1. Field of the Invention
The present invention relates to a resilient device. More specifically, this invention relates to a device that has a working portion having a variable equivalent diameter, and an anchoring mechanism. The device is useful, e.g., for reducing or preventing urinary incontinence.
2. Description of the Prior Art
Stress urinary incontinence is a problem for many women. It is characterized by leakage of urine during a stressing event, such as a cough or a sneeze. Many devices have been designed to reduce or prevent stress urinary incontinence. U.S. Pat. No. 5,603,685 teaches inflatable devices and a means to provide a device that is small for insertion into the vagina and enlarges to a required shape and pressure to reduce or prevent urinary incontinence. U.S. Pat. No. 6,090,098 teaches tampon-like devices, each made with a combination of absorbing and/or non-absorbing fibrous materials. U.S. Pat. No. 6,645,137 teaches a coil that expands in the vagina. U.S. Pat. No. 5,036,867 teaches a compressible resilient pessary. U.S. Pat. No. 6,460,542 teaches a highly shaped rigid pessary. Many patents are drawn to stents that are sized and designed to keep arteries open.
Despite the teaching of the prior art, there is a continuing need for a device suitable for insertion into a vagina and useful for reducing or preventing urinary incontinence. In addition, a need exists to provide for safe and secure anchoring of disposable intravaginal devices.
These needs have been addressed by present invention. In one embodiment, an intravaginal device includes a working portion and an anchoring portion. The anchoring portion has at least one member extending beyond at least one end of the working portion to maintain the working portion in place during use.
In another embodiment, an intravaginal urinary incontinence device includes a stent having a working portion having opposed faces to provide support to an associated urinary system; and an anchoring portion to maintain the stent in place during use. The anchoring portion has at least one member extending beyond at least one end of the working portion.
Referring to
As used herein the specification and the claims, the term “wire form” and variants thereof relate to a structure formed of at least one wire or wire-like material that is manipulated and optionally secured (e.g., by welding) in a desired three-dimensional structure.
As used herein the specification and the claims, the term “shape memory material” and variants thereof relate to materials that can be shaped into an initial shape, which initial shape can be subsequently formed into a stable second shape. The material is capable of substantially reverting to its initial shape upon exposure to an appropriate event, including without limitation mechanical deformation and a change in temperature.
As used herein the specification and the claims, the term “stent” and variants thereof relate to a device used to support a bodily orifice, cavity, vessel, and the like. The stent is resilient, flexible, and collapsible with memory. The stent may be any suitable form, including, but not limited to, scaffolding, a slotted tube or a wire form.
Devices according to the present invention may be useful for treating or preventing urinary incontinence. For this application, the device is sized to fit comfortably in the vagina. All of the devices described below may have working portions with initial equivalent diameters of from about 20 to about 170 mm. Preferably, the working portion has a generally cylindrical working portion that may have an initial equivalent diameter ranging from about 20 to about 170 mm, preferably about 20 to about 45 mm, or more preferably about 30 mm; an insertion equivalent diameter ranging from about 5 to about 25 mm, preferably about 10 to about 20 mm, or more preferably about 18 mm; a use equivalent diameter ranging from about 20 to about 40 mm, preferably about 25 to about 30 mm, or more preferably about 25 mm; and a length ranging from about 20 to about 60 mm, preferably about 20 to about 30 mm, or more preferably about 25 mm. The anchoring portion extends beyond the working portion and may have an initial equivalent diameter ranging from about 20 to about 60 mm, preferably about 40 to about 60 mm, or more preferably about 50 mm; an insertion equivalent diameter ranging from about 10 to about 25 mm, preferably about 10 to about 20 mm, or more preferably about 18 mm; a use equivalent diameter ranging from about 20 to about 60 mm, preferably about 40 to about 60 mm, or more preferably about 50 mm; and a length ranging from about 10 to about 50 mm, preferably about 20 to about 40 mm, or more preferably about 30 mm.
For a basket stent (having a basket handle-shaped anchoring portion as shown in
The anchoring portion of the device has a length and width in the insertion state, the working state, and the removal state. The insertion state length may range from about 25 to about 40 mm, for example about 30 mm. The insertion state width may range from about 15 to about 20 mm, for example about 18 mm. The working state length at rest and during a cough may range from about 25 to about 40 mm, for example about 30 mm. The working state width at rest and during a cough may range from about 25 to about 35 mm, for example about 30 mm. The removal state length may range from about 30 to about 50 mm, for example about 40 mm. The removal state width may range from about 15 to about 20 mm, for example about 18 mm.
For a straight stent, the working portion of the device has a length and equivalent diameter in the insertion state, the working state, and the removal state. The insertion state length may range from about 25 to about 60 mm, for example about 45 mm. The insertion state equivalent diameter may range from about 5 to about 20 mm, for example about 18 mm. The working state length at rest and during a cough may range from about 25 to about 60 mm, for example about 45 mm. The working state equivalent diameter at rest may range from about 20 to about 30 mm, for example about 25 mm. The working state equivalent diameter during a cough may range from about 15 to about 25 mm, for example about 20 mm. The removal state length may range from about 25 to about 60 mm, for example about 45 mm. The removal state equivalent diameter may range from about 15 to about 20 mm, for example about 18 mm.
For a rabbit stent (having “rabbit ear”-shaped anchoring portion, as shown in
The anchoring portion of the device has a length and width in the insertion state, the working state, and the removal state. The insertion state length may range from about 20 to about 50 mm, for example about 30 mm. The insertion width may range from about 10 to about 20 mm, for example about 18 mm. The working state length at rest and during a cough may range from about 20 to about 50 mm, for example about 30 mm. The working state width at rest and during a cough may range from about 20 to about 60 mm, for example about 50 mm at the top and from about 10 to about 50 mm, for example about 25 mm at the bottom. The removal state length may range from about 20 to about 50 mm, for example about 30 mm. The removal state width may range from about 10 to about 20 mm, for example about 18 mm.
