Resin compositions and methods of using resin compositions to control proppant flow-back

Information

  • Patent Grant
  • 7963330
  • Patent Number
    7,963,330
  • Date Filed
    Monday, December 21, 2009
    14 years ago
  • Date Issued
    Tuesday, June 21, 2011
    13 years ago
Abstract
Methods and compositions that include a resin composition having from about 5% to about 30% phenol, from about 40% to about 70% phenol formaldehyde, from about 10 to about 40% furfuryl alcohol, from about 0.1% to about 3% of a silane coupling agent, and from about 1% to about 15% of a surfactant and methods of using of that resin in controlling particulate flowback from a subterranean formation.
Description
BACKGROUND

The present invention relates to enhancing the conductivity of subterranean formations while controlling proppant flowback. More particularly, the present invention relates to improved resin compositions and resin-coated proppants and their use in controlling proppant flowback


Hydrocarbon-producing wells are often stimulated by hydraulic fracturing treatments. In hydraulic fracturing treatments, a viscous fracturing fluid, which also functions as a carrier fluid, is pumped into a producing zone to be fractured at a rate and pressure such that one or more fractures are formed in the zone. Particulate solids for propping the fractures, commonly referred to in the art as “proppant,” are generally suspended in at least a portion of the fracturing fluid so that the particulate solids are deposited in the fractures when the fracturing fluid reverts to a thin fluid to be returned to the surface. The proppant deposited in the fractures functions to prevents the fractures from fully closing and maintains conductive channels through which produced hydrocarbons can flow.


In order to prevent the subsequent flowback of proppant and other unconsolidated particulates with the produced fluids a portion of the proppant introduced into the fractures may be coated with a hardenable resin composition. When the fracturing fluid, which is the carrier fluid for the proppant, reverts to a thin fluid the resin-coated proppant is deposited in the fracture, and the fracture closes on the proppant. Such partially closed fractures apply pressure on the resin-coated proppant particles, causing the particles to be forced into contact with each other while the resin composition hardens. The hardening of the resin composition under pressure brings about the consolidation of the resin-coated proppant particles into a hard permeable mass having compressive and tensile strength that hopefully prevents unconsolidated proppant and formation sand from flowing out of the fractures with produced fluids. Flowback of the proppant or formation fines with formation fluids is undesirable as it may erode metal equipment, plug piping and vessels, and cause damage to valves, instruments, and other production equipment.


Using heretofore known hardenable resin compositions has been disadvantageous because they have short shelf lives. That is, the shelf lives of the hardenable resin components, once mixed, have heretofore been as short as about four hours or less. It has been a common practice to utilize proppant that is pre-coated with a resin composition. However, such pre-coated resins generally begin to cure immediately after they are mixed and coated onto the proppant so that by the time the proppant is used, the resin may be more than 90% cured. When such pre-cured resin completes curing once placed in the subterranean formation, the resulting consolidated proppant pack often does not have enough strength to prevent deterioration of the proppant pack and proppant flowback.


SUMMARY

The present invention relates to enhancing the conductivity of subterranean formations while controlling proppant flowback. More particularly, the present invention relates to improved resin compositions and resin-coated proppants and their use in controlling proppant flowback.


One embodiment of the present invention provides a resin composition comprising from about 5% to about 30% phenol, from about 40% to about 70% phenol formaldehyde, from about 10 to about 40% furfuryl alcohol, from about 0.1% to about 3% of a silane coupling agent, and from about 1% to about 15% of a surfactant.


Another embodiment of the present invention describes a method of controlling proppant flowback from a fracture in a subterranean zone comprising the steps of coating the resin as described above onto at least a portion of provided proppant particles, introducing those resin-coated proppant particles into a subterranean fracture, and allowing the resin on the resin-coated proppant to substantially cure.


