Formation degradation, such as asphalt milling, mining, or excavating, may result in wear on attack tools. Consequently, many efforts have been made to efficiently remove and replace these tools.
U.S. Pat. No. 6,585,326 to Sollami, which is herein incorporated by reference for all that it contains, discloses a bit holder and a mating bit block having a bit block bore with a slight taper. The bit holder has a tapered shank that includes a second larger diameter tapered distal segment that combines with an axially oriented slot through the side wall of the bit holder shank to allow a substantially larger interference fit between the distal tapered shank segment and the bit block bore than previously known. When inserting the bit holder in the bit block bore, the distal first tapered segment resiliently collapses to allow insertion of that segment into the bit block bore. A second shank tapered portion axially inwardly of the first distal tapered portion. The dual tapered shank allows the insertion of the bit holder in the bit block with an interference fit that provides a secure mounting of the bit holder in the bit block.
U.S. Pat. No. 3,751,115 to Proctor, which is herein incorporated by reference for all that it contains, discloses a combination of a shanked tool and a holder therefore. The holder is formed with a socket for receiving the tool shank and with a resilient latch biased in a direction transverse to the operating direction for engaging in a recess in the side of the tool shank.
U.S. Pat. No. 3,468,553 to Ashby et al., which is herein incorporated by reference for all that it contains, discloses a tool retaining device having a metal locking pin bonded in a groove of a resilient backing member. One end of the backing member is formed with an integral end sealing cap and the other end has a projecting spigot onto which a further end sealing cap is fitted when the device is fitted in a tool holder. In the fitted posit ion, the two sealing caps respectively seal the ends of the device and thereby prevent the ingress of foreign matter.
U.S. Pat. No. 3,865,437 to Crosby, which is herein incorporated by reference for all that it contains, discloses a mining tool in which a pick style bit is rotatably mounted in a bore in a support member and is retained therein by retaining means integrally formed on the bit. The retaining means advantageously takes the form of at least one radial projection on the rear end of the bit shank with the bit shank being slotted to impart radial resilience thereto so the bit can be assembled with the support member and readily disassembled therefrom while being retained therein during work operations. The support member may comprise a support block adapted for being fixed to a driver with a sleeve rotatable in a bore in the block and in turn, rotatably receiving the bit. The sleeve may be slotted axially from the rear end so as to have lateral resilience and be formed with one or more radial projections or protrusions at the rear end so that the sleeve, also, is releasably retained in the block by retaining means integral therewith.
Further examples of degradation tools from the prior art are disclosed in U.S. Pat. No. 2,989,295 to Prox Jr., U.S. Pat. No. 6,397,652 B1 to Sollami, and U.S. Pat. No. 6,685,273 B1 to Sollami, which are all herein incorporated by reference for all they contain.
In one aspect of the invention, a pick assembly comprises a pick shank press fitted within a bore of a pick holder. The pick comprises a pick head opposite the shank. The shank also comprises at least one longitudinal slot extending towards the pick head along the shank from a distal end of the shank. The slot allows the shank to resiliently collapse upon insertion into the bore while still allowing the shank to maintain a press fit while within the bore.
The shank may comprise a tapered portion proximate the pick head. The shank may comprise a reduced outer diameter portion disposed intermediate the tapered portion and the distal end. The slot may extend to a second end of the tapered portion from the distal end of the shank. The tapered portion may comprise a first end attached to the pick head and the second end connected to the reduced diameter portion of the shank. At least one slot may comprise a tapered geometry. The shank may comprise a bore extending form the distal end to an interface of a bolster and the shank. The bore proximate the interface may comprise a smaller inner diameter than the region of the bore proximate the slot.
