the processing target, and to evaluate the residual stress after WJP on the basis of the predicted impact pressure.
(2) In some embodiments, in the above configuration (1), the impact pressure predicted value is obtained by determining a coefficient k for associating the impact pressure experimental value with the impact pressure correlation value at each position on the surface of the processing target model.
With the above configuration (2), it is possible to associate the impact pressure experimental, value with the impact pressure correlation value at each position on the surface of a processing target model by determining the above described coefficient k, and thereby it is possible to analyze evaluate the actual residual stress after water jet peening (WJP) in the vicinity of the surface of a processing target.
(3) In some embodiments, in any one of the above configuration (1) or (2), the method further comprises: a target setting, step of setting a target value of the residual stress; a processing-condition changing step of changing the processing condition if the residual stress does not satisfy the target value; a re-evaluation step of executing the analysis step, the impact pressure correlation value calculation step, and the residual-stress evaluation step under a changed processing condition changed in the processing-condition changing step; and a processing-condition determination step of determining the processing condition used in the re-evaluation step as the processing condition for the processing target, if the residual stress calculated in the re-evaluation step satisfies the target value.
With the above configuration (3), a processing condition satisfying the target value is determined on the basis of comparison between a target value of residual stress and an analysis value of residual stress after water jet peening (WJP) under a processing condition. Thus, even in a case where WJP is to be performed under an unproven processing condition to suit for the specification of a plant, it is possible to evaluate the residual stress after WJP through analysis, and to determine a suitable processing condition for the specification of the plant. Furthermore, WJP can be performed reliably by actually performing WJP under a processing condition determined as described above. Moreover, it is possible to make use of the analysis in design of a WJP processing apparatus capable of performing WJP under desired processing conditions.
(4) In some embodiments, in the above configuration (3), if the residual stress calculated in the re-evaluation step does not satisfy the target value, the processing condition is further changed in the processing-condition changing step, and the re-evaluation step is performed under the changed processing condition further changed in the processing-condition changing step.
With the above configuration (4), if the evaluation result of residual stress after water jet peening under a processing condition does not satisfy the target value, a similar evaluation is performed under another processing condition. Accordingly, it is possible to determine a processing condition that satisfies the target value,
(5) In some embodiments, in any one of the above configurations (1) to (4), the processing condition includes at least one of: an injection time of water jet by the water jet peening; an injection speed of the water jet, a flow rate of the water jet, a processing range of the water jet peening, an injection distance of the water jet, a radius of the bubbles, a nozzle angle, or an inclination angle of the surface of the processing target.
With the above configuration (5), various conditions that may affect the residual stress after WJP are included in the processing condition, and thus it is possible to evaluate the residual stress after WJP under a processing condition accurately.
(6) An evaluation program for water jet peening according to at least one embodiment of the present invention is configured to cause a computer to execute: a condition setting step of setting a processing condition of water jet peening for a processing target; an analysis step of analyzing a jet flow when a fluid is injected from a nozzle model to a processing target model in accordance with the processing condition, and obtaining a void fraction which is a volume fraction of babbles contained in a unit volume of the fluid, and a collapse fraction which is a volume fraction of the bubbles which collapse in a unit time in the unit volume of the fluid, at each position on a surface of the processing target model; an impact pressure correlation value calculating step of obtaining an impact pressure correlation value, which is a product of the void fraction and the collapse fraction at each position; an experimental value acquisition step of obtaining an impact pressure experimental value, which is an experimental value of an impact pressure applied to a surface of the processing target due to the water jet peening under the processing condition; a prediction step of obtaining an impact pressure predicted value, which is a predicted value of the impact pressure applied to each position on the surface of the processing target due to the water jet peening under the processing condition, by associating the impact, pressure correlation value at each position on the surface of the processing target model with the impact pressure experimental, value applied to the surface of the processing target by the water jet peening under the processing condition; and a residual-stress evaluation step of calculating a residual stress of the processing target after the water jet peening under the processing condition by using the impact pressure predicted value obtained in the prediction step as an input condition.
With the above configuration (6), the generation/disappearance state of cavitation bubbles during water jet peening (WJP) is analyzed, and thereby it is possible to predict the actual distribution of impact pressure (impact pressure at each position on the surface of a processing target) of WJP generated in the vicinity of the surface of the processing target, and to evaluate the residual stress after WJP on the basis of the predicted impact pressure.