Another embodiment of the present invention describes a method comprising the step of providing a resin composition, wherein the resin composition comprises from about 5% to about 30% phenol by weight of the resin composition, from about 40% to about 70% phenol formaldehyde by weight of the resin composition, from about 10% to about 40% furfuryl alcohol by weight of the resin composition, from about 0.1% to about 3% of a silane coupling agent by weight of the resin composition, and from about 1% to about 15% of a surfactant by weight of the resin composition. The method further comprises providing proppant particles. The method further comprises coating the resin composition onto at least a portion of the proppant particles to create resin-coated proppant particles, wherein the resin composition does not substantially cure during coating.


Another embodiment of the present invention describes a method comprising the step of providing a resin composition, wherein the resin composition comprises from about 5% to about 30% phenol by weight of the resin composition, from about 40% to about 70% phenol formaldehyde by weight of the resin composition, from about 10% to about 40% furfuryl alcohol by weight of the resin composition, from about 0.1% to about 3% of a silane coupling agent by weight of the resin composition, and from about 1% to about 15% of a surfactant by weight of the resin composition. The method further comprises providing proppant particles. The method further comprises coating the resin composition onto at least a portion of the proppant particles to create resin-coated proppant particles. The method further comprises introducing the resin-coated proppant particles into a subterranean zone, wherein the resin composition does not substantially cure prior to introducing the resin-coated proppant particles into the subterranean zone.


Another embodiment of the present invention describes a method comprising the step of providing a resin composition, wherein the resin composition comprises from about 5% to about 30% phenol by weight of the resin composition, from about 40% to about 70% phenol formaldehyde by weight of the resin composition, from about 10% to about 40% furfuryl alcohol by weight of the resin composition, from about 0.1% to about 3% of a silane coupling agent by weight of the resin composition, and from about 1% to about 15% of a surfactant by weight of the resin composition. The method further comprises providing an initial portion of proppant particles, a middle portion of proppant particles, and a last portion of proppant particles. The method further comprises coating the resin composition onto at least the initial portion of proppant particles and the last portion of proppant particles to create an initial portion of resin-coated proppant particles and a last portion of resin-coated proppant particles, wherein the resin composition does not substantially cure during coating. The method further comprises introducing the initial portion of resin-coated proppant particles into a fracture in a subterranean zone. The method further comprises introducing the middle portion of proppant particles into the fracture in the subterranean zone. The method further comprises introducing the last portion of resin-coated proppant particles into the fracture in the subterranean zone.


The objects, features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of preferred embodiments that follows.







DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention provides improved resin compositions and proppants coated with such improved resin compositions suitable for use in enhancing the conductivity of subterranean formations while controlling proppant flowback.


When the resin composition of the present invention is used to coat proppant particles in a subterranean fracturing operation, any fracturing fluid known in the art may be used, including aqueous gels, emulsions, and other suitable fracturing fluids. The aqueous gels are generally comprised of water and one or more gelling agents. The emulsions may be comprised of two or more immiscible liquids such as an aqueous gelled liquid and a liquefied, normally gaseous fluid, such as nitrogen. The preferred fracturing fluids for use in accordance with this invention are aqueous gels comprised of water, a gelling agent for gelling the water and increasing its viscosity, and optionally, a cross-linking agent for cross-linking the gel and further increasing the viscosity of the fluid. The increased viscosity of the gelled or gelled and cross-linked fracturing fluid, inter alia, reduces fluid loss and allows the fracturing fluid to transport significant quantities of suspended proppant particles. The fracturing fluids may also include one or more of a variety of well-known additives such as breakers, stabilizers, fluid loss control additives, clay stabilizers, bactericides, and the like.


The water utilized in the fracturing fluid may be fresh water, salt water (e.g., water containing one or more salts dissolved therein), brine (e.g., saturated salt water), or seawater. Generally, the water can be from any source provided that it does not contain an excess of compounds that adversely affect other components in the resin composition or the performance of the resin composition relative to the subterranean conditions to which it may be subjected.