For a flower stent (shown in
The anchoring portion of the device has a length (LA) and width (WA) in the insertion state, the working state, and the removal state. The insertion state length may range from about 20 to about 50 mm, for example about 30 mm. The insertion width may range from about 10 to about 20 mm, for example about 18 mm. The working state length at rest and during a cough may range from about 20 to about 60 mm, for example about 30 mm. The working state width at rest and during a cough may range from about 20 to about 60 mm, for example about 30 mm at the top and from about 10 to about 50 mm, for example about 20 mm at the bottom. The removal state length may range from about 20 to about 60 mm, for example about 30 mm. The removal state width may range from about 10 to about 20 mm, for example about 18 mm.
Devices according to the present invention are stents. As used herein, a “stent” is a device used to support a bodily orifice, cavity, vessel, and the like. The stent is resilient, flexible, and collapsible with memory. The stent may be any suitable form, including, but not limited to, scaffolding, a slotted tube or a wire form.
Elements of the devices of the present invention may be made from any elastic or supereleastic material. Suitable materials include, but are not limited to metal alloys, for example a nickel-titanium (“NiTi”) alloy known in the art as Nitinol. As is known in the art, there are a variety of ways to process NiTi, including resistance heating and permanent deformation to create a shape set. Other materials (other alloys, superelastic alloys or other NiTi compositions) may be utilized to make devices according to the present invention.
Shape memory is the ability of a material to remember its original shape, either after mechanical deformation, which is a one-way effect, or by cooling and heating which is a two-way effect. This phenomenon is based on a structural phase transformation. The first materials to have these properties were shape memory metal alloys including NiTi (Nitinol), CuZnAl, and FeNiAl alloys. Examples of suitable alloys further include Algiloy, Stainless Steel, for example 304 stainless steel, and carbon spring steels. The structure phase transformation of these materials is known as martensitic transformation.
Shape memory polymers (SMPs) are light, high in shape memory recovery ability, easy to manipulate and process, and economical compared to shape memory alloys. These materials are also useful for devices according to the present invention. There are few ways to achieve the shape memory properties. SMPs are characterized as phase segregated linear block co-polymers (e.g., thermoplastic elastomers) having a hard segment and soft segment that form physical cross-links. The hard segment is typically crystalline with a defined melting point, and the soft segment is typically amorphous with a defined glass transition temperature. The transition temperature of the soft segment is substantially less than the transition temperature of the hard segment. Examples of these materials include polyurethanes; polyether amides; polyether ester; polyester urethanes; polyether urethanes; and polyurethane/urea. SMPs are also formed by covalently cross-linked irreversible formation of the permanent shape. Different parameters that can be tailored for these materials are mechanical properties of permanent and temporary shape, customized thermal transitions, and kinetics of shape memory effect. SMPs can be biostable and bioabsorbable. Biostable SMPs are generally polyurethanes, polyethers, polyacrylates, polyamides, polysiloxanes, and their copolymers. Bioabsorbable SMPs are relatively new and include thermoplastic and thermoset materials. Shape memory thermosets may include poly (caprolactone) dimethyacrylates; and shape memory thermoplastics may include combinations of different monomers to prepare polyester based copolymers.
When the SMP is heated above the melting point of the hard segment, the material can be shaped. This “original” shape can be memorized by cooling the SMP below the melting point of the hard segment. When the shaped SMP is cooled below the glass transition temperature of the soft segment while the shape is deformed, a new “temporary” shape is fixed. The original shape is recovered by heating the material above the glass transition temperature of the soft segment but below the melting point of the hard segment. The recovery of the original shape induced by an increase of temperature is called the thermal shape memory effect. Several physical properties of SMPs other than ability to memorize shape are significantly altered in response to external changes in temperature and stress, particularly at the glass transition of the soft segment. These properties include elastic modulus, hardness, and flexibility. The modulus of SMP can change by a factor of up to 200 when heated above the glass transition temperature of the soft segment. In order to prepare devices that will have sufficient stiffness, it is necessary to have thermal transitions such that the material will have high modulus at use temperature. For example, if a device is going to be used at body temperature, then the transition temperature may be higher than 37° C. (example 45-50° C.) so that upon cooling to 37° C. the modulus is high and thereby providing sufficient stiffness. It is also important to design the device such that it will compensate for lower physical properties compared to shape memory metal alloys. Some of the design features may include higher wall thickness; short connectors; or hinge points at appropriate locations. These materials can overcome some of the limitations with viscoelastic polymer properties such as creep and stress relaxation.
SMP can also be prepared by using TPEs prepared from hydrophilic polymers so that the phase transition can be also occur by physical changes due to moisture absorption. Examples of these TPEs are hydrophilic polymer ester amide (Pebax) and hydrophilic polyurethanes prepared by Elf Atochem and CardioTec International, respectively. Devices prepared from these materials will be soft and will be easier to remove after its use.
The shape memory materials may be formed of or at least enclosed within biocompatible materials, preferably materials that are approved for use in the human body. For example, medical grade silicone rubber may enclose a wireform device. This may be achieved through one or more tubular sheaths about the wire or as a coating prepared on the wire.