(7) In some embodiments, in the above configuration (6), the impact pressure predicted value is obtained by determining a coefficient k for associating the impact pressure experimental value with the impact pressure correlation value at each position on the surface of the processing target model.
With the above configuration (7), it is possible to associate the impact pressure experimental value with the impact pressure correlation value at each position on the surface of a processing target model by determining the above described coefficient k, and thereby it is possible to analyze/evaluate the actual residual stress after water jet peening (WJP) in the vicinity of the surface of a processing target.
(8) In some embodiments, in the above configuration (6) or (7), the evaluation program is configured to cause a computer to further execute: a target setting step of setting a target value of the residual stress; a processing-condition changing step of changing the processing condition if the residual stress does not satisfy the target value; a re-evaluation step of executing the analysis step, the impact pressure correlation value calculation step, and the residual-stress evaluation step under a changed processing condition changed in the processing-condition changing step; and a processing-condition determination step of determining the processing condition used in the re-evaluation step as the processing condition for the processing target, if the residual stress calculated in the re-evaluation step, satisfies the target value.
With the above configuration (8), a processing condition satisfying the target value is determined on the basis of comparison between a target value of residual stress and an analysis value of residual stress after water jet peening (WJP) under a processing condition. Thus, even in a case where WJP is to be performed under an unproven processing condition to suit for the specification of a plant, it is possible to evaluate the residual stress after WJP through analysis, and to determine suitable processing conditions for the specification of the plant. Furthermore, WJP can be performed reliably by actually performing WJP under a processing condition determined as described above. Moreover, it is possible to make use of the analysis in design of a WJP processing apparatus for performing WJP under desired processing conditions.
(9) In some embodiments, in the above configuration (8), if the residual stress calculated in the re-evaluation step does not satisfy the target value, the processing condition is further changed in the processing-condition changing step, and the re-evaluation step is performed under the changed processing condition further changed in the processing-condition changing step.
With the above configuration (9), if the evaluation result of residual stress after water jet peening (WJP) under a processing condition does not satisfy the target value, a similar evaluation is performed under another processing condition. Accordingly, it is possible to determine a processing condition that satisfies the target value.
(10) In some embodiments, in any one of the above configurations (6) to (9), the processing condition includes at least one of an injection fate of water jet by the water jet peening; an injection speed of the water jet, a flow rate of the water jet, a processing range of the water jet peening, an injection distance of the water jet, a radius of the bubbles, a nozzle angle, or an inclination angle of the surface of the processing target.
With the above configuration (10), various conditions that may affect the residual stress after WJP are included in the processing condition, and thus it is possible to evaluate the residual stress after WJP under a processing condition accurately.
(11) An evaluation apparatus for, water jet peening according to at least one embodiment of the present invention comprises; a condition receiving part configured to receive a processing condition of water jet peening for a processing target; an analysis part configured to analyze a jet flow when a fluid is injected from a nozzle model to a processing target model in accordance with the processing condition, and to obtain a void fraction which is a volume fraction of babbles contained in a unit volume of the fluid, and a collapse fraction, which is a volume fraction of the bubbles which collapse in a unit time in the unit volume of the fluid, at each position on a surface of the processing target model; an impact pressure correlation value calculating part configured to obtain an impact pressure correlation value, which is a product of the void fraction and the collapse fraction at each position; an experimental value acquisition part configured to obtain an impact pressure experimental value, which is an experimental value of an impact pressure applied to a surface of the processing target due to the water jet peening under the processing condition; a prediction part configured to obtain an impact pressure predicted value, which is a predicted value of the impact pressure applied to each position on the surface of the processing target due to the water jet peening under the processing condition, by associating the impact pressure correlation value at each position on the surface of the processing target model with the impact pressure experimental value applied to the surface of the processing target by the water jet peening under the processing condition; and a residual-stress evaluation part configured to calculate a residual stress of the processing target after the water jet peening under the processing condition by using the impact pressure predicted value obtained by the prediction part as an input condition.
With the above configuration (11), the generation/disappearance state of cavitation bubbles dining water jet peening (WJP) is analyzed, and thereby it is possible to predict the actual distribution of impact pressure (impact pressure at each position on the surface of a processing target) of WJP generated in the vicinity of the surface of the processing target, and to evaluate the residual stress after WJP on the basis of the predicted impact pressure.
