Wireless communication technologies have been growing in popularity and use over the past several years. This growth has been fueled by better communications hardware, larger networks, and more reliable protocols. Wireless and Internet service providers are now able to offer their customers with an ever-expanding array of features and services, such as robust cloud-based services.
To better support these enhancements, more powerful consumer facing edge devices (e.g., consumer grade access points, IoT gateways, routers, switches, etc.) are beginning to emerge. These devices include more powerful processors, system-on-chips (SoCs), memories, antennas, power amplifiers, and other resources (e.g., power rails, etc.) that better support high-speed wireless communications and execute complex and power intensive applications facilitating edge computing.
In addition to high performance and functionality, consumers increasingly demand that their devices be affordable, future-proof (e.g., upgradeable, highly versatile, etc.) and small enough to readily placed throughout a home or small office.
The various embodiments include a resilient antenna securing device that includes a frame structure and a plurality of fin components projecting outwardly from the frame structure. The plurality of fin components may be configured to receive and hold one or more RF antenna portions, each fin of a first pair of the plurality of fins components may include a tab that extends toward the other fin of the first pair of fins, at least one first intermediate fin of the plurality of fins may be disposed between the first pair of fins, and the tabs from the first pair of fins may together trap a first RF antenna portion between the tabs and the at least one first intermediate fin.
In some embodiments, the first RF antenna portion may be resiliently biased toward the first intermediate fin. In some embodiments, the tabs from the first pair of fins may hold the first RF antenna portion in a flat configuration, and the RF antenna portion may be biased toward a curved configuration. In some embodiments, a resilient nature of the RF antenna portion may induce the bias toward the curved configuration. In some embodiments, the tabs may be disposed at a remote end of the first pair of fins, respectively. In some embodiments, each fin of the first pair of fins may extend from on a different side of the frame structure such that the first pair of fins extend away from the frame structure in different directions. In some embodiments, the frame structure may have a rectangular or square form.
In some embodiments, the tabs from the first pair of fins together trap a planar inverted-F antenna. In some embodiments, the tabs from the first pair of fins together trap at least one or more of a wideband antenna, a multiband antenna, or an ultrawideband (UWB) antenna.
In some embodiments, the frame structure is an integrated heatsink and antenna structure that includes heatsink portions and RF antenna portions. In some embodiments, the RF antenna portions may allow components placed on top of the frame structure to send and receive wireless communications, and the heatsink portions may provide a path for dissipating thermal energy or heat generated by the components placed on top of the frame structure. In some embodiments, the plurality of fin components may operate as a heatsink portion that dissipates heat or thermal energy generated by components placed on top of the frame structure.
In some embodiments, the plurality of fin components may provide capacitive tuning to an open end of Radio Frequency patches. In some embodiments, the plurality of fin components may be made of aluminum or copper. In some embodiments, the first pair of fins may be formed of a material that suitable for enhancing one or more antenna properties of the first RF antenna portion. In some embodiments, the enhanced antenna properties include at least one or more of radiation patterns, radiation efficiency, bandwidth, input impedance, polarization, directivity, gain, beam-width, or voltage standing wave ratio.
Some embodiments may further include a ground plane component coupled to one or more of the plurality of fin components. In some embodiments, the plurality of fin components may form a heatsink portion that dissipates thermal energy. In some embodiments, the ground plane component may be configured or arraigned to dissipate additional thermal energy to improves the thermal performance of the heatsink portion.
In some embodiments, additional components may bias the ground plane component into contact with the tabs from the first pair of fins to secure the first RF antenna portion to the heatsink portion. In some embodiments, a clip or slot an innermost fin component may secure a ground plane component to at least one or more of the plurality of fin components.
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate exemplary aspects of the claims, and together with the general description given above and the detailed description given below, serve to explain the features of the claims.
Various aspects will be described in detail with reference to the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. References made to particular examples and implementations are for illustrative purposes, and are not intended to limit the scope of the claims.