Proppant particles utilized in accordance with the present invention are generally of a size such that formation particulates that may migrate with produced fluids are prevented from being produced from the subterranean zone. Any suitable proppant may be utilized, including graded sand, bauxite, ceramic materials, glass materials, walnut hulls, polymer beads and the like. Generally, the proppant particles have a size in the range of from about 2 to about 400 mesh, U.S. sieve series. In some embodiments of the present invention, the proppant is graded sand having a particle size in the range of from about 10 to about 70 mesh, U.S. Sieve Series. Particle size distribution ranges are generally one or more of 10-20 mesh, 20-40 mesh, 40-60 mesh or 50-70 mesh, depending on the particular size and distribution of formation particulates to be screened out by the consolidated proppant particles.


The improved resin compositions of the present invention comprise phenol, phenol formaldehyde, furfuryl alcohol, a silane coupling agent, and a surfactant. The resin compositions of the present invention may be useful in a variety of subterranean conditions but are particularly well suited for use in subterranean formations exhibiting temperatures above about 200° F. The resins of the present invention do not begin to cure until they are exposed to temperatures above about 175° F. Thus, the resins of the present invention can be prepared and then stored for long periods of time at temperatures below about 175° F. without concern that the resin compositions will become unusable over time.


Phenol is a commercially available, hydroxy benzene derivative, aromatic alcohol that exhibits weak acidic properties and contains a hydroxyl group attached to a benzene ring. The resins of the present invention comprise from about 5% to about 30% phenol by weight of the overall resin composition.


Phenol formaldehyde is a commercially available synthetic polymer made from phenol and formaldehyde monomers. The resins of the present invention comprise from about 40% to about 70% phenol formaldehyde by weight of the overall resin composition.


Furfuryl alcohol is a primary alcohol and an oligomer of furan resin that is colorless or pale yellow in appearance. In the resins of the present invention, the furfuryl alcohol polymerizes from an oligomer form into a stable furan resin polymer. The resins of the present invention comprise from about 10% to about 40% furfuryl alcohol by weight of the overall resin composition.


Silane coupling agents are chemicals that contain silicone at the center of the silane molecule that is chemically attached to a first functional group such as vinyl, amino, chloro, epoxy, mercapto, and a second functional group such as methoxy or ethoxy. Silane coupling agents act such that the first functional group may attach to an organic compound while the second functional group may attach to an inorganic material or substrate to achieve a “coupling” effect. Any silane coupling agent that is compatible with the hardening agent and facilitates the coupling of the resin to the surface of the formation sand particles is suitable for use in the present invention. Examples of preferred silane coupling agents suitable for use in the present invention include, but are not limited to, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, n-beta-(aminoethyl)-gamma-aminopropyl trimethoxysilane, and combinations thereof. The silane coupling agent used is included in the resin in an amount capable of sufficiently bonding the resin to the particulate. In some embodiments of the present invention, the silane coupling agent used is included in the resin composition in the range of from about 0.1% to about 3% by weight of the resin composition.


Any surfactant compatible with the other components of the resin composition may be used in the present invention. Such surfactants include, but are not limited to, an ethoxylated nonyl phenol phosphate ester, mixtures of one or more cationic surfactants, and one or more non-ionic surfactants and an alkyl phosphonate surfactant. The mixtures of one or more cationic and nonionic surfactants are described in U.S. Pat. No. 6,311,733, issued to Todd et al. on Nov. 6, 2001, which is incorporated herein by reference. A C12-C22 alkyl phosphonate surfactant is preferred. The surfactant or surfactants utilized are included in the resin composition in an amount in the range of from about 1% to about 15% by weight of the resin composition.


Any solvent that is compatible with the hardenable resin and achieves the desired viscosity effect is suitable for use in the present invention. Preferred solvents are those having high flash points (most preferably about 125° F.). As described above, use of a solvent in the hardenable resin composition is optional but may be desirable to reduce the viscosity of the hardenable resin component for a variety of reasons including ease of handling, mixing, and transferring. It is within the ability of one skilled in the art, with the benefit of this disclosure, to determine if and how much solvent is needed to achieve a suitable viscosity. Solvents suitable for use in the present invention include, but are not limited to, 2-butoxy ethanol, butylglycidyl ether, dipropylene glycol methyl ether, dipropylene glycol dimethyl ether, dimethyl sulfoxide, dimethyl formamide, diethyleneglycol methyl ether, diethylene glycol dimethyl ether, ethyleneglycol butyl ether, diethyleneglycol butyl ether, gamma-butyrolactone, butylene carbonate, propylene carbonate, ethylene carbonate, methanol, butyl alcohol, d'limonene, fatty acid methyl esters, and combinations thereof.