As shown in
The device preferably includes a withdrawal element such as a removal string. This may be crisscrossed between the struts of the device to create a “cinch sac” mechanism. Any string or cord known in the sanitary protection art may be useful for this purpose. As the strings are pulled during removal, the struts are gathered together to create a smaller diameter device during removal. Cinching the device at its base may make removal of the device more comfortable and easier as it makes the diameter of the device smaller and the shape conducive to remove easily.
The device may be contained within an applicator similar to those known for use in delivering tampons and suppositories. The applicator may be a push-type applicator or a retractable applicator. A collar may be added to control the depth of insertion.
The following examples are illustrative of devices according to the present invention. The claims should not be construed to be limited to the details thereof.
Prototype devices were modeled in shape and scale after existing, predicate vaginal pessary devices. There were two geometries presented for this device. The expanded stent device was approximately 35 mm in diameter and 55 mm long. The first of the proposed geometries was a simple S-shaped stent like a ring; the second resembled the form of a handled basket and was modeled in the form of the classic “ring” pessary. In its design the “basket” portion was approximately 25 mm high and the “handle” made up the balance of the overall length.
Both are assemblies of four known medical materials. The collapsed vaginal stents were enclosed in a commercial plastic tampon applicator. The working assemblies were made up of a nickel-titanium wire form (Nitinol), which was covered by a medical grade silicone rubber (silastic) tube. This covered wire form “stent” was placed in a heat-sealed bag made of the same standard non-woven polypropylene material used in tampon covers. This covered device was made to be easily removable by the addition of a tampon cotton string, as a cinch and removal pull.
The nickel-titanium wire used in these prototypes was the same alloy as used in vascular systems. Post-shape-setting processing of the metal does not effect corrosion and biocompatibility of the device. The silicone tubing was also a known medical grade material. The silastic tubing was Dow Q7-4750.
The general procedure was to shape an SE508 NiTi into the design on a form using one or multiple steps heating the fixture and form to about 500° C. for at least one minute for each step. Any excess wire was cut from the form. As is known in the art, the wire may be chemically etched to provide further biocompatibility. The wire was enclosed in a rubbery polymer coating such as silicone assuring to fasten the wire ends such that they may not puncture the surface.
Approximately 1 foot of straightened and etched SE508 wire, 0.0315″ diameter was obtained. The tool pictured in
The wire form component was passivated by methods known in the art to optimize biocompatibility. Some wire form components were etched or chemically processed to optimize biocompatibility. The parts were moved to a clean room and dipped in denatured alcohol before being placed on a clean table. All tools were cleaned with isopropyl alcohol as well as gloved hands before touching parts from denatured alcohol solution. Tubing was cleaned with Isopropyl alcohol by dripping through with a disposable pipette. The tube was dried by wicking onto a paper towel. The tube was filled with 2-4 inches of lubricant mineral oil from a syringe. Pressed fingers were run along the tube to spread the oil evenly along the inside. The tubing was slid over the wire carefully paying attention that the wire ends did not poke through the tubing. The tubing was pulled back to expose both wire ends. The ends were lined up so that the ear rests naturally. Forceps were used to hold the tubing back from the wire ends. Shrink tube was placed across the wire ends and heated to hold wire ends in place. The tubing was slid over the shrink tube section. Tubing ends were overlapped by at least ½ cm by pressing the ends together.
Approximately 1 foot of straightened and etched SE508 wire, 0.0315″ diameter was obtained. The tool pictured in
Rubber Band Methodology
The expansion pressure test was used to determine the outward pressure the device was able to exert as it expanded from its compressed insertion state to its deployed or use state in the body. Equilibrium of the expansion pressure and the internal resistance of the body determined the diameter of the device in place.
Sets of rubber bands in a range of sizes were needed. The bands utilized were the following sizes; orthodontic, #8, #10 and #12. Some sources of these rubber bands are Thomson Orthodontics of Prospect, Ky. and Office Depot of Westhampton, N.J. A Chatillon TCD 200 benchtop tensile tester with a Chatillon DFIS 10 Digital Force Gauge was used to determine the force vs extension relation of the rubber bands. A small hook to secure the rubber bands was attached to the load bearing extension of the force gauge and a second hook was secured to the base of the tester directly below the first hook. The rubber bands were looped around these hooks for testing.
Each set type of rubber bands had at least 3 repeats of the following procedure done to determine the force vs extension relation. A band was held between the hooks and the crosshead was adjusted so that there was no tension on the band but the band had no slack in it. The distance between the two hooks was then measured and recorded as the zero force distance. This distance was actually one half the resting length of the rubber band. The crosshead was moved in increments of 5 to 10 mm at a speed of 12.5 mm/minute to stretch the rubber band. At each point the force was recorded. Provided the bands did not break, data was gathered up to about 70 mm crosshead displacement. Smaller size bands did not allow this much stretch. Average force level at each extension was averaged and a force vs extension curve for each band was plotted and is shown in
Once the band force extension curves were obtained, the pressure vs expansion characteristics of the devices were determined. The operator chose a type of band to use. The operator compressed the device by hand and placed the rubber band around the device so that when the operator released the device to expand, it opened, the band stretched and the device and rubber band came to an equilibrium position. The band generally needed to be centered in the working section. For cylindrical working sections, the diameter of the band and device were measured and the perimeter was calculated as 3.14*diameter. This measured diameter is the equivalent diameter for a cylindrical stent. For rectangular designs, the perimeter of the band and the separation of the two faces were measured. For rectangular designs the separation of the two faces meant to reside adjacent to the anterior and posterior walls of the vagina are the equivalent diameter.