In overview, the embodiments include an edge device (e.g., Wi-Fi access points, IoT gateways, etc.) that includes a baseline feature set, and an expandable architecture that allows end users to add specific features or functionality (e.g., digital concierge, home assistant, etc.) to the device as needed. The expandable architecture allows end users to purchase a relatively inexpensive base unit, and upgrade or customize the device's features or capabilities based on their specific needs. The expandable architecture also allows the device to remain compatible with the fast-paced evolving technology roadmap confronting 5G and beyond. Rather than replacing the device with another that better supports these new and emerging features, the end user may add features sets to the existing device.
The base unit and its components may be configured, shaped, formed or arranged so that the customer or user can quickly physically attach additional units (e.g., an auxiliary unit, another base unit, etc.) above, below, or to the sides of the base unit. As is discussed in more detail below, the additional units may be attached in a variety of different ways and/or to form a variety of different configurations. Once attached, the combined unit (i.e., the base unit and the attached additional units) may operate as a single unified edge device. The additional units may expand or enhance the baseline feature set of the base unit by adding to the existing memory, processing, and/or communication resources of the base unit. The additional units may also expand the baseline feature set by adding new resources or capabilities to the base unit, such as support for a new radio access technology, decoding audio, processing light, receiving external inputs, adding external relay contacts to, for example, turn other devices on or off, receive inputs from external devices, etc.
Any or all of the units in the combined unit may expose systems buses and resources in a manner that allows those units to be readily expanded to support additional feature sets, but which preserves the performance and integrity of the individual units and of the combined device. The additional units may have additional system buses that may or may not be part of the system bus of the base unit. The exposure of these and other buses may help ensure the future expandability of the combined unit.
In some embodiments, the edge device may include an electro-mechanical interface such that unused system busses and resources may be accessed and/or retro-fitted by the end user, after deployment, or in the field. In some embodiments, such as the embodiment illustrated in
The use of the electro-mechanical interface may also facilitate the use interfacing the base unit with quantum computing capability where the unit or units connected directly or relayed by other units has the quantum computing capability interfacing and leveraging the base processing and other functions of the base unit and the associated units.
The electro-mechanical interface may also provide connectivity for additional power sources that can be tied to the existing power bus for unit expansion.
The various embodiments may include, use, incorporate, implement, provide access to a variety of wired and wireless communication networks, technologies and standards that are currently available or contemplated in the future, including any or all of Bluetooth®, Bluetooth Low Energy, ZigBee, LoRa, Wireless HART, Weightless P, DASH7, RPMA, RFID, NFC, LwM2M, Adaptive Network Topology (ANT), Worldwide Interoperability for Microwave Access (WiMAX), WIFI, WiFi6, WIFI Protected Access I & II (WPA, WPA2), personal area networks (PAN), local area networks (LAN), metropolitan area networks (MAN), wide area networks (WAN), networks that implement the data over cable service interface specification (DOCSIS), networks that utilize asymmetric digital subscriber line (ADSL) technologies, third generation partnership project (3GPP), long term evolution (LTE) systems, LTE-Direct, third generation wireless mobile communication technology (3G), fourth generation wireless mobile communication technology (4G), fifth generation wireless mobile communication technology (5G), global system for mobile communications (GSM), universal mobile telecommunications system (UMTS), high-speed downlink packet access (HSDPA), 3GSM, general packet radio service (GPRS), code division multiple access (CDMA) systems (e.g., cdmaOne, CDMA2000™), enhanced data rates for GSM evolution (EDGE), advanced mobile phone system (AMPS), digital AMPS (IS-136/TDMA), evolution-data optimized (EV-DO), digital enhanced cordless telecommunications (DECT), etc. Each of these wired and wireless technologies involves, for example, the transmission and reception of data, signaling and/or content messages.
Any references to terminology and/or technical details related to an individual wired or wireless communications standard or technology are for illustrative purposes only, and not intended to limit the scope of the claims to a particular communication system or technology unless specifically recited in the claim language.