(12) In some embodiments, in the above configuration (11), the impact pressure predicted value is obtained by determining a coefficient k for associating, the impact pressure experimental, value with the impact pressure correlation value at each position on the surface of the processing target model.
With the above configuration (12), it is possible to associate the impact pressure experimental value with the impact pressure correlation value at each position on the surface of a processing target model by determining the above described coefficient k, and thereby it is possible to analyze/evaluate the actual residual stress after water jet peening (WJP) in the vicinity of the surface of a processing target.
(13) In some embodiments, in any one of the above configurations (11) to (12), the evaluation apparatus farther comprises: a target setting part configured to set a target value of the residual stress; a processing-condition changing part configured to change the processing condition if the residual stress does not satisfy the target value; and a processing-condition determination part configured to determine the processing condition used to calculate the residual stress as the processing condition for the processing target if the residual stress satisfies the target value. Re-evaluation is performed by the analysis part, the impact pressure correlation value calculation part, and the residual stress evaluation part under a changed processing condition changed by the processing-condition changing part. The processing-condition determination part is configured to determine the processing condition used in the re-evaluation as the processing condition for the processing target, if the residual stress calculated in the re-evaluation satisfies the target value.
With the above configuration (13), a processing condition satisfying the target value is determined on the basis of comparison between a target value of residual stress and an analysis value of residual stress after water jet peening (WJP) under a processing condition. Thus, even in a case where WJP is to be performed under an unproven processing condition to suit for the specification of a plant, it is possible to evaluate the residual stress after WJP through analysis, and to determine suitable processing conditions for the specification of the plant. Furthermore, WJP can be performed reliably by actually performing WJP under a processing condition determined as described above. Moreover, it is possible to make use of the analysis in design of a WJP processing apparatus for performing WJP under desired processing conditions.
(14) In some embodiments, in the above configuration (1), if the residual stress calculated in the re-evaluation does not satisfy the target value, the processing-condition changing part is configured to fluffier change the processing condition, and the re-evaluation is performed under the changed processing condition further changed by the processing-condition changing part.
With the above configuration (14), if the evaluation result of residual stress after water jet peening under a processing condition does not satisfy the target value, a similar evaluation is performed under another processing condition. Accordingly, it is possible to determine a processing condition that satisfies the target value.
(15) In some embodiments, in any one of the above configurations (11) to (14), the processing condition includes at least one of: an injection time of water jet by the water jet peening; an injection speed of the water jet, a flow rate of the water jet, a processing range of the water jet peening, an injection distance of the water jet, a radius of the bubbles, a nozzle angle, or an inclination angle of the surface of the processing target.
With the above configuration (15), various conditions that may affect the residual stress after WJP are included in the processing condition, and thus it is possible to evaluate the residual stress after WJP under a processing condition accurately.
According to at least one embodiment of the present invention, provided is a method of evaluating a residual stress on the basis of analysis on the generation/disappearance state of cavitation bubbles during water jet peening (WJP).
Embodiments of the present invention will now be described in detail with reference to the accompanying drawings. It is intended, however, that unless particularly specified, dimensions, materials, shapes, relative positions and the like of components described in the embodiments shall be interpreted as illustrative only and not intended to limit the scope of the present invention.
For instance, an expression of relative or absolute arrangement such as “in a direction”, “along a direction”, “parallel”, “orthogonal”, “centered”, “concentric” and “coaxial” shall not be construed as indicating only the arrangement in a strict literal sense, but also includes a state where the arrangement is relatively displaced by a tolerance, or by an angle or a distance whereby it is possible to achieve the same function.
For instance, an expression of an equal state, such as “same” “equal” and “uniform” shall not be construed as indicating only the state in which the feature is strictly equal, but also includes a state in which there is a tolerance or a difference that can still achieve the same function.
Further, for instance, an expression of a shape such as a rectangular shape or a cylindrical shape shall not be construed as only the geometrically strict shape, but also includes a shape with unevenness or chamfered corners within the range in which the same effect can be achieved.
On the other hand, an expression such as “comprise”, “include”, “have”. “contain” and “constitute” are not intended to be exclusive of other components.
The WJP evaluation apparatus 10 is an apparatus capable of evaluating in advance the actual residual pressure (result of WJP) in the vicinity of the surface of a component such as metal (processing target 40) after WJP before performing WJP on the processing target 40.