The amount of resin of the present invention coated onto the proppant particles generally ranges from about 0.1% to about 10% by weight of the proppant. When it is desirable or necessary to conserve a major portion of the resin composition, the resin composition may be applied to an initial portion of the proppant particles, not applied or intermittently applied to the middle portion of the proppant particles, and applied to the last portion of the proppant particles deposited in the fractures. One of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate combination to achieve the desired conservation goals, consolidation, and permeability goals.


In one embodiment of the methods of the present invention, a resin composition is created as described above that is then is then coated onto proppant particles to form resin-coated proppant particles that are subsequently mixed with a viscous fracturing fluid. The viscous fracturing fluid containing resin-coated proppant particles is then introduced into a subterranean zone having one or more fractures therein and the resin-coated proppant particles are placed in at least one fracture. The resin-coated proppant particles are then allowed to harden and consolidate into one or more high-strength, permeable packs that prevent proppant flowback.


To facilitate a better understanding of the present invention, the following examples of some of the preferred embodiments are given. In no way should such examples be read to limit the scope of the invention.


EXAMPLES
Example 1

A resin of the present invention was prepared by mixing 0.75 mL of phenol, 6.1 mL of phenol formaldehyde, 2.55 mL of furfuryl alcohol, 0.1 mL of silane coupling agent n-beta-(aminoethyl)-gamma-aminopropyl trimethoxysilane, and 0.5 mL of an alkyl phosphonate surfactant. A volume of 7.5 mL of the resin mixture was then coated onto 250 grams of 20/40-mesh bauxite proppant. The coated proppant was then mixed with 300 mL of a fracturing fluid using carboxymethylhydroxypropyl guar as the gelling base. That gelled fluid was cross-linked with a zirconium cross-linker. The resulting viscous fracturing fluid comprising resin-coated proppant was stirred in a heated bath for 1 hour at 175° F. before being packed in brass flow cells. No closure stress was exerted on the cells and they were allowed to cure in an oven at various temperatures and for various lengths of time. Consolidated cores were obtained from the proppant packs to determine the unconsolidated compressive strength (UCS). The results of these tests are illustrated in Table 1, below:









TABLE 1







Effect of Cure Temperature and Cure Time on Unconfined


Compressive Strength (psi) of Resin-Treated Proppant









Cure Temperature












Cure Time
225° F.
250° F.
275° F.
300° F.
325° F.





2 hrs
 12
16
113
540
489


3 hrs
101
96
392
654
580


6 hrs
195
314 
590
593
779


24 hrs 




765


96 hrs 




860









The results in Table 1 illustrate that the resin compositions of the present invention, when allowed to cure at temperatures greater than or equal to 175, quickly yield compressive strengths suitable for use in subterranean applications.


Example 2

A modified API conductivity flow cell was used to perform proppant flowback testing to determine the effectiveness of the resin of the present invention in controlling proppant flowback. The conductivity flow cell was modified in that a 0.5-inch hole was installed a one end of the flow cell to simulate a perforation and a wire-mesh screen was initially inserted in the perforation to prevent production of the proppant. Ceramic proppant of 20/40-mesh was coated with 3% resin by weight of the proppant. The resin composition used was identical to that described in Example 1. The resin-coated proppant was then slurried into a viscous fracturing fluid as described in Example 1. The proppant slurry was packed into the modified conductivity cell to a loading of 2 lb/ft2 and set at an initial closure stress of 2,000 psi and a temperature of 150° F. After 2 hours, the temperature of the cell was increased to 300° F. and after 6 hours the closure stress was increased to 6,000 psi. The cell was allowed to set at 300° F. and 6,000 psi for 12 additional hours after which a flowing dry gas was fed through the cell at 50 standard liters per minute and an internal pressure of 400 psi. Following the treatment with the dry gas, the internal pressure on the cell was released, the wire-mesh screen was removed from the perforation, and dry gas was again fed to the cell. The gas was allowed to exit through the perforation and proppant production was monitored. Even once the dry gas feed rate increased to 760 standard liters per minute (which is equivalent to a field, gas production flow rate of 155 MMSCFT per day), only a few grains of proppant exited the cell, illustrating that the resin compositions of the present invention are capable of consolidating particulates and controlling proppant flowback.