The term “computing device” may be used herein to refer to any one or all of quantum computing devices, edge devices, Internet access gateways, modems, routers, network switches, residential gateways, access points, integrated access devices (IAD), mobile convergence products, networking adapters, multiplexers, personal computers, laptop computers, tablet computers, user equipment (UE), smartphones, personal or mobile multi-media players, personal data assistants (PDAs), palm-top computers, wireless electronic mail receivers, multimedia Internet enabled cellular telephones, gaming systems (e.g., PlayStation™, Xbox™, Nintendo Switch™, etc.), wearable devices (e.g., smartwatch, head-mounted display, fitness tracker, etc.), IoT devices (e.g., smart televisions, smart speakers, smart locks, lighting systems, smart switches, smart plugs, smart doorbells, smart doorbell cameras, smart air pollution/quality monitors, smart smoke alarms, security systems, smart thermostats, etc.), media players (e.g., DVD players, ROKU™, AppleTV™, etc.), digital video recorders (DVRs), and other similar devices that include a programmable processor and communications circuitry for providing the functionality described herein.
The term “quantum computing device” may be used herein to refer to a computing device or edge device, whether it is a standalone device or used in conjunction with current computing processes, that generates or manipulates quantum bits (qubits) or which utilizes quantum memory states. A quantum computing device may enhance edge computing capability by providing solutions that would be challenging to implement via conventional computing systems. This is especially true with value added computing for leveraging a diverse amount of sensor and other input data to arrive at a solution in real time. Through unifying diverse data sources a quantum computing solution at the edge may accelerate machine learning, solve complex problems faster as well as provide the fundamental platform for artificial intelligence nodes at the edge of the network. With the vast array of data delivered by sensors as well state information the quantum computing process may improve the memory allocation though the use of superposition allowing for more information to be simultaneously stored and processed.
The term “edge device” may be used herein to refer to a computing device that includes a programmable processor and communications circuitry for establishing communication links to consumer devices (e.g., smartphones, UEs, IoT devices, etc.) and/or to network components in a service provider, core, cloud, or enterprise network. For example, an edge device may include or implement functionality associated any one or all of an access point, gateway, modem, router, network switch, residential gateway, mobile convergence product, networking adapter, customer premise device, multiplexer and/or other similar devices.
Various different types of antennas are available or contemplated in the future. To focus the discussion on the most important details, some embodiments are described with reference to planar inverted-F antennas. However, nothing in this application should be use to limit the scope of the claims to a specific type antenna unless expressly recited as such in the claims.
Generally, components and circuitry within a computing device generate heat or thermal energy, which at excessive levels may damage or reduce the performance of the computing device. The amount of thermal energy that is generated may vary depending upon the components included in the computing device, operating conditions, and/or the operations or activities in the computing device. For example, a computing device that wirelessly transmits data for a sustained time period at a high power-level may require that a power amplifier feed its antennas. The power amplifier may generate a significant amount of thermal energy that could have a negative impact on the performance of the computing device. As another example, processors and other components in the computing device generate a significant amount thermal energy when the performing complex tasks, such as processing video, using cryptographic technology, or implementing machine learning. The thermal energy generated by these processors/components could damage the device, shorten the operating life of the device, cause the device to abruptly shut down, or otherwise have a negative impact on the device's reliability or performance characteristics.
Generally, components and circuitry within a computing device (e.g., wireless access point, router, edge device, router, etc.) generate heat or thermal energy, which at excessive levels could have a significant negative impact on the performance and functioning of the computing device. The amount of thermal energy that is generated may depend upon the components included in the computing device, operating conditions, and/or the operations or activities in the computing device. For example, a computing device that wirelessly transmits data for a sustained time period at a high power-level may require that a power amplifier feed the antenna. The power amplifier may generate a significant amount of thermal energy that could have a negative impact on the performance of the computing device. As another example, processors and other components in the computing device generate a significant amount thermal energy when the performing complex tasks, such as video processing, cryptography, or machine learning. The thermal energy generated by these processors/components could have a significant negative impact on the performance and functioning of the computing device.