The WJP evaluation apparatus 10 may be a computer including a WJP evaluation program 34, as in the embodiment shown in
In the embodiment depicted in
In the example shown in
Furthermore, the auxiliary storage device 30 may store various kinds of data to be used in the procedure of the WJP evaluation program 34. In the embodiment depicted in
The CPU 20 functionally includes: a parameter receiving part 21 for receiving various parameters necessary for analysis of a jet flow by the flow analysis module 35; a condition receiving part 22 for receiving a processing condition for WJP; a flow analysis part 23 for analyzing a jet flow that occurs during WJP based on the various conditions constituting the processing condition data 31; a target-range receiving part 24 for receiving a target processing range related to a processing target; a void-fraction/collapse-fraction calculation part 25 for obtaining, a void fraction f and a collapse fraction η (described below) of bubbles (cavitation bubbles) generated in the jet flow an impact pressure correlation value calculation part 26 for obtaining a correlation value (impact pressure correlation value Pc (described below)) of the impact pressure P estimated to be applied to the surface of a processing target model 45 which is the processing target 40 modeled by bubbles generated by WJP; an experimental value acquisition part 27 for obtaining an impact pressure experimental value Pr which is an experimental value of the impact pressure P applied to the surface of the processing target 40 by WJP under the above processing condition; a prediction part 28 for obtaining an impact pressure predicted value Pp (distribution of the impact pressure predicted value Pp) which is a predicted value of the impact pressure P applied to each position on the surface of the processing target 40 by WJP under the processing condition by associating the impact pressure correlation value Pc (distribution of the impact pressure correlation value Pc) at each position on the surface of the processing target model 45 with the impact pressure experimental value Pr applied to the surface of the processing target 40 by WJP under the processing condition; and a residual stress evaluation part 29 for calculating the residual stress in the processing target 40 after WJP under the processing condition by using the impact pressure predicted value Pp obtained by the prediction part 28 as air input condition.
The above functional parts performed by the CPU 20 function in response to the CPU 20 executing the WJP evaluation program 34 loaded to the memory 13 (main storage device) from the above described auxiliary storage device 30. More specifically, in the embodiment depicted in
The evaluation of WJP by the WJP evaluation apparatus 10 having the above configuration is executed by the flowchart shown in
In step S21 of
In the embodiment shown in
Next, in step S22, a processing condition of WJP for the processing target 40 is set (condition setting step (condition receiving step)). For instance, by the input device 11 of the WJP evaluation apparatus 10 being operated by an evaluator the processing condition of WJP is set in the WJP evaluation apparatus 10. In other words, the condition receiving part 22 of the WJP evaluation apparatus 10 receives the processing condition of WJP. The condition setting step (S22) includes a model setting step (step of receiving numerical data of model) (S22-1) and a WJP performing condition setting step (step of receiving WJP performing condition) (S22-9).
In the model setting step in step S22-1, the condition receiving part 22 receives a coordinate system of a space in which the processing target model 45 (see
In the example in
Furthermore, information indicating that the surface of the processing target model 45 is a flat surface is set for the above numerical data for fixing the processing target model 45, since the surface of the processing target 40 is a flat surface in the example in
The above numerical data for fixing the nozzle model 55 is numerical data capable of expressing the nozzle 50 for injecting a fluid used in the actual processing of WJP. For instance, as depicted in
For the nozzle 50 having the above configuration (
Furthermore, in the WJP performing condition setting step in step S22-2, the condition receiving part 22 receives various conditions as WJP performing conditions so as to affect the WJP processing result. The various conditions of the WJP performing conditions include, for instance, discharge pressure of a jet flow from the nozzle 50, flow rate of a jet flow from the nozzle 50, injection distance G of a jet flow (distance from the outlet 510 of the nozzle 50 to the surface of the processing target 40) (see
The analysis step (S23) in step S23 includes a flow analysis step (S23-1) and a calculation step of the void fraction f and the collapse fraction η (S23-2).
In the flow analysis step (S23-1), the flow analysis part 23 analyzes a jet flow under the condition set in the WJP condition setting step (S22), and obtains the number of generation and the number of disappearance of bubbles at each time at each position on the surface of the processing target model 45. The analysis result may be stored in the auxiliary storage device 30 as the flow analysis data 32. More specifically, in the flow analysis step (S23-1), in some embodiments, the number of generation and the number of disappearance of bubbles at each time at each position on the surface of the processing target model 45 are obtained as follows.
