Resilient protection sleeve for balloon catheter

Information

  • Patent Application
  • 20080009799
  • Publication Number
    20080009799
  • Date Filed
    June 30, 2006
    18 years ago
  • Date Published
    January 10, 2008
    17 years ago
Abstract
A sleeve may be used on a balloon catheter for several purposes, including protecting, forming and shaping the balloon, and also to reduce the balloon profile. A resilient protection sleeve may have a generally tubular structure, with one or more wings extending radially outward that act as resilient clamps. The tubular portion(s) extending between the wings may have an arcuate cylindrical shape, or any other tubular shape. The wings may also act as handles, to facilitate removal of the sleeve from the balloon catheter.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of an example of a resilient protection sleeve according to the principles of the present invention;



FIG. 2 is an elevation view of the resilient protection sleeve of FIG. 1;



FIG. 3 is a perspective view of a resilient protection sleeve on a medical device system having a rapid-exchange arrangement, and a guidewire;



FIG. 4 is a perspective view of a resilient protection sleeve on a medical device system having an over-the-wire arrangement, and a guidewire;



FIG. 5 is a transverse cross-sectional view of a balloon catheter, in which the balloon has been pleated and wrapped around a portion of the catheter shaft;



FIG. 6 is a transverse cross-sectional view of a balloon catheter stent delivery system, in which a stent has been crimped around a pleated balloon;



FIG. 7 is a transverse cross-sectional view of the balloon catheter of FIG. 5, with a resilient protection sleeve; and



FIG. 8 is a transverse cross-sectional view of the balloon catheter stent delivery system of FIG. 6, with a resilient protection sleeve.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following description of the preferred embodiments of the present invention is merely illustrative in nature, and as such it does not limit in any way the present invention, its application, or uses. Numerous modifications may be made by those skilled in the art without departing from the true spirit and scope of the invention.


A sleeve may be used on a balloon catheter for several purposes, including protecting, forming and shaping the balloon, and also to reduce the balloon profile.


A resilient protection sleeve has a generally tubular structure, with one or more tubular portions extending circumferentially between one or more wings that extend radially outward. The wings act as resilient clamps, to compress the tubular portions around a balloon of a catheter.


According to one example of the present invention, the drawings show a resilient protection sleeve 10 for use with a balloon catheter. The resilient protection sleeve 10 shown in the drawings has three tubular portions 12 and three wings 14. The tubular portions 12 each have an arcuate partial cylinder shape. The wings 14 each have a ā€œUā€ shape that is narrowed at the junction between the the tubular portions 12 and the wings 14. Each wing extends radially outward, and each defines a channel 16.


The resilient protection sleeve 10 shown in the drawings is made of an integral and unitary piece of material, but it could be made of several components affixed together. Other possible arrangements of a resilient protection sleeve according to the principles of the present invention include providing a resilient protection sleeve having multiple layers of different materials, whether be coextrusion or any other suitable method. Also, it is possible to provide an inner surface of a resilient protection sleeve with a lubricious coating, for easy removal of the sleeve from the balloon catheter.



FIG. 3 shows a balloon catheter 18 having a catheter shaft 20 extending from a proximal end to a distal end, a balloon 22 affixed to the catheter shaft 20 near its distal end, and a hub 24 affixed to the catheter shaft 20 at its proximal end. The catheter shaft 20 defines a longitudinal axis, an inflation lumen and a guidewire lumen for receiving a guidewire 40, with the guidewire lumen extending between a proximal guidewire port 26 and a distal guidewire port 28, and the inflation lumen extending between a proximal port 30 defined by the hub 24 and an interior of the balloon 22.


The balloon 22 has a central inflatable portion between a proximal collar and a distal collar, the collars each being affixed to the catheter shaft 20. The balloon 22 is shown in an initial configuration, such that it has been deflated, pleated and wrapped around the catheter shaft 20.


In the initial configuration, the resilient protection sleeve compresses and protects the balloon, as the wings resiliently clamp the tubular portions of the sleeve around the balloon. When a physician prepares the balloon catheter for use in a medical treatment, the wings may also act as handles, to facilitate removal of the sleeve from the balloon catheter.