Many modern computing systems are equipped with heat dissipating structures that help ensure the device does not operate at unsafe temperatures that damage or shorten the operating life of the device. Modern computing systems are often also equipped with radiating structures (antennas) for sending and receiving wireless communications.
In many conventional systems, the heat dissipating structures are separate and independent of radiating structures, and thus compete with one another for product volume (e.g., space with in the device). For these and other reasons, device manufacturers have had to either build devices that are large enough to include both the heat dissipating and radiating structures (e.g., personal computers, laptops, routers, etc.) or build smaller but less powerful devices (e.g., smartphones, IoT devices, etc.) that attempt to balance tradeoffs between performance and power consumption. Device manufacturers that opt to build the small and mid-sized devices often carve away sections of the heat dissipating structure (heatsinks) to make room for the radiating structures (antennas), or vice versa. The tradeoff or reduction in heat dissipation structure size for antenna installation reduces the thermal performance of the device because it decreases the surface area of the heat dissipating structure. This also degrades the radiation patterns on the radiating structures and may otherwise have a negative impact on the device's performance or reliability.
Some embodiments may include an integrated heatsink and antenna structure that is suitable for inclusion in small and midsized computing devices and which overcomes the above-described limitations of conventional solutions. The integrated heatsink and antenna structure may include heatsink portions and RF antenna portions. The heatsink portions may provide a path for dissipating thermal energy or heat generated by the components in the device (e.g., printed circuit boards, processors, voltage amplifiers, etc.), and the RF antenna portions may allow the device to send and receive wireless communications.
In some embodiments, the integrated heatsink and antenna structure may be formed so that RF antenna portions operate to improve the thermal performance of the heatsink portions and/or so that the heatsink portions operate to improve the antenna properties (e.g., radiation patterns, radiation efficiency, bandwidth, input impedance, polarization, directivity, gain, beam-width, voltage standing wave ratio, etc.) of the RF antenna portions. These improvements in thermal performance and/or antenna properties may allow device manufacturers to build more powerful small and midsized devices that provide robust functionality (e.g., via additional antennas, more powerful processors that generate more heat, etc.) and which may be formed into more visually appealing shapes.
The RF antenna portion 120 may be (or may be plated with) aluminum, copper, stainless steel, beryllium copper, phosphor bronze or any other similar material or composition. The heatsink portions 140a, 140b may be (or may be plated with) aluminum, copper, or any other material or composition suitable for dissipating heat. For example, in an embodiment, the RF antenna portion 120 may be copper and the heatsink portions 140a, 140b may be aluminum.
In the examples illustrated in
In some embodiments (e.g., embodiments in which an antenna portion 120 is not formed as a planar inverted-F antenna, etc.), a monopole could be designed with the heat sink as ground reference. Further, some embodiments may include a ground plane independent primary radiator (e.g. dipole, etc.) that uses the heatsink as a field shaping structure (dish on a dish antenna).
Returning to examples illustrated in
As shown in
As shown in
The first fin of heatsink portion 140b may provide capacitive tuning to the open end of the radio frequency patches (e.g., 2.4 GHz patches, etc.). This may allow the patches to be smaller that would be the case without the fin.