A first wall thickness of the bore proximate the tapered portion of the shank may be at least twice as thick as a second wall thickness of the portion of the shank proximate the slot. The bore may have at least one recess formed on an inner diameter of the shank. The pick may have a plurality of slots, at least one of the slots comprising a different width. At least one slot may be forged into the shank. At least one slot may be arranged spirally with respect to the central axis of the shank. The slot may collapse upon insertion into a bore of the holder by one to five percent of the diameter of the shank.
In another aspect of the present invention, at least some portion of the shank may comprise threads. At least some portion of the bore of the pick holder may comprise threads spaced within the bore to threadably connect with the threads of the shank. The slot may collapse upon insertion into a bore of a holder by one to five percent of the diameter of the shank.
In yet another aspect of the invention, a carbide bolster supports a diamond enhanced tip. The tip is bonded to the bolster at a forward end of the bolster and a centralized cavity is formed on a rearward end of the bolster. The rearward end of the bolster is also bonded to a steel shank at a non-planar interface. At least one void is in the interface.
The non-planar interface may be tapered and/or comprise a step. In embodiments with steps, the void may be formed proximate the step.
The void may be located at the center of the interface and a portion of the void may be formed in both the steel shank and the carbide bolster. The portion of the void formed in the steel shank may run through the shank along the shank's central axis to an opening in a rearward end of the shank.
The void may be an annular groove formed in the forward end of the steel shank. The void may also be formed in the rearward end of the carbide bolster. In some embodiments, a first void may be formed at the center of the interface and at least a second void, in the form of an annular groove, may be formed distally to the first void.
The interface may comprise at least one protrusion that controls the thickness of a braze material disposed therein. A bonding material disposed at the interface may be thicker towards a periphery of the interface. The bonding material may comprise 30 to 60 percent palladium.
a is a close-up view of a cross-sectional diagram of an embodiment of a pick assembly.
b is a close-up view of cross-sectional diagram of an embodiment of a pick assembly.
c is a close-up view of cross-sectional diagram of an embodiment of a pick assembly.
d is a close-up view of cross-sectional diagram of an embodiment of a pick assembly.
a is an orthogonal diagram of an embodiment of a pick shank.
b is an orthogonal diagram of another embodiment of a pick shank.
c is an orthogonal diagram of another embodiment of a pick shank.
d is an orthogonal diagram of another embodiment of a pick shank.
e is an orthogonal diagram of another embodiment of a pick shank.
Referring to
The pick head 104 includes an impact tip 114 attached to a bolster 201. The impact tip 114 may be formed of a super hard material bonded to a carbide substrate at a non-planar interface. The super hard material may include diamond, polycrystalline diamond with a binder concentration of 1 to 40 weight percent, cubic boron nitride, silicon bonded diamond, layered diamond, infiltrated diamond, thermally stable diamond, natural diamond, vapor deposited diamond, physically deposited diamond, monolithic diamond, polished diamond, course diamond, fine diamond, nonmetal catalyzed diamond, cemented metal carbide, chromium, titanium, aluminum, and tungsten.
The shank 102 may have a cylindrical geometry. The pick assembly 101 may be manually rotated by removing the pick shank 102 from the holder and reinserting it in the desired orientation. In some embodiments, the pick assembly 101 is rotationally fixed within the holder's bore.
The present invention may allow quick replacement the pick assembly 101. The shank 102 may be press fitted inside a pick holder with an air hammer or similar tools. The distal end 120 may reside within the holder's bore after insertion and during operation. The distal end 120 may have enough lateral spring force to overcome the centrifugal forces of the drum's rotation without requiring any interlocking features.
a illustrates a close-up view of a non-planar interface 205A with a void 650A or interruption formed therein. The void 650A or interruption may provide stress relief after a bonding process. Carbide and steel thermally expand and shrink at different rates during bonding processes resulting in residual stress at the interface 205A. The void 650A reduces stress. In some embodiments, the void 650A will also provide a space 750 for gases let off during the bonding process as well as extra bonding material.
In
In the embodiment of
As shown in
a-e illustrate different cross sections of shanks proximate a distal end.