The perimeter value was divided by two and the force in the band was interpolated from the band force vs displacement extension curve (example
The operator repeated the device testing procedure with a range of Band sizes so that a pressure vs size data points was obtained across the range of interest, ˜20 to 40 mm. In addition to using multiple sizes, multiple bands of the same size were used together to generate data points. In this case the force or pressure was multiplied by the number of bands used. A resulting diameter vs pressure curve for a device is shown in
Linear Compressions Test Methodology:
The outward pressure the device exerts at various compression states (insertion to in-use to during stress) was measured using a simple linear scale (Mettler PK 4800 scale). The pressure the device exerted as well as the diameter of the device were measured and recorded.
The device is tested by placing the device between the scale and a custom-made arm that compresses the device at known, incremental distances, measured in mm. The device was measured first at its free state (i.e., for rabbit: 20 mm) and then slowly compressed in increments (i.e. 1 mm or 5 mm). The force that the device exerts on the scale at known compression increments was measured in grams. The pressure was calculated by converting the force measurement from grams to pounds-force. The pounds-force was then converted to PSI units by dividing the pound-force by the contact area of the device. The contact area of the device was defined as the working portion of the device. The PSI units were then converted into cm H2O pressure. The resulting device diameter (mm) versus pressure (cm H2O) was then graphed.
This application is a continuation of U.S. Ser. No. 11/456,376 filed Jul. 10, 2006, the complete disclosure of which is hereby incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1926518 | Findley | Sep 1933 | A |
3726277 | Hirschman | Apr 1973 | A |
4139006 | Corey | Feb 1979 | A |
4290420 | Manetta | Sep 1981 | A |
4669478 | Robertson | Jun 1987 | A |
4677967 | Zartman | Jul 1987 | A |
4733665 | Palmaz | Mar 1988 | A |
4739762 | Palmaz | Apr 1988 | A |
4776337 | Palmaz | Oct 1988 | A |
4856516 | Hillstead | Aug 1989 | A |
4875898 | Eakin | Oct 1989 | A |
4920986 | Biswas | May 1990 | A |
4986823 | Anderson | Jan 1991 | A |
5007894 | Enhorning | Apr 1991 | A |
5036867 | Biswas | Aug 1991 | A |
5041077 | Kulick | Aug 1991 | A |
5045079 | West | Sep 1991 | A |
5102417 | Palmaz | Apr 1992 | A |
5116365 | Hillstead | May 1992 | A |
5224494 | Enhorning | Jul 1993 | A |
5234456 | Silvestrini | Aug 1993 | A |
5306294 | Winston | Apr 1994 | A |
5366504 | Andersen | Nov 1994 | A |
5387206 | Valentine | Feb 1995 | A |
5425765 | Tiefenbrun | Jun 1995 | A |
5494029 | Lane | Feb 1996 | A |
5514176 | Bosley, Jr. | May 1996 | A |
5540713 | Schnepp-Pesch | Jul 1996 | A |
5545209 | Roberts | Aug 1996 | A |
5591199 | Porter | Jan 1997 | A |
5593442 | Klein | Jan 1997 | A |
5601593 | Freitag | Feb 1997 | A |
5603685 | Tutrone, Jr. | Feb 1997 | A |
5603698 | Roberts | Feb 1997 | A |
5607445 | Summers | Mar 1997 | A |
5611768 | Tutrone, Jr. | Mar 1997 | A |
5618256 | Reimer | Apr 1997 | A |
5618301 | Hauenstein | Apr 1997 | A |
5628787 | Mayer | May 1997 | A |
5628788 | Pinchuk | May 1997 | A |
5643312 | Fischell | Jul 1997 | A |
5645559 | Hachtman | Jul 1997 | A |
5674241 | Bley | Oct 1997 | A |
5690670 | Davidson | Nov 1997 | A |
5695517 | Marin | Dec 1997 | A |
5697971 | Fischell | Dec 1997 | A |
5716396 | Williams, Jr. | Feb 1998 | A |
5723003 | Winston | Mar 1998 | A |
5749918 | Hogendijk | May 1998 | A |
5776161 | Globerman | Jul 1998 | A |
5779729 | Severini | Jul 1998 | A |
5785640 | Kresch | Jul 1998 | A |
5788979 | Alt | Aug 1998 | A |
5795346 | Achter et al. | Aug 1998 | A |
5800338 | Kollerup | Sep 1998 | A |
5800519 | Sandock | Sep 1998 | A |
5800520 | Fogarty | Sep 1998 | A |
5813973 | Gloth | Sep 1998 | A |
5814063 | Freitag | Sep 1998 | A |
5817100 | Igaki | Oct 1998 | A |
5820918 | Ronan | Oct 1998 | A |
5827321 | Roubin | Oct 1998 | A |
5833707 | McIntyre | Nov 1998 | A |
5840081 | Andersen | Nov 1998 | A |