In various embodiments, the fin components 114a, 114b may be (or may be plated with) aluminum, copper, or any other material or composition suitable for dissipating heat. In addition, the fin components 114a, 114b may be formed of a material suitable for also enhancing one or more antenna properties (e.g., radiation patterns, radiation efficiency, bandwidth, input impedance, polarization, directivity, gain, beam-width, voltage standing wave ratio, etc.) of the RF antenna portion 120. A greater or fewer number of fin components 114a, 114b may be included as part of the heatsink portions 140a, 140b (i.e., illustrated as ellipses on the outer right and left sides of
The ground plane component 104 may be coupled to one or more of the fin components 114a, 114b and/or arranged to dissipate additional thermal energy and further improve thermal performance, similar to the fin components 114a, 114b. For example, an innermost one of each of the fin components 114a, 114b may include tabs 141a, 141b that hold the ground plane component 104 in place. Additional components may bias the ground plane component 104 into contact with the tabs 141a, 141b, thus securing (i.e., holding) the RF antenna portion 120 and the heatsink portions 140a, 140b together. Alternatively, a clip or slot may be provided on or in the innermost ones of the fin components 114a, 114b for securing the ground plane component 104 to the fin components 114a, 114b. In this way, securing the ground plane component 104 to the fin components 114a, 114b couples the RF antenna portion 120 to the heatsink portions 140a, 140b. Also, this coupling may produce a synergistic effect of providing an RF antenna portion 120 that improves the thermal performance of the heatsink portions 140a, 140b, as well as heatsink portions 140a, 140b that improve the antenna properties of the RF antenna portion 120.
The computing device, in which the integrated heatsink and antenna structure 100 is included, may dissipate the same amount of heat and/or achieve the same thermal performance as conventional devices that have larger structures that include larger or a greater number of fin components that occupy more area. In accordance with various embodiments, the integrated heatsink and antenna structure 100 may be packaged into a smaller or more compact container and/or to include additional or more powerful components (e.g., additional antennas, more powerful processors that generate more heat, etc.) than conventional devices.
Each of the RF antenna portions 120a-h may be coupled to and surrounded by fin components (e.g., 114a-d) integrated into the heatsink base 210 and that dissipate thermal energy. For example, four (4) of the RF antenna portions 120a, 120c, 120e, 120g may be disposed on the sides of the integrated heatsink and antenna structure 200, each having a similar configuration to that described with regard to integrated heatsink and antenna structure 100 in
The integrated heatsink and antenna structure 200 may include a cavity onto which a processor, computing system, printed circuit board, integrated circuit (IC) chips, a system on chip (SOC), or system in a package (SIP) and/or other similar components may be implemented or placed. In some embodiments, the integrated heatsink and antenna structure 200 may include a connector port 202 that provides an interface between components of the integrated heatsink and antenna structure 200 and other computers or peripheral devices.
In some embodiments, the components/chips may be placed on a heat conducting material (not illustrated separately in
In some embodiments, the integrated heatsink and antenna structure 200 may dissipate between approximately 15 to 20 Watts/mm2 (or Watts/inch) from the chip to the integrated heatsink and antenna structure 200, from the integrated heatsink and antenna structure 200 to ambient air, and/or from the chip to ambient air.
As mentioned above, the integrated heatsink and antenna structure 200 may include multiple RF antennas 120a-h. The RF antennas 120a-h may include wideband, multiband, and/or ultrawideband (UWB) antennas. For example, the RF antennas 120a-h may include patch antennas, inverted-L antennas, inverted-F antennas (e.g., planar inverted-F antenna (PIFA), dual frequency PIFA, etc.) or any other antenna suitable for wireless applications. In some embodiments, the RF antennas 120a-h and/or the antenna pattern may be selected based on heatsink characteristics (size, area, amount of heat metal, etc.).
As mentioned above, securing the ground plane component 104 to the fin components 114a, 114b couples the RF antenna portions 120 to the heatsink portion. In the various embodiments, the ground plane for any of the RF antenna portions 120 may be changed so that it is potentially smaller than shown in the figures, but running the entire length behind the heatsink fin components 114.
In some embodiments, the fin components 114 may be arraigned into a fin structure that is slightly different for each RF antenna portion 120a-h or for each antenna location. In some embodiments, each of the RF antenna portions 120 may be tuned for frequency band and/or modified based on frequency, bandwidth, impedance, proximity to the fin components 114 and/or the corresponding fin structure.