Embodiments of a pick assembly may be used in many different applications. Pick assembly 101Q may be a pick in an asphalt milling machine 1400, as in the embodiment of
A pick assembly 101R may be an insert in a drill bit, as in the embodiments of
Crushing or degradation machines may also incorporate the present invention. The crushing or degradation machines may be used for size reduction in materials such as rocks, grain, trash, natural resources, chalk, wood, tires, metal, cars, tables, couches, coal, minerals, and chemicals.
As shown in
Whereas the present invention has been described in particular relation to the drawings attached hereto, it should be understood that other and further modifications apart from those shown or suggested herein, may be made within the scope and spirit of the present invention.
This application is a continuation in part of U.S. patent application Ser. No. 11/962,497 filed on Dec. 21, 2007. This application is also a continuation-in-part of U.S. patent application Ser. No. 12/177,556 filed on Jul. 22, 2008 and which is now U.S. Pat. No. 7,635,168 issued on Dec. 22, 2009, which is a continuation-in-part of U.S. patent application Ser. No. 12/135,595 filed on Jun. 9, 2008 and which is now U.S. Pat. No. 7,946,656 issued on May 24, 2011, which is a continuation-in-part of U.S. patent application Ser. No. 12/112,743 filed on Apr. 30, 2008, now U.S. Pat. No. 8,029,068, which is a continuation-in-part of U.S. patent application Ser. No. 12/051,738 filed on Mar. 19, 2008 and is now U.S. Pat. No. 7,669,674 issued on Mar. 2, 2010, which is a continuation-in-part of U.S. patent application Ser. No. 12/051,689 filed on Mar. 19, 2008 and now U.S. Pat. No. 7,963,617 issued on Jun. 21, 2011, which is a continuation of U.S. patent application Ser. No. 12/051,586 filed on Mar. 19, 2008 now U.S. Pat. No. 8,007,051, which is a continuation-in-part of U.S. patent application Ser. No. 12/021,051 filed on Jan. 28, 2008, which is a continuation-in-part of U.S. patent application Ser. No. 12/021,019 filed on Jan. 28, 2008, which is a continuation-in-part of U.S. patent application Ser. No. 11/971,965 filed on Jan. 10, 2008 and which is now U.S. Pat. No. 7,648,210 issued on Jan. 19, 2010, which is a continuation of U.S. patent application Ser. No. 11/947,644 filed on Nov. 29, 2007, now U.S. Pat. No. 8,007,051, which is a continuation-in-part of U.S. patent application Ser. No. 11/844,586 filed on Aug. 24, 2007 and which is now U.S. Pat. No. 7,600,823 issued on Oct. 13, 2009 which is a continuation-in-part of U.S. patent application Ser. No. 11/829,761 filed on Jul. 27, 2007 and which is now U.S. Pat. No. 7,722,127 issued on May 25, 2010, which is a continuation-in-part of U.S. patent application Ser. No. 11/773,271 filed on Jul. 3, 2007, now U.S. Pat. No. 7,997,661, which is a continuation-in-part of U.S. patent application Ser. No. 11/766,903 filed on Jun. 22, 2007, which is a