This disclosure relates to new and useful improvements in deck structures and particularly the construction of platform tennis courts having a resilient deck structure.
Platform tennis or paddle tennis, as it is commonly referred to, is played on a raised platform having screened sidewalls and endwalls. The game is played in much the same way as conventional tennis, except that in the game of paddle tennis, the ball may be played off the screened endwalls and sidewalls. The playing surface or deck of the paddle tennis court must provide a flat surface and, at the same time, permit easy maintenance and repair.
Paddle tennis has developed over the years as a popular out-of-doors, all-season sport. Due to variable weather conditions, particularly in winter, the raised platform of the paddle tennis court is constructed to allow for water drainage and to permit the easy removal of snow and ice. Originally, platform tennis courts were made with painted wood. Commonly, thick, 2×6 lumber was used for the decking with walnut chips cast in the paint on the playing surface to provide better footing. In the early 1970's, aluminum decks were developed to counter the durability problems and warpage problems of wood. The aluminum extrusions used for the playing surface soon copied the basic shape of the original wooden decks using evenly spaced reinforcing ribs on the bottom for rigidity. This basic extrusion shape is still the standard of platform tennis court manufacturers to this day.
A 30-foot long extrusion is too long to support much load on its own. Consequently, on today's platform tennis courts, I-beams are used to span the width of the court to support the extruded decking. Six or seven I-beams may be used, supported by three or more concrete piers per I-beam. Typically, groups of deck extrusions are welded together to an underneath metal structure in both directions for more strength. This type of boxed reinforcement requires careful alignment and extensive welding. Hence, this fabrication is normally done at a remote facility, not at the court site. Normally, several modules approximately 5-feet wide and 30-feet long are formed from extrusions welded to such boxed channel structure underneath. Each module may weigh upwards of 400 lbs., which is as much mass/bulk as can be comfortably handled by an assembly crew on site. While the resulting deck of a platform tennis court today usually weighs less than a wooden deck, the welding is extensive, requiring what one industry source quoted as over 14,000 welds.
While aluminum has solved nearly all of the limitations of wood, there are complaints from many players based on the court being too rigid and unforgiving on knees and other joints due to the hardness of the aluminum. Additionally, the grit-based coating used to allow proper footing in wet or snowy conditions in which the sport can be played tends to lock the players' feet in place more than desired, causing additional injury.
Various embodiments herein suspend the aluminum platform deck on a resilient base, lessening impacts on the body from the typical movement on the court and reducing the chance for injuries related to impact transferred through the feet. Springs or other resilient members can be used to establish and adjust the firmness of the playing surface.
In addition, some embodiments use a modular approach to construction of the resilient deck. Taller (deeper) and wider deck panel extrusions can be used to virtually eliminate the need for welded reinforcement. The deck panel extrusions described herein can be mechanically fastened together, using cross-tie assemblies with geometry matched to the feet of the extrusions. Individual deck extrusions are dropped in place over the cross-tie channels with the tapered feet of the extrusions aligning in the V-shaped shoe of the cross-tie assemblies. Aligned holes in the extrusion feet and cross-tie channel assemblies ensure a goof-proof bolted connection with minimal effort. The net result is that most welding is eliminated, such that the deck panel extrusions can be sent directly from the extruder to the job site and handled individually, creating substantial overall savings.
According to a structure herein, a playing deck includes a plurality of horizontally disposed deck panels. A support assembly is connected to the horizontally disposed deck panels. Resilient mounts connect the horizontally disposed deck panels to the support assembly. The resilient mounts are flexible and allow relative motion between the horizontally disposed deck panels and the support assembly. The resilient mounts include a first spring capture assembly attached to the support assembly, a second spring capture assembly attached to the playing deck, and a plurality of springs disposed between the first spring capture assembly and the second spring capture assembly.
According to a resilient platform assembly, a playing deck includes a plurality of horizontally disposed deck panels. Each deck panel of the plurality of horizontally disposed deck panels has a pair of foot flanges that mate with the receiving shoes of transverse members. The transverse members are perpendicular to the plurality of horizontally disposed deck panels. Each transverse member includes a plurality of notches. Each notch of the plurality of notches is in a spacing pattern along the span of the transverse member. The receiving shoes are in the notches. Resilient mounts are connected to the transverse member. A support assembly is connected to the resilient mounts. The resilient mounts include a first spring capture assembly attached to the support assembly, a second spring capture assembly attached to the transverse members, and a plurality of springs disposed between the first spring capture assembly and the second spring capture assembly.