That is, analysis by CFD (e.g., unsteady large eddy simulation (LES)) is performed under the condition set in the condition setting step (S22) by using the model set in the parameter setting step (S21) (e.g. the above described two-phase flow model and the cavitation model). The analysis is normally performed until sufficient statistical information is obtained. The analysis may be performed by using a calculating function such as the analysis code FLUENT of ANSYS inc. or the like. With regard to the cavitation model, the model described in Philip J. Zwart, Andrew G Gerber, and Thabet Belamri “A Two-Phase Flow Model for Predicting Cavitation Dynamics” ICMF 2004 International Conference on Multiphase Flow, Yokohama, Japan, May 30-Jun. 3, 2004 Paper No.152 may be used.
In the following step S23-2, after completion of the flow analysis step (S23-1), the void-fraction/collapse-fraction calculation part 25 calculates the void fraction f and the collapse fraction η related to bubbles at each position on the surface of the processing target model 45 (S27: step of calculating the void fraction f and the collapse fraction η).
The void fraction f is a volume fraction of bubbles contained in a unit volume of a fluid that contains water, and the collapse fraction η is a volume fraction of bubbles that burst in a unit time in a unit volume of a fluid that contains water. The void-fraction/collapse-fraction calculation part 25 uses the flow analysis data 32 stored in the auxiliary storage device 30 or the memory 13 to obtain a volume fraction of bubbles per unit time during an injection period within a unit volume of a fluid at each position on the surface of the processing target model 45. Furthermore. the void-fraction/collapse-fraction calculation part 25 uses the flow analysis data 32 stored in the auxiliary storage device 30 or the memory 13 to obtain a volume fraction of bubbles that burst in a unit time including each time within a unit volume of a fluid at each position on the surface of the processing target model 45, from the number of disappearance of the bubbles at each time in a unit volume of a fluid at each position on the surface of the processing target model 45. Further, in the embodiment depicted in
In step S24, after completion of the analysis step (S23), the impact pressure correlation value calculation part 26 calculates the impact pressure correlation value at each position on the surface of the processing target model 45 on the basis of the void fraction f and the collapse fraction η (S24: impact pressure correlation value calculation step). Specifically, the actual impact pressure P by WJP can be expressed, from experience, by a product of the collapse fraction η of bubbles, the void fraction f of bubbles, and the coefficient k depending on the flow rate of a jet flow and the water depth D, as shown in in the following expression: P=k×η×f.
Thus, the product of the void fraction f of bubbles and the collapse fraction η of bubbles in the above expression is calculated as the impact pressure correlation value Pc. That is, the impact pressure correlation value calculation part 26 multiples the void fraction f at each position on the surface of the processing target model 45 by the collapse fraction η at the same position, and thereby obtains the impact pressure correlation value Pc at each position (distribution of the impact pressure correlation value Pc).
In step S25, the impact pressure experimental value Pr, which is an experimental value of the impact pressure P applied to the surface of the processing target 40 by WJP under the same processing conditions as those used in the analysis step (S23) is obtained (S25: experimental value acquisition step). The impact pressure experimental value Pr may be obtained by loading onto the WJP evaluation program 34 the measurement data (impact pressure experimental value Pr) of the impact pressure P obtained by performing WJP on a test piece in advance. An evaluator may input the impact pressure experimental value Pr into the WJP evaluation program 34, or the impact pressure experimental value Pr may be loaded from the auxiliary storage device 30.
Further, the prediction step (S26) is performed on the basis of data obtained in the above impact pressure correlation calculation step (S24) and the experimental value acquisition step (S25).
In the prediction step in step 26, the impact pressure correlation value Pc at each position on the surface of the processing target model 45 is associated with the impact pressure experimental value Pr applied to the surface of the processing target 40 by WJP under the same processing conditions as those used in calculation of the impact pressure correlation value Pc, and thereby the impact pressure predicted value Pp (distribution of the impact pressure predicted value Pp), which is a predicted value of the impact pressure P applied to each position on the surface of the processing target 40 by WJP under the processing condition is obtained.