continuation of U.S. patent application Ser. No. 11/766,865 filed on Jun. 22, 2007, which is a continuation-in-part of U.S. patent application Ser. No. 11/742,304 filed on Apr. 30, 2007 and which is now U.S. Pat. No. 7,475,948 issued on Jan. 13, 2009, which is a continuation of U.S. patent application Ser. No. 11/742,261 filed on Apr. 30, 2007 and which is now U.S. Pat. No. 7,469,971 issued on Dec. 30, 2008, which is a continuation-in-part of U.S. patent application Ser. No. 11/464,008 filed on Aug. 11, 2006 and now U.S. Pat. No. 7,338,135 issued on Mar. 4, 2008, which is a continuation-in-part of U.S. patent application Ser. No. 11/463,998 filed on Aug. 11, 2006 and which is now U.S. Pat. No. 7,384,105 issued on Jun. 10, 2008, which is a continuation-in-part of U.S. patent application Ser. No. 11/463,990 filed on Aug. 11, 2006 and which is now U.S. Pat. No. 7,320,505 issued on Jan. 22, 2008, which is a continuation-in-part of U.S. patent application Ser. No. 11/463,975 filed on Aug. 11, 2006 and which is now U.S. Pat. No. 7,445,294 issued on Nov. 4, 2008, which is a continuation-in-part of U.S. patent application Ser. No. 11/463,962 filed on Aug. 11, 2006 and which is now U.S. Pat. No. 7,413,256 issued on Aug. 19, 2008. The present application is also a continuation-in-part of U.S. patent application Ser. No. 11/695,672 filed on Apr. 3, 2007 and which is now U.S. Pat. No. 7,396,086 issued on Jul. 8, 2008, which is a continuation-in-part of U.S. patent application Ser. No. 11/686,831 filed on Mar. 15, 2007 and which is now U.S. Pat. No. 7,568,770 issued on Aug. 4, 2009. All of these applications are herein incorporated by reference for all that they contain.
Number | Name | Date | Kind |
---|---|---|---|
2004315 | Fean | Jun 1935 | A |
2124438 | Struk et al. | Jul 1938 | A |
3254392 | Novkov | Jun 1966 | A |
3336081 | Ericsson | Aug 1967 | A |
3342532 | Krekeler | Sep 1967 | A |
3746396 | Radd | Jul 1973 | A |
3801158 | Radd et al. | Apr 1974 | A |
3807804 | Kniff | Apr 1974 | A |
3830321 | McKenry et al. | Aug 1974 | A |
3865437 | Crosby | Feb 1975 | A |
3932952 | Helton | Jan 1976 | A |
3942838 | Bailey et al. | Mar 1976 | A |
3945681 | White | Mar 1976 | A |
4005914 | Newman | Feb 1977 | A |
4006936 | Crabiel | Feb 1977 | A |
4084856 | Emmerich et al. | Apr 1978 | A |
4098362 | Bonnice | Jul 1978 | A |
4109737 | Bovenkerk | Aug 1978 | A |
4156329 | Daniels et al. | May 1979 | A |
4199035 | Thompson | Apr 1980 | A |
4201421 | Besten | May 1980 | A |
4251109 | Roepke | Feb 1981 | A |
4277106 | Sahley | Jul 1981 | A |
4439250 | Acharya et al. | Mar 1984 | A |
4465221 | Schmidt | Aug 1984 | A |
4484644 | Cook et al. | Nov 1984 | A |
4489986 | Dziak | Dec 1984 | A |
4669786 | Morgan et al. | Jun 1987 | A |
4678237 | Collin | Jul 1987 | A |
4682987 | Brady et al. | Jul 1987 | A |
4688856 | Elfgen | Aug 1987 | A |
4725098 | Beach | Feb 1988 | A |
4729603 | Elfgen | Mar 1988 | A |