A platform assembly herein comprises a supporting substructure including a plurality of piers configured to be anchored in the ground, and a plurality of I-beams on the piers. Each of the I-beams has a top surface at a predefined distance above the ground. Transverse members are arranged in a spaced apart layout parallel to the I-beams. The transverse members have a bottom surface above the top surface of the I-beams relative to the ground. Each transverse member has a plurality of notches in a spacing pattern along the span of its length aligned with the feet of extruded deck panels. A mounting assembly is resiliently connected between the supporting substructure and the transverse members. The mounting assembly includes a first spring capture assembly attached to the supporting substructure, a second spring capture assembly attached to the transverse members, and a plurality of springs disposed between the first spring capture assembly and the second spring capture assembly.
The structures and methods herein will be better understood from the following detailed description with reference to the drawings, which are not necessarily drawn to scale and in which:
The exemplary deck assembly structure disclosed herein increases the rigidity of the deck extrusions by increasing the depth of the deck extrusions, which allows the elimination of welded box reinforcement channel underneath the deck extrusions. By using channel shapes which can be, in one example, approximately 4-inches deep and having a thicker construction, such as the surface being approximately 0.16-inch thick, the resulting 30-foot extrusion can be orders of magnitude stronger than the extrusions currently used for a platform tennis deck. Additionally, by bolting the legs of adjacent deck extrusions together with a spacer (in one example, nominal 1″ thick as drawn) the entire structure will become even more rigid. In fact, it would be possible to reduce the wall thickness of the deck extrusions while maintaining sufficient rigidity of the structure by increasing the number of connection points of the legs of adjacent deck extrusions.
The entire deck assembly is floating on springs (or appropriate flexible/resilient devices) mounted on an assembly that straddles supporting I-beams with a height-adjustable hanger mount for each spring on each side of the I-beam. Spring pairs are used to support the deck extrusions with a connection to a common top plate through a notched cross-tie channel. This assembly may be bolted or otherwise attached to the top flange of the I-beam. As illustrated in the drawings, a pinch mount using long bolts allow channels to clamp the spring assemblies to the I-beam, enabling easy repositioning of the assembly, as needed. Other resilient mounts can be used, such as rubber sheets or bushings, air cushions, gas pistons, arched elements, and the like, as would be known by one skilled in the art.
The springs may be retained by bolt-on plastic or polyurethane spring spools that capture the inside of the spring or other types of retainers, such as cups that capture the outside of the springs or clips that thread into the spring. Spring spools and springs are common on industrial vibratory mills, screeners, feeders, and packing tables.
The firmness of the playing deck may be controlled by the quantity of springs and the compression rating of the springs. This firmness can be altered by substituting springs with different compression ratings as well as by altering the number of springs used.
Referring now to the drawings,
As shown in
Referring again to
Referring to
The mounting assembly 404 includes springs 511 connected on a first end to the first spring capture assembly 505 and connected on a second end to the second spring capture assembly 508. The springs 511 may be retained by the bottom retention plates 517 and the top retention plates 530 that capture the outside of the springs 511. According to devices and methods herein, the springs 511 may be mounted in pairs up to 6 springs per mounting assembly 404. The mounting assembly 404 maintains spacing between the bottom 413 of the transverse member 410 and the top surface 407 of the I-beam 210, allowing relative motion between the deck 100 and the I-beam 210. In this way, the deck 100 is floating on resilient mounts on top of several supporting I-beams 210. The firmness of the playing deck 100 may be controlled by the quantity and the compression rating of the springs 511. This firmness can be altered by substituting springs with different compression ratings as well as by altering the number of springs used.
Referring to
The shape of the notches 612 may resemble a parallelogram having an open top in which the angled sides are tapered to create a shaped notch that is sized and configured to hold the receiving shoe 609 having the foot flange 315 therein. Using the deck connection assembly 606, the deck panels 201 may be attached to the transverse member 410 through a hole in the bottom face 318 of the foot flange 315 and the receiving shoe 609 using an appropriate fastener, such as nuts and bolts 621. The receiving shoes 609 are arranged perpendicular to the transverse member 410 and configured to receive the foot flanges 315 of the horizontally disposed deck panels 201. The bottom face 318 of the foot flange 315 rests on the bottom of the receiving shoe 609. The receiving shoe 609 may be installed in the notches 612 and the deck panels 201 attached to the transverse member 410 through the receiving shoe 609 using the nuts and bolts 621. In some embodiments, the receiving shoe 609 may be attached to the deck panel 201 around the foot flange 315 using a plurality of self-drilling sheet metal screws in preselected holes of the receiving shoe 609. For accuracy, the holes may be laser-formed in the receiving shoe 609 and/or the foot flange 315. In some cases, the deck connection assembly 606 may include a cross-tie plate 624 under the transverse member 410 when attaching the deck panels 201 to the transverse member 410.