5843161 | Solovay | Dec 1998 | A |
5843176 | Weier | Dec 1998 | A |
5855600 | Alt | Jan 1999 | A |
5873906 | Lau | Feb 1999 | A |
5879370 | Fischell | Mar 1999 | A |
5879381 | Moriuchi | Mar 1999 | A |
5888201 | Stinson | Mar 1999 | A |
5891191 | Stinson | Apr 1999 | A |
5895406 | Gray | Apr 1999 | A |
5902332 | Schatz | May 1999 | A |
5911732 | Hojeibane | Jun 1999 | A |
5911752 | Dustrude | Jun 1999 | A |
5913897 | Corso, Jr. | Jun 1999 | A |
5922019 | Hankh | Jul 1999 | A |
5922020 | Klein | Jul 1999 | A |
5925353 | Mosseri | Jul 1999 | A |
5938682 | Hojeibane | Aug 1999 | A |
5948191 | Solovay | Sep 1999 | A |
5957949 | Leonhardt | Sep 1999 | A |
5976152 | Regan | Nov 1999 | A |
5980553 | Gray | Nov 1999 | A |
5988169 | Anderson | Nov 1999 | A |
5997467 | Connolly | Dec 1999 | A |
6013036 | Caillouette | Jan 2000 | A |
6019779 | Thorud | Feb 2000 | A |
6030375 | Anderson | Feb 2000 | A |
6035238 | Ingle et al. | Mar 2000 | A |
6048306 | Spielberg | Apr 2000 | A |
6053940 | Wijay | Apr 2000 | A |
6063113 | Kavteladze et al. | May 2000 | A |
6086604 | Fischell | Jul 2000 | A |
6090038 | Zunker | Jul 2000 | A |
6090098 | Zunker | Jul 2000 | A |
6106530 | Harada | Aug 2000 | A |
6110099 | Benderev | Aug 2000 | A |
6129755 | Mathis | Oct 2000 | A |
6142928 | Zunker | Nov 2000 | A |
6158435 | Dorsey | Dec 2000 | A |
6162243 | Gray | Dec 2000 | A |
6176872 | Miksza | Jan 2001 | B1 |
6183456 | Brown | Feb 2001 | B1 |
6189535 | Enhorning | Feb 2001 | B1 |
6190403 | Fischell | Feb 2001 | B1 |
6190406 | Duerig | Feb 2001 | B1 |
6197051 | Zhong | Mar 2001 | B1 |
6210429 | Vardi | Apr 2001 | B1 |
6241738 | Dereume | Jun 2001 | B1 |
6245103 | Stinson | Jun 2001 | B1 |
6251134 | Alt | Jun 2001 | B1 |
6254627 | Freidberg | Jul 2001 | B1 |
6254633 | Pinchuk | Jul 2001 | B1 |
6261305 | Marotta | Jul 2001 | B1 |
6270524 | Kim | Aug 2001 | B1 |
6273895 | Pinchuk | Aug 2001 | B1 |
6287315 | Wijeratne | Sep 2001 | B1 |
6299573 | Hull, Jr. et al. | Oct 2001 | B1 |
6312419 | Durel-Crain | Nov 2001 | B1 |
6319275 | Lashinski | Nov 2001 | B1 |
6325825 | Kula | Dec 2001 | B1 |
6342049 | Nichols | Jan 2002 | B1 |
6350248 | Knudson | Feb 2002 | B1 |
6375676 | Cox | Apr 2002 | B1 |
6415484 | Moser | Jul 2002 | B1 |
6418930 | Fowler | Jul 2002 | B1 |
6423091 | Hojeibane | Jul 2002 | B1 |
6436428 | Mahashabde | Aug 2002 | B1 |
6458072 | Zunker | Oct 2002 | B1 |
6460542 | James | Oct 2002 | B1 |
6462169 | Shalaby | Oct 2002 | B1 |
6470890 | Diokno | Oct 2002 | B1 |
6478726 | Zunker | Nov 2002 | B1 |
6478813 | Keith | Nov 2002 | B1 |
6488702 | Besselink | Dec 2002 | B1 |
6503190 | Ulmsten | Jan 2003 | B1 |
6530951 | Bates | Mar 2003 | B1 |
6537293 | Berryman | Mar 2003 | B1 |
6540775 | Fischell | Apr 2003 | B1 |
6547817 | Fischell | Apr 2003 | B1 |
6558370 | Moser | May 2003 | B2 |
6562064 | deBeer | May 2003 | B1 |
6562067 | Mathis | May 2003 | B2 |
6572643 | Gharibadeh | Jun 2003 | B1 |
6585755 | Jackson et al. | Jul 2003 | B2 |
6585773 | Xie | Jul 2003 | B1 |
6602281 | Klein | Aug 2003 | B1 |
6605111 | Bose | Aug 2003 | B2 |
6605294 | Sawhney | Aug 2003 | B2 |
6612977 | Staskin | Sep 2003 | B2 |
6645136 | Zunker | Nov 2003 | B1 |
6645137 | Ulmsten | Nov 2003 | B2 |
6652544 | Houser | Nov 2003 | B2 |
6666881 | Richter | Dec 2003 | B1 |
6669707 | Swanstrom | Dec 2003 | B1 |
6676594 | Zunker | Jan 2004 | B1 |
6676692 | Rabkin | Jan 2004 | B2 |
6676694 | Weiss | Jan 2004 | B1 |
6679831 | Zunker | Jan 2004 | B1 |
6695763 | Zunker | Feb 2004 | B2 |
6695876 | Marotta | Feb 2004 | B1 |
6699274 | Stinson | Mar 2004 | B2 |
6702846 | Mikus et al. | Mar 2004 | B2 |
6739340 | Jensen | May 2004 | B1 |
6764503 | Ishimaru | Jul 2004 | B1 |
6770025 | Zunker | Aug 2004 | B2 |
6786904 | Döscher | Sep 2004 | B2 |
6808485 | Zunker | Oct 2004 | B2 |
6881222 | White | Apr 2005 | B2 |
6997952 | Furukawa et al. | Feb 2006 | B2 |
7036511 | Nissenkorn | May 2006 | B2 |
7214219 | Intravartolo et al. | May 2007 | B2 |
7553273 | Ferguson et al. | Jun 2009 | B2 |
20010007081 | Caprio | Jul 2001 | A1 |
20010016726 | Dubrul | Aug 2001 | A1 |
20010053932 | Phelps | Dec 2001 | A1 |
20020032486 | Lazarovitz | Mar 2002 | A1 |