In some embodiment, the RF antenna portions 120a-h may be formed from a resilient (i.e., springy material) and with a curved form. The resilient nature of the RF antenna portions 120a-h may induce a bias back toward that curved form when an RF antenna portion is bent. In this way, when the heat sink features hold an RF antenna portion in a flat configuration, the resilience induces a bias force in a direction encouraging the RF antenna portion to return to the original curved form. 120a-h so friction (primarily) holds them in place. As such, the RF antenna portions 120a-h may be attached to the heatsink base component 210 via a friction fit. In addition, the integrated heatsink and antenna structure 200 may be formed to fit into a plastic housing (not illustrated separately in
In various embodiments, the stackable housing 500 may be stacked on top of, on the side of, or below another stackable housing 500, which then allows multiple integrated heatsink and antenna structures (e.g., 200) to be used together in a compact arrangement. To stack the stackable housings 500, the lid 510, upper rim 520, and upper tray 530 of all but the uppermost stackable housing 500 may be removed so as to expose one integrated heatsink and antenna structure below to another integrated heatsink and antenna structure above.
In overview, an SOC may be a single IC chip that contains multiple resources and/or processors integrated on a single substrate. A single SOC may contain circuitry for digital, analog, mixed-signal, and radio-frequency functions. A single SOC may also include any number of general purpose and/or specialized processors (packet processors, etc.), memory blocks (e.g., ROM, RAM, Flash, etc.), and resources (e.g., timers, voltage regulators, oscillators, etc.). SOCs may also include software for controlling the integrated resources and processors, as well as for controlling peripheral devices. The components in an SOC may generate a significant amount of thermal energy or heat, and thus the placement of the components within the SOC, the location of the SOC within the integrated heatsink and antenna structure 200, and other thermal management considerations are often important.
With reference to
The thermal management unit 622 may be configured to monitor and manage the device's junction temperature, surface/skin temperatures and/or the ongoing consumption of power by the active components that generate thermal energy in the device. The thermal management unit 622 may determine whether to throttle the performance of active processing components (e.g., CPU, GPU, LCD brightness), the processors that should be throttled, the level to which the frequency of the processors should be throttled, when the throttling should occur, etc.
The system components and resources 620 and custom circuitry 618 may manage sensor data, analog-to-digital conversions, wireless data transmissions, and perform other specialized operations, such as decoding data packets and processing video signals. For example, the system components and resources 620 may include power amplifiers, voltage regulators, oscillators, phase-locked loops, peripheral bridges, temperature sensors (e.g., thermally sensitive resistors, negative temperature coefficient (NTC) thermistors, resistance temperature detectors (RTDs), thermocouples, etc.), semiconductor-based sensors, data controllers, memory controllers, system controllers, access ports, timers, and other similar components used to support the processors and software clients running on a device. The custom circuitry 618 may also include circuitry to interface with other computing systems and peripheral devices, such as wireless communication devices, external memory chips, etc.
Each processor 608, 610, 612, 614 may include one or more cores, and each processor/core may perform operations independent of the other processors/cores. For example, the SOC 602 may include a processor that executes a first type of operating system (e.g., FreeBSD, LINUX, OS X, etc.) and a processor that executes a second type of operating system (e.g., MICROSOFT WINDOWS 10). In addition, any or all of the processors 608, 610, 612, 614 may be included as part of a processor cluster architecture (e.g., a synchronous processor cluster architecture, an asynchronous or heterogeneous processor cluster architecture, etc.).
The processors 608, 610, 612, 614 may be interconnected to one another and to the memory 618, system components and resources 620, and custom circuitry 618, and the thermal management unit 622 via the interconnection/bus module 624. The interconnection/bus module 624 may include an array of reconfigurable logic gates and/or implement a bus architecture (e.g., CoreConnect, AMBA, etc.). Communications may be provided by advanced interconnects, such as high-performance networks-on chip (NoCs).
The SOC 602 may further include an input/output module (not illustrated) for communicating with resources external to the SOC, such as the clock 604 and the voltage regulator 606. Resources external to the SOC (e.g., clock 604, etc.) may be shared by two or more of the internal SOC processors/cores.
In addition to the SOC 602 discussed above, the various embodiments may include or may be implemented in a wide variety of computing systems, which may include a single processor, multiple processors, multicore processors, or any combination thereof.