More specifically, as shown in the above expression representing the experimental rule, the impact pressure P is in proportion to the impact pressure correlation value Pc, and thus the above coefficient k is obtained so as to maximize the correlation between the impact pressure P and the impact pressure correlation value Pc that can be obtained by experiment. Specifically, the impact pressure predicted value Pp is obtained by determining the coefficient k that associates the impact pressure correlation value Pc (distribution of impact pressure correlation value Pc) at each position on the surface of the processing target model 45 with the impact pressure experimental value Pr. More specifically, the position on the surface of the processing target where the impact pressure experimental value Pr is obtained, and a difference from the impact pressure correlation value Pc corresponding to the position is obtained at each position where the impact pressure experimental value Pr is obtained. Further, the coefficient k is obtained so that the above differences fall within a predetermined range.
The coefficient k may be obtained by the least-square method, for instance.
With reference to
On the other hand, while
Further, the impact pressure predicted value Pp is obtained by associating the two values in the above prediction step (S26), and in the example shown in
In step S27, the residual stress of the processing target 40 after performing WJP under the processing condition is calculated, with an input condition being the impact pressure predicted value Pp obtained in the prediction step (S26). Specifically, by performing the FEM analysis, for instance, on the basis of the impact pressure predicted value, the residual stress is calculated (S27: residual stress analysis step).
According to the above embodiment, the generation/disappearance state of cavitation bubbles during water jet peening (WJP) is analyzed, and thereby it is possible to predict the actual impact pressure of WJP generated in the vicinity of the surface of the processing target, and to evaluate the residual stress, after WJP on the basis of the predicted impact pressure.
According to some embodiments described above, the residual stress in the vicinity of the surface of the processing target 40 improved by WJP under the set processing condition is evaluated. In some other embodiments, the processing condition of WJP is determined on the basis of the evaluation result of the residual stress evaluated as described above. This is to, when the specification (e.g. size of a tube base 62 to be welded to a panel 61) of a plant is different, quickly determine a reliable WJP processing condition corresponding to the specification of each plant.
For instance, in the examples shown in
Thus, in some embodiments, as depicted in
In step S90 of
In the following step S98, the calculated residual stress and the target value (step S90) determined in advance are compared. Then, if the residual stress does not satisfy the target value, the WJP processing condition is changed in step S99 (S99: processing condition changing step). Specifically, at least one of the various conditions set in the WJP processing condition setting step (S92) is changed. For instance, the condition to be changed may be at least one of the injection time of water jet by water, jet peening; the injection speed of water jet; the flow rate of water jet; the processing range S of water jet peening; the injection distance of water jet the radius of the bubbles; nozzle angle φ; or inclination angle θ of the surface of the processing target. Further, the residual stress is evaluated again (S91 to S97) on the basis of the updated WJP processing condition changed by the processing condition changing step (S99).
Furthermore, in step S98, if the calculated residual stress satisfies the target value, the processing condition used to calculate the residual stress is determined as the actual processing condition for the processing target 40 in step S910. Then the flow is ended.
If the coefficient k corresponding to the processing condition is determined in advance, the experimental value acquisition step (S95) and the prediction step (S95) are not performed, and instead, the impact pressure correlation value Pc obtained in the impact pressure correlation value calculation step (S94) and the impact pressure predicted value Pp obtained on the basis of the coefficient k may be directly used as an input condition of the residual stress analysis (S97). Furthermore, on the basis of the evaluation result of the residual stress, the specification of the WJP processing apparatus such as the function and shape of the nozzle 50 may be studied and applied to the design of a WJP processing apparatus capable of performing WJP under processing conditions that satisfy the above target value.
According to the above embodiment, even in a case where WJP is to be performed under an unproven processing condition to suit for the specification of a plant, it is possible to evaluate the residual stress after WJP through analysis, and to determine a suitable processing condition for the specification of the plant. Furthermore, WJP can be performed reliably by actually performing WJP under a processing condition determined as described above. Moreover, it is possible to make use of the analysis in design of a WJP processing apparatus for performing WJP under desired processing conditions.
In some other embodiments, in association with WJP processing conditions, related information may be used in form of a database, including residual stress, the flow analysis data 32, collapse fraction η, void fraction f, impact pressure correlation value Pc, impact pressure experimental value Pr, coefficient k, and impact pressure predicted value Pp. Accordingly, it is possible to easily obtain related information from processing conditions stored in such a database.
Embodiments of the present invention were described in detail above, but the present invention is not limited thereto, and various amendments and modifications may be implemented.
Number | Date | Country | Kind |
---|---|---|---|
2015-021571 | Feb 2015 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/062096 | 4/21/2015 | WO | 00 |