4765686 | Adams | Aug 1988 | A |
4765687 | Parrott | Aug 1988 | A |
4776862 | Wiand | Oct 1988 | A |
4880154 | Tank | Nov 1989 | A |
4932723 | Mills | Jun 1990 | A |
4940288 | Stiffler et al. | Jul 1990 | A |
4944559 | Sionnet et al. | Jul 1990 | A |
4951762 | Lundell | Aug 1990 | A |
4956238 | Griffin | Sep 1990 | A |
5011515 | Frushour | Apr 1991 | A |
5112165 | Hedlund et al. | May 1992 | A |
5119714 | Scott et al. | Jun 1992 | A |
5141289 | Stiffler | Aug 1992 | A |
5154245 | Waldenstrom | Oct 1992 | A |
5186892 | Pope | Feb 1993 | A |
5251964 | Ojanen | Oct 1993 | A |
5261499 | Grubb | Nov 1993 | A |
5332348 | Lemelson | Jul 1994 | A |
5417475 | Graham et al. | May 1995 | A |
5447208 | Lund | Sep 1995 | A |
5535839 | Brady | Jul 1996 | A |
5542993 | Rabinkin | Aug 1996 | A |
5653300 | Lund | Aug 1997 | A |
5738698 | Kapoor et al. | Apr 1998 | A |
5823632 | Burkett | Oct 1998 | A |
5837071 | Andersson et al. | Nov 1998 | A |
5845547 | Sollami | Dec 1998 | A |
5875862 | Jurewicz | Mar 1999 | A |
5890552 | Scott et al. | Apr 1999 | A |
5934542 | Nakamura et al. | Aug 1999 | A |
5935718 | Demo et al. | Aug 1999 | A |
5944129 | Jensen | Aug 1999 | A |
5967250 | Lund | Oct 1999 | A |
5992405 | Sollami | Nov 1999 | A |
6006846 | Tibbitts et al. | Dec 1999 | A |
6019434 | Emmerich | Feb 2000 | A |
6044920 | Massa et al. | Apr 2000 | A |
6051079 | Andersson et al. | Apr 2000 | A |
6056911 | Griffin | May 2000 | A |
6059373 | Wright et al. | May 2000 | A |
6065552 | Scott et al. | May 2000 | A |
6099081 | Warren et al. | Aug 2000 | A |
6102486 | Briese | Aug 2000 | A |
6113195 | Mercier et al. | Sep 2000 | A |
6170917 | Heinrich et al. | Jan 2001 | B1 |
6193770 | Sung | Feb 2001 | B1 |
6196636 | Mills | Mar 2001 | B1 |
6196910 | Johnson | Mar 2001 | B1 |
6199956 | Kammerer | Mar 2001 | B1 |
6216805 | Lays et al. | Apr 2001 | B1 |
6270165 | Peay | Aug 2001 | B1 |
6331035 | Montgomery, Jr. | Dec 2001 | B1 |
6341823 | Sollami | Jan 2002 | B1 |
6354771 | Bauschulte et al. | Mar 2002 | B1 |
6364420 | Sollami | Apr 2002 | B1 |
6371567 | Sollami | Apr 2002 | B1 |
6375272 | Ojanen | Apr 2002 | B1 |
6419278 | Cunningham | Jul 2002 | B1 |
6478383 | Ojanen et al. | Nov 2002 | B1 |
6499547 | Scott et al. | Dec 2002 | B2 |
6517902 | Drake et al. | Feb 2003 | B2 |
6585326 | Sollami | Jul 2003 | B2 |
6672406 | Beuershausen | Jan 2004 | B2 |
6685273 | Sollami | Feb 2004 | B1 |
6692083 | Latham | Feb 2004 | B2 |
6709065 | Peay et al. | Mar 2004 | B2 |
6719074 | Tsuda et al. | Apr 2004 | B2 |
6733087 | Hall et al. | May 2004 | B2 |
6739327 | Sollami | May 2004 | B2 |
6758530 | Sollami | Jul 2004 | B2 |
6786557 | Montgomery, Jr. | Sep 2004 | B2 |
6824225 | Stiffler | Nov 2004 | B2 |
6846045 | Sollami | Jan 2005 | B2 |
6851758 | Beach | Feb 2005 | B2 |
6854810 | Montgomery, Jr. | Feb 2005 | B2 |
6861137 | Griffin et al. | Mar 2005 | B2 |
6889890 | Yamazaki et al. | May 2005 | B2 |
6938961 | Broom | Sep 2005 | B2 |