With reference to
The processors may be any programmable microprocessor, microcomputer or multiple processor chip or chips that can be configured by software instructions (applications) to perform a variety of functions, including the functions of the various aspects described in this application. In some wireless devices, multiple processors may be provided, such as one processor dedicated to wireless communication functions and one processor dedicated to running other applications. Typically, software applications may be stored in the internal memory 906 before they are accessed and loaded into the processor. The processor may include internal memory sufficient to store the application software instructions.
As used in this application, the terms “component,” “module,” “system,” and the like may refer to a computer-related entity, such as, but not limited to, hardware, firmware, a combination of hardware and software, software, or software in execution, which are configured to perform particular operations or functions. For example, a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a wireless device and the wireless device may be referred to as a component. One or more components may reside within a process and/or thread of execution and a component may be localized on one processor or core and/or distributed between two or more processors or cores. In addition, these components may execute from various non-transitory computer readable media having various instructions and/or data structures stored thereon. Components may communicate by way of local and/or remote processes, function or procedure calls, electronic signals, data packets, memory read/writes, and other known network, computer, processor, and/or process related communication methodologies.
Various aspects illustrated and described are provided merely as examples to illustrate various features of the claims. However, features shown and described with respect to any given aspect are not necessarily limited to the associated aspect and may be used or combined with other aspects that are shown and described. Further, the claims are not intended to be limited by any one example aspect. For example, one or more of the operations of the methods may be substituted for or combined with one or more operations of the methods.
The foregoing method descriptions and the process flow diagrams are provided merely as illustrative examples and are not intended to require or imply that the operations of various aspects must be performed in the order presented. As will be appreciated by one of skill in the art the order of operations in the foregoing aspects may be performed in any order. Words such as “thereafter,” “then,” “next,” etc. are not intended to limit the order of the operations; these words are used to guide the reader through the description of the methods. Further, any reference to claim elements in the singular, for example, using the articles “a,” “an,” or “the” is not to be construed as limiting the element to the singular.
Various illustrative logical blocks, modules, components, circuits, and algorithm operations described in connection with the aspects disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and operations have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such aspect decisions should not be interpreted as causing a departure from the scope of the claims.
The hardware used to implement various illustrative logics, logical blocks, modules, and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but, in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of receiver smart objects, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Alternatively, some operations or methods may be performed by circuitry that is specific to a given function.
In one or more aspects, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a non-transitory computer-readable storage medium or non-transitory processor-readable storage medium. The operations of a method or algorithm disclosed herein may be embodied in a processor-executable software module or processor-executable instructions, which may reside on a non-transitory computer-readable or processor-readable storage medium. Non-transitory computer-readable or processor-readable storage media may be any storage media that may be accessed by a computer or a processor. By way of example but not limitation, such non-transitory computer-readable or processor-readable storage media may include RAM, ROM, EEPROM, FLASH memory, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage smart objects, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of non-transitory computer-readable and processor-readable media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and/or instructions on a non-transitory processor-readable storage medium and/or computer-readable storage medium, which may be incorporated into a computer program product.
The preceding description of the disclosed aspects is provided to enable any person skilled in the art to make or use the claims. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects without departing from the scope of the claims. Thus, the present disclosure is not intended to be limited to the aspects shown herein but is to be accorded the widest scope consistent with the following claims and the principles and novel features disclosed herein.
This application is a continuation application of U.S. application Ser. No. 17/148,846, filed on Jan. 14, 2021, which claims the benefit of priority to U.S. Provisional Application No. 62/962,405, entitled “Resilient Antenna Securing Mechanism” filed Jan. 17, 2020, the entire contents of both of which are hereby incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
20110188205 | Macmanus et al. | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
2017086377 | May 2017 | WO |
Number | Date | Country | |
---|---|---|---|
20220359974 A1 | Nov 2022 | US |
Number | Date | Country | |
---|---|---|---|
62962405 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17148846 | Jan 2021 | US |
Child | 17872095 | US |