20020068975 | Teitelbaum | Jun 2002 | A1 |
20020082610 | Cioanta | Jun 2002 | A1 |
20020083949 | James | Jul 2002 | A1 |
20020087176 | Greenhalgh | Jul 2002 | A1 |
20020087186 | Shelso | Jul 2002 | A1 |
20020116046 | DiCaprio | Aug 2002 | A1 |
20020133183 | Lentz | Sep 2002 | A1 |
20020138134 | Kim | Sep 2002 | A1 |
20020156343 | Zunker | Oct 2002 | A1 |
20020165521 | Cioanta | Nov 2002 | A1 |
20020179093 | Adamkiewicz | Dec 2002 | A1 |
20020183711 | Moser | Dec 2002 | A1 |
20030015203 | Makower | Jan 2003 | A1 |
20030018377 | Berg | Jan 2003 | A1 |
20030040754 | Mitchell | Feb 2003 | A1 |
20030040771 | Hyodoh | Feb 2003 | A1 |
20030125603 | Zunker | Jul 2003 | A1 |
20030187494 | Loaldi | Oct 2003 | A1 |
20040049211 | Tremulis | Mar 2004 | A1 |
20040077924 | Zunker | Apr 2004 | A1 |
20040078013 | Zunker | Apr 2004 | A1 |
20040122285 | Zunker | Jun 2004 | A1 |
20040148010 | Rush | Jul 2004 | A1 |
20040158122 | Guerquin | Aug 2004 | A1 |
20040210211 | Devens | Oct 2004 | A1 |
20040230284 | Headley | Nov 2004 | A1 |
20040249238 | Farrell | Dec 2004 | A1 |
20040249433 | Freitag | Dec 2004 | A1 |
20040267280 | Nishide | Dec 2004 | A1 |
20050010285 | Lambrecht | Jan 2005 | A1 |
20050016545 | Nissenkorn | Jan 2005 | A1 |
20050085923 | Levine | Apr 2005 | A1 |
20050096673 | Stack | May 2005 | A1 |
20050096721 | Mangin | May 2005 | A1 |
20050096732 | Marotta | May 2005 | A1 |
20050125020 | Meade et al. | Jun 2005 | A1 |
20050250978 | Kammerer | Nov 2005 | A1 |
20050268573 | Yan | Dec 2005 | A1 |
20060100478 | Connors et al. | May 2006 | A1 |
20060161187 | Levine et al. | Jul 2006 | A1 |
20060178694 | Greenhalgh et al. | Aug 2006 | A1 |
20070203429 | Ziv | Aug 2007 | A1 |
20080009662 | Bartning et al. | Jan 2008 | A1 |
20080009663 | Bartning et al. | Jan 2008 | A1 |
20080009664 | Bartning et al. | Jan 2008 | A1 |
20080009666 | Bartning et al. | Jan 2008 | A1 |
20080009814 | Bartning et al. | Jan 2008 | A1 |
20080009931 | Bartning et al. | Jan 2008 | A1 |
20080033230 | Bartning et al. | Feb 2008 | A1 |
20080033231 | Bartning et al. | Feb 2008 | A1 |
20080281149 | Sinai et al. | Nov 2008 | A1 |
20090203959 | Ziv et al. | Aug 2009 | A1 |
20090266367 | Ziv et al. | Oct 2009 | A1 |
20100218359 | Bartning et al. | Sep 2010 | A1 |
20110077578 | Bartning et al. | Mar 2011 | A1 |
20110152604 | Hull, Jr. et al. | Jun 2011 | A1 |
20110152605 | Hull, Jr. et al. | Jun 2011 | A1 |
20120136199 | Hou et al. | May 2012 | A1 |
Number | Date | Country |
---|---|---|
684733 | Jul 1994 | AU |
0 264 258 | Apr 1988 | EP |
0 498 912 | Aug 1992 | EP |
0 363 421 | Sep 1992 | EP |
0 556 908 | Aug 1993 | EP |
0 625 890 | Nov 1994 | EP |
0 663 197 | Jul 1995 | EP |
0 700 669 | Mar 1996 | EP |
0 737 048 | Oct 1996 | EP |
0 955 024 | Nov 1999 | EP |
0 963 217 | Dec 2004 | EP |
2364645 | Feb 2002 | GB |
2150919 | Jun 2000 | RU |
WO 8810106 | Dec 1988 | WO |
WO 9413223 | Jun 1994 | WO |
WO 9505790 | Mar 1995 | WO |
WO 9610965 | Apr 1996 | WO |
WO 9734550 | Sep 1997 | WO |
WO 9834677 | Aug 1998 | WO |
WO 9842281 | Oct 1998 | WO |
WO 9922680 | May 1999 | WO |
WO 9959477 | Nov 1999 | WO |
WO 0003659 | Jan 2000 | WO |
WO 0067662 | Nov 2000 | WO |
WO 0167983 | Sep 2001 | WO |
WO 0170154 | Sep 2001 | WO |
WO 0226160 | Apr 2002 | WO |
WO 0228313 | Apr 2002 | WO |
WO 03047476 | Jun 2003 | WO |
WO 2004026196 | Apr 2004 | WO |
WO 2004103213 | Dec 2004 | WO |
WO 2005087153 | Sep 2005 | WO |
WO 2005087154 | Sep 2005 | WO |
WO 2006097935 | Sep 2006 | WO |
WO 2008010214 | Jan 2008 | WO |
WO 2008152628 | Dec 2008 | WO |
WO 2009044394 | Apr 2009 | WO |
WO 2009130702 | Oct 2009 | WO |
Entry |
---|
In re the U.S. Appl. No. 11/456,376 (2008/0009662A1) the restriction requirement dated Nov. 20, 2008. |
In re the U.S. Appl. No. 11/456,376 (2008/0009662A1) the non-final rejection dated Mar. 10, 2009. |
In re the U.S. Appl. No. 11/456,376 (2008/0009662A1) the final rejection dated Sep. 23, 2009. |
In re the U.S. Appl. No. 11/456,376 (2008/0009662A1) the non-final rejection dated Jan. 7, 2010. |
In re the U.S. Appl. No. 11/456,376 (2008/0009662A1) the final rejection dated Jul. 8, 2010. |