6966611 | Sollami | Nov 2005 | B1 |
6994404 | Sollami | Feb 2006 | B1 |
7204560 | Mercier et al. | Apr 2007 | B2 |
7234782 | Stehney | Jun 2007 | B2 |
7350601 | Belnap et al. | Apr 2008 | B2 |
20020175555 | Mercier | Nov 2002 | A1 |
20030015907 | Sollami | Jan 2003 | A1 |
20030052530 | Sollami | Mar 2003 | A1 |
20030110667 | Adachi | Jun 2003 | A1 |
20030141350 | Noro et al. | Jul 2003 | A1 |
20030209366 | McAlvain | Nov 2003 | A1 |
20030213354 | Frers | Nov 2003 | A1 |
20030234280 | Cadden et al. | Dec 2003 | A1 |
20040026983 | McAlvain | Feb 2004 | A1 |
20040065484 | McAlvain | Apr 2004 | A1 |
20050035649 | Mercier | Feb 2005 | A1 |
20050159840 | Lin et al. | Jul 2005 | A1 |
20050173966 | Mouthaan | Aug 2005 | A1 |
20060086540 | Griffin | Apr 2006 | A1 |
20060237236 | Sreshta et al. | Oct 2006 | A1 |
20070013224 | Stehney | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
3 307 910 | Sep 1984 | DE |
3 500 261 | Jul 1986 | DE |
3 818 213 | Nov 1989 | DE |
4 039 217 | Jun 1992 | DE |
19 821 147 | Nov 1999 | DE |
10 163 717 | May 2003 | DE |
0 295 151 | Jun 1988 | EP |
0 412 287 | Feb 1991 | EP |
2 004 315 | Mar 1979 | GB |
2 037 223 | Jul 1980 | GB |
5-280273 | Oct 1993 | JP |
Number | Date | Country | |
---|---|---|---|
20090273225 A1 | Nov 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12051586 | Mar 2008 | US |
Child | 12051689 | US | |
Parent | 11947644 | Nov 2007 | US |
Child | 11971965 | US | |
Parent | 11766865 | Jun 2007 | US |
Child | 11766903 | US | |
Parent | 11742261 | Apr 2007 | US |
Child | 11742304 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11962497 | Dec 2007 | US |
Child | 12491848 | US | |
Parent | 12177556 | Jul 2008 | US |
Child | 11962497 | US | |
Parent | 12135595 | Jun 2008 | US |
Child | 12177556 | US | |
Parent | 12112743 | Apr 2008 | US |
Child | 12135595 | US | |
Parent | 12051738 | Mar 2008 | US |
Child | 12112743 | US | |
Parent | 12051689 | Mar 2008 | US |
Child | 12051738 | US | |
Parent | 12021051 | Jan 2008 | US |
Child | 12051586 | US | |
Parent | 12021019 | Jan 2008 | US |
Child | 12021051 | US | |
Parent | 11971965 | Jan 2008 | US |
Child | 12021019 | US | |
Parent | 11844586 | Aug 2007 | US |
Child | 11947644 | US | |
Parent | 11829761 | Jul 2007 | US |
Child | 11844586 | US | |
Parent | 11773271 | Jul 2007 | US |
Child | 11829761 | US | |
Parent | 11766903 | Jun 2007 | US |
Child | 11773271 | US | |
Parent | 11742304 | Apr 2007 | US |
Child | 11766865 | US | |
Parent | 11464008 | Aug 2006 | US |
Child | 11742261 | US | |
Parent | 11463998 | Aug 2006 | US |
Child | 11464008 | US | |
Parent | 11463990 | Aug 2006 | US |
Child | 11463998 | US | |
Parent | 11463975 | Aug 2006 | US |
Child | 11463990 | US | |
Parent | 11463962 | Aug 2006 | US |
Child | 11463975 | US | |
Parent | 12491848 | US | |
Child | 11463975 | US | |
Parent | 11695672 | Apr 2007 | US |
Child | 12491848 | US | |
Parent | 11686831 | Mar 2007 | US |
Child | 11695672 | US |