Dimensionally, the sleeve has a longitudinal length corresponding to a longitudinal length of the balloon, such that the sleeve protects the full length of the balloon.


The balloon catheter of FIG. 3 has a rapid-exchange arrangement, in that the proximal guidewire port 26 is located at a position on the catheter shaft 20 between the balloon 22 and the hub 24. The balloon catheter 32 of FIG. 4 is similar, except that it has an over-the-wire arrangement, in that the proximal guidewire port 34 is defined by the proximal hub 36.



FIG. 5 shows a cross-section of a balloon 22 in an initial configuration, deflated, pleated and wrapped around a tubular member of a balloon catheter shaft 20. FIG. 7 is the same as FIG. 5, with the addition of a resilient protection sleeve 10.


Also, the balloon catheter systems of the present invention may include one or more additional medical device(s). For example, FIG. 6 shows a cross-section of a balloon catheter with a medical device, in this case a stent 38, crimped about the deflated, pleated and wrapped balloon 22 in an initial configuration. FIG. 8 is the same as FIG. 6, with the addition of a resilient protection sleeve 10.


The resilient protection sleeve may be made of any material having suitable properties, including polymers, including for example polycarbonates, polyamides, polyurethanes, nylons, polyethylenes, and polyesters. Also, any of the catheter components may be made of a multilayer construction or a coextrusion, or a blend or a block copolymer of such polymer materials.


It should be understood that an unlimited number of configuration for the present invention could be realized. The foregoing discussion describes merely exemplary embodiments illustrating the principles of the present invention, the scope of which is recited in the following claims. Those skilled in the art will readily recognize from the description, claims and drawings that numerous changes and modifications can be made without departing from the spirit and scope of the invention.

Claims
  • 1. A balloon catheter system for medically treating a patient, comprising: a balloon catheter having a catheter shaft extending from a proximal end to a distal end, a balloon affixed to the catheter shaft at or near its distal end, and a hub affixed to the catheter shaft at or near its proximal end;wherein the shaft defines a longitudinal axis, an inflation lumen and a guidewire lumen, the guidewire lumen extending between a proximal guidewire port and a distal guidewire port, the inflation lumen extending between a proximal port defined by the hub and an interior of the balloon;wherein the balloon has a central inflatable portion between a proximal collar and a distal collar, the collars each being affixed to the catheter shaft; the balloon in an initial configuration being deflated, pleated and wrapped around the catheter shaft; anda resilient protective sleeve around the balloon, the sleeve having at least one tubular portion and at least one wing extending outward, each wing defining a channel and resiliently clamping the sleeve around the balloon, each tubular portion extending circumferentially between each wing, the sleeve having a longitudinal length corresponding to a longitudinal length of the balloon, such that the sleeve protects and compresses the balloon.
  • 2. The balloon catheter system of claim 1, wherein the sleeve has three tubular portions and three wings.
  • 3. The balloon catheter system of claim 1, wherein each tubular portion has the shape of a partial cylinder.
  • 4. The balloon catheter system of claim 1, wherein each wing has a narrowed ā€œUā€ shape.
  • 5. The balloon catheter system of claim 1, wherein the sleeve is made of a polymer material.
  • 6. The balloon catheter system of claim 1, wherein the sleeve is made of a single integral and unitary piece.
  • 7. The balloon catheter system of claim 1, wherein the sleeve has multiple layers of different materials.
  • 8. The balloon catheter system of claim 1, wherein an inner surface of the sleeve has a lubricious coating.
  • 9. The balloon catheter system of claim 1, wherein the balloon catheter has an over-the-wire arrangement.
  • 10. The balloon catheter system of claim 1, wherein the balloon catheter has a rapid-exchange arrangement.
  • 11. The balloon catheter system of claim 1, further comprising a medical device, the medical device in an initial configuration being disposed between the balloon and the sleeve.
  • 12. The balloon catheter system of claim 8, wherein the medical device is a stent.