In re the U.S. Appl. No. 11/456,376 (2008/0009662A1) the advisory action dated Sep. 27, 2010. |
In re the U.S. Appl. No. 11/456,376 (2008/0009662A1) the non-final rejection dated Oct. 21, 2010. |
In re the U.S. Appl. No. 11/456,376 (2008/0009662A1) the final rejection dated Mar. 29, 2011. |
In re the U.S. Appl. No. 11/456,376 (2008/0009662A1) the non-final rejection dated Jul. 14, 2011. |
In re the U.S. Appl. No. 11/456,376 (2008/0009662A1) the final rejection dated Feb. 15, 2012. |
In re the U.S. Appl. No. 11/456,376 (2008/0009662A1) the non-final rejection dated May 24, 2012. |
In re the U.S. Appl. No. 11/456,376 (2008/0009662A1) the final office action dated Dec. 6, 2012. |
In re the U.S. Appl. No. 11/456,390 (2008/0009931A1) the non-final rejection dated Dec. 10, 2008. |
In re the U.S. Appl. No. 11/456,390 (2008/0009931A1) the final rejection dated May 13, 2009. |
In re the U.S. Appl. No. 11/456,390 (2008/0009931A1) the non-final rejection dated Sep. 24, 2009. |
In re the U.S. Appl. No. 11/456,390 (2008/0009931A1) the final rejection dated Jul. 13, 2010. |
In re the U.S. Appl. No. 11/456,402 (2008/0009814A1) the non-final rejection dated Jul. 11, 2007. |
In re the U.S. Appl. No. 11/456,402 (2008/0009814A1) the non-final rejection dated Apr. 22, 2008. |
In re the U.S. Appl. No. 11/456,402 (2008/0009814A1) the final rejection dated Jan. 7, 2009. |
In re the U.S. Appl. No. 11/456,402 (2008/0009814A1) the non-final rejection dated Jun. 5, 2009. |
In re the U.S. Appl. No. 11/456,402 (2008/0009814A1) the final rejection dated Dec. 4, 2009. |
In re the U.S. Appl. No. 11/456,402 (2008/0009814A1) the advisory action dated Mar. 2, 2010. |
In re the U.S. Appl. No. 11/456,402 (2008/0009814A1) the non-final rejection dated Oct. 15, 2010. |
In re the U.S. Appl. No. 11/456,402 (2008/0009814A1) the final rejection dated Mar. 30, 2011. |
In re the U.S. Appl. No. 11/456,402 (2008/0009814A1) the non-final rejection dated Aug. 18, 2011. |
In re the U.S. Appl. No. 11/456,402 (2008/0009814A1) the final rejection dated Apr. 4, 2012. |
In re the U.S. Appl. No. 11/456,424 (2008/0009663A1) the non-final rejection dated May 23, 2008. |
In re the U.S. Appl. No. 11/456,424 (2008/0009663A1) the final rejection dated Sep. 22, 2009. |
In re the U.S. Appl. No. 11/456,424 (2008/0009663A1) the non-final rejection dated Jan. 15, 2010. |
In re the U.S. Appl. No. 11/456,424 (2008/0009663A1) the final rejection dated Jul. 8, 2010. |
In re the U.S. Appl. No. 11/456,424 (2008/0009663A1) the advisory action dated Sep. 29, 2010. |
In re the U.S. Appl. No. 11/456,424 (2008/0009663A1) the non-final rejection dated Oct. 21, 2010. |
In re the U.S. Appl. No. 11/456,424 (2008/0009663A1) the final rejection dated Mar. 28, 2011. |
In re the U.S. Appl. No. 11/456,424 (2008/0009663A1) the non-final rejection dated Jul. 8, 2011. |
In re the U.S. Appl. No. 11/456,424 (2008/0009663A1) the Notice of Allowance dated Feb. 16, 2012. |
In re the U.S. Appl. No. 11/456,433 (2008/0009664A1 / Patent 7717892) the non-final rejection dated Aug. 31, 2007. |
In re the U.S. Appl. No. 11/456,433 (2008/0009664A1 / Patent 7717892) the notice of allowance dated Apr. 9, 2008. |
In re the U.S. Appl. No. 11/456,433 (2008/0009664A1 / Patent 7717892) the non-final rejection dated Aug. 20, 2008. |
In re the U.S. Appl. No. 11/456,433 (2008/0009664A1 / Patent 7717892) the final rejection dated May 6, 2009. |
In re the U.S. Appl. No. 11/456,433 (2008/0009664A1 / Patent 7717892) the notice of allowance dated Nov. 23, 2009. |
In re the U.S. Appl. No. 11/456,433 (2008/0009664A1 / Patent 7717892) the notice of allowance dated Mar. 25, 2010. |
In re the U.S. Appl. No. 11/456,442 (2008/0009666A1 / Patent 8047980) the non-final rejection dated May 28, 2008. |
In re the U.S. Appl. No. 11/456,442 (2008/0009666A1 / Patent 8047980) the final rejection dated Sep. 25, 2009. |
In re the U.S. Appl. No. 11/456,442 (2008/0009666A1 / Patent 8047980) the non-final rejection dated Jan. 13, 2010. |
In re the U.S. Appl. No. 11/456,442 (2008/0009666A1 / Patent 8047980) the final rejection dated Jul. 8, 2010. |
In re the U.S. Appl. No. 11/456,442 (2008/0009666A1 / Patent 8047980) the advisory action dated Sep. 27, 2010. |