The terminology used herein is for the purpose of describing particular structures and methods only and is not intended to be limiting of this disclosure. As used herein, the singular forms “a”, “an”, and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
In addition, terms such as “right”, “left”, “vertical”, “horizontal”, “top”, “bottom”, “upper”, “lower”, “under”, “below”, “underlying”, “over”, “overlying”, “parallel”, “perpendicular”, etc., used herein are understood to be relative locations as they are oriented and illustrated in the drawings (unless otherwise indicated). Thus, in one example, “horizontal” is approximately (e.g., within 15%) or somewhat parallel to the surface (e.g., earth surface or ground (ignoring slope), floor, etc.) upon which the structure sits, while “vertical” would be approximately (e.g., within 15%) perpendicular to horizontal. Further, the “bottom” and “top” of structures herein are different locations along the “vertical” direction, with the “bottom” being closer to the surface upon which the structure rests, and the “top” being distal to the surface upon which the structure rests. Also, top and bottom surfaces could lie in horizontal planes and be parallel to one another and be perpendicular to vertical surfaces that run between top and bottom surfaces. Terms such as “contacting”, “touching”, “on”, “in direct contact”, “abutting”, “directly adjacent to”, etc., mean that at least one element physically contacts another element (without other elements separating the described elements). The formation of a first feature “over” or “on” a second feature in the description may include embodiments in which the first and second features are formed in direct contact and may also include embodiments in which additional features may be formed interposing the first and second feature, such that the first and second features may not be in direct contact.
While particular values, relationships, materials, and steps have been set forth for purposes of describing concepts of the structures and methods herein, it will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the structures and methods as shown in the disclosure without departing from the spirit or scope of the basic concepts and operating principles of the concepts as broadly described. It should be recognized that, in the light of the above teachings, those skilled in the art could modify those specifics without departing from the concepts taught herein. Having now fully set forth certain structures and methods, and modifications of the concepts underlying them, various other structures and methods, as well as potential variations and modifications of the structures and methods shown and described herein will obviously occur to those skilled in the art upon becoming familiar with such underlying concept. It is intended to include all such modifications and alternatives insofar as they come within the scope of the appended claims or equivalents thereof. It should be understood, therefore, that the concepts disclosed might be practiced otherwise than as specifically set forth herein. Consequently, the present structures and methods are to be considered in all respects as illustrative and not restrictive.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The descriptions of the various structures and methods herein have been presented for purposes of illustration but are not intended to be exhaustive or limited to the structures and methods disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described structures and methods. The terminology used herein was chosen to best explain the principles of the structures and methods, the practical application or technical improvement over technologies found in the marketplace, or to enable others of ordinary skill in the art to understand the structures and methods disclosed herein.
This application claims the benefit under 35 U.S.C. § 120 as a Continuation-in-Part of U.S. patent application Ser. No. 16/516,306 filed Jul. 19, 2019, which claims priority to U.S. Provisional Application Ser. No. 62/703,981 filed Jul. 27, 2018, the complete disclosures of which are incorporated herein by reference, in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1900721 | Manske et al. | Mar 1933 | A |
3067843 | Rushtoh et al. | Dec 1962 | A |
3302361 | Oudheusden, Jr. et al. | Feb 1967 | A |
3383108 | Reilly, Jr. | May 1968 | A |
3904193 | Patterson | Sep 1975 | A |
3935687 | Vaughn et al. | Feb 1976 | A |
3951406 | Rock | Apr 1976 | A |
4146221 | Newquist et al. | Mar 1979 | A |
4198042 | Olson | Apr 1980 | A |
4648592 | Harinishi | Mar 1987 | A |
5277010 | Stephenson et al. | Jan 1994 | A |
5617689 | Beane | Apr 1997 | A |
6256958 | Matthews | Jul 2001 | B1 |
6324795 | Stiles et al. | Dec 2001 | B1 |
6488600 | Gordon | Dec 2002 | B1 |
6651398 | Gregori | Nov 2003 | B2 |
6682444 | Gordon | Jan 2004 | B2 |
6755001 | Eaton | Jun 2004 | B2 |
7849646 | Harinishi | Dec 2010 | B2 |
8661754 | Hsu et al. | Mar 2014 | B2 |
20110263343 | Weller | Oct 2011 | A1 |
Number | Date | Country |
---|---|---|
1 611 930 | Jan 2006 | EP |
8605228 | Sep 1986 | WO |
Entry |
---|
Leśniak et al., “Technical Transactions: Selection of a Sports Flooring Type,” Wybór Wariantu Wykonania Podłogi Sportowej, 2015, pp. 185-190. |
U.S. Appl. No. 16/516,306, EAS5000, Office Action Communication dated Mar. 27, 2020, pp. 1-7. |
U.S. Appl. No. 16/516,306, EAS5000, Notice of Allowance dated Jul. 10, 2020, pp. 1-5. |
Number | Date | Country | |
---|---|---|---|
20210047789 A1 | Feb 2021 | US |
Number | Date | Country | |
---|---|---|---|
62703981 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16516306 | Jul 2019 | US |
Child | 17086668 | US |