In re the U.S. Appl. No. 11/456,442 (2008/0009666A1 / Patent 8047980) the non-final rejection dated Oct. 21, 2010. |
In re the U.S. Appl. No. 11/456,442 (2008/0009666A1 / Patent 8047980) the final rejection dated Mar. 29, 2011. |
In re the U.S. Appl. No. 11/456,442 (2008/0009666A1 / Patent 8047980) the notice of allowance dated Jul. 25, 2011. |
In re the U.S. Appl. No. 11/456,442 (2008/0009666A1 / Patent 8047980) the notice of allowance dated Sep. 19, 2011. |
In re the U.S. Appl. No. 11/776,178 (2008/0033230A1) the restriction requirement dated Aug. 2, 2011, 2011. |
In re the U.S. Appl. No. 11/776,178 (2008/0033230A1) the non-final rejection dated Oct. 3, 2011. |
In re the U.S. Appl. No. 11/776,178 (2008/0033230A1) the final rejection dated May 16, 2012. |
In re the U.S. Appl. No. 11/776,178 (2008/0033230A1) the non-final rejection dated Nov. 20, 2012. |
In re the U.S. Appl. No. 12/776,719 (US 2010/0218359A1)—the non-final rejection dated Jun. 29, 2012. |
In re the U.S. Appl. No. 12/776,719 (US 2010/0218359A1)—the final rejection dated Jan. 24, 2013. |
In re the U.S. Appl. No. 11/776,185 (2008/0033231A1 / Patent 7892163) the non-final rejection dated May 23, 2008. |
In re the U.S. Appl. No. 11/776,185 (2008/0033231A1 / Patent 7892163) the final rejection dated Jul. 6, 2009. |
In re the U.S. Appl. No. 11/776,185 (2008/0033231A1 / Patent 7892163) the non-final rejection dated Oct. 26, 2009. |
In re the U.S. Appl. No. 11/776,185 (2008/0033231A1 / Patent 7892163) the final rejection dated May 11, 2010. |
In re the U.S. Appl. No. 11/776,185 (2008/0033231A1 / Patent 7892163) the notice of allowance dated Aug. 25, 2010. |
In re the U.S. Appl. No. 11/776,185 (2008/0033231A1 / Patent 7892163) the notice of allowance dated Jan. 10, 2011. |
In re the U.S. Appl. No. 12/959,582 (US 2011/0077578A1)—no office actions received yet. |
Bachmann, et al., “External Occlusive Devices for Management of Female Urinary Incontinence”, Journal of Women's Health, vol. 11, No. 9, 2002, publisher: Mary Ann Liebert, Inc., pp. 793-800. |
In re the U.S. Appl. No. 11/456,376 the non-final office action dated Mar. 11, 2013. |
In re the U.S. Appl. No. 13/771,648 the non-final office action dated Apr. 24, 2013. |
In the U.S. Appl. No. 12/959,582 the non-final office action dated May 2, 2013. |
In the U.S. Appl. No. 11/776,178 the final office action dated Jun. 10, 2013. |
In re the U.S. Appl. No. 12/776,719 the Notice of Allowance dated Aug. 29, 2013. |
In re the U.S. Appl. No. 11/456,376 the Notice of Allowance dated Sep. 13, 2013. |
In re the U.S. Appl. No. 13/771,648 the final office action dated Oct. 7, 2013. |
In re the U.S. Appl. No. 12/776,719 the Notice of Allowance dated Nov. 14, 2013. |
In re the U.S. Appl. No. 11/456,376 the Notice of Allowance dated Nov. 20, 2013. |
In re the U.S. Appl. No. 12/959,582 the Non-final Rejection dated Dec. 2, 2013. |
In re the U.S. Appl. No. 13/771,648 the Notice of Allowance dated Dec. 16, 2013. |
In re the U.S. Appl. No. 11/776,178 the Non-final Rejection dated Jan. 15, 2014. |
In re the U.S. Appl. No. 13/771,648 the non-final rejection dated Feb. 6, 2014. |
In re the U.S. Appl. No. 11/456,390 the non-final rejection dated Mar. 14, 2014. |
In re the U.S. Appl. No. 11/456,402 the non-final rejection dated Apr. 23, 2014. |
Braley, S., “The Silicones as Subdermal Engineering Materials”, Annals of the New York Academy of Sciences 146, Materials in Biochemical Engineering, pp. 148-157 (Jan. 1968). |
In re the U.S. Appl. No. 12/959,582 the final office action dated Jun. 20, 2014. |
In re the U.S. Appl. No. 11/456,390 the final office action dated Jul. 2, 2014. |
In re the U.S. Appl. No. 11/776,178 the final office action dated Jul. 22, 2014. |
In re the U.S. Appl. No. 12/959,582 the non-final office action dated Oct. 6, 2014. |
In re the U.S. Appl. No. 11/776,178 the non-final office action dated Oct. 24, 2014. |
In re the U.S. Appl. No. 11/456,402 the final office action dated Oct. 31, 2014. |
Number | Date | Country | |
---|---|---|---|
20130165742 A1 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11456376 | Jul 2006 | US |
Child | 13756699 | US |