Therefore, the present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular embodiments disclosed above are illustrative only, as the present invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the present invention. While compositions and methods are described in terms of “comprising,” “containing,” or “including” various components or steps, the compositions and methods can also “consist essentially of” or “consist of” the various components and steps. All numbers and ranges disclosed above may vary by some amount. Whenever a numerical range with a lower limit and an upper limit is disclosed, any number and any included range falling within the range is specifically disclosed. In particular, every range of values (of the form, “from about a to about b,” or, equivalently, “from approximately a to b,” or, equivalently, “from approximately a-b”) disclosed herein is to be understood to set forth every number and range encompassed within the broader range of values. Also, the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee. Moreover, the indefinite articles “a” or “an,” as used in the claims, are defined herein to mean one or more than one of the element that it introduces. If there is any conflict in the usages of a word or term in this specification and one or more patent or other documents that may be incorporated herein by reference, the definitions that are consistent with this specification should be adopted.

Claims
  • 1. A method comprising: providing a resin composition comprising: about 5% to about 30% phenol by weight of the resin composition;about 40% to about 70% phenol formaldehyde by weight of the resin composition;about 10% to about 40% furfuryl alcohol by weight of the resin composition;about 0.1% to about 3% of a silane coupling agent by weight of the resin composition; andabout 1% to about 15% of a surfactant by weight of the resin composition;providing proppant particles; andcoating the resin composition onto at least a portion of the proppant particles to create resin-coated proppant particles, wherein the resin composition does not substantially cure during coating.
  • 2. The method of claim 1 wherein the silane coupling agent comprises at least one silane coupling agent selected from the group consisting of: N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and n-beta-(aminoethyl)-gamma-aminopropyl trimethoxysilane.
  • 3. The method of claim 1 wherein the surfactant comprises at least one surfactant selected from the group consisting of: ethoxylated nonyl phenol phosphate ester, a cationic surfactant, a non-ionic surfactant, and an alkyl phosphonate surfactant.
  • 4. The method of claim 1 wherein the amount of the resin composition coated onto the portion of the proppant particles is about 0.1% to about 5% by weight of the portion of the proppant particles.
  • 5. The method of claim 1 wherein the resin composition further comprises a solvent.
  • 6. The method of claim 5 wherein the solvent comprises at least one solvent selected from the group consisting of: 2-butoxy ethanol, butylglycidyl ether, dipropylene glycol methyl ether, dipropylene glycol dimethyl ether, dimethyl sulfoxide, dimethyl formamide, diethyleneglycol methyl ether, diethylene glycol dimethyl ether, ethyleneglycol butyl ether, diethyleneglycol butyl ether, gamma-butyrolactone, butylene carbonate, propylene carbonate, ethylene carbonate, methanol, butyl alcohol, d-limonene, and a fatty acid methyl ester.
  • 7. A method comprising: providing a resin composition comprising: about 5% to about 30% phenol by weight of the resin composition;about 40% to about 70% phenol formaldehyde by weight of the resin composition;about 10% to about 40% furfuryl alcohol by weight of the resin composition;about 0.1% to about 3% of a silane coupling agent by weight of the resin composition; andabout 1% to about 15% of a surfactant by weight of the resin composition;providing proppant particles;coating the resin composition onto at least a portion of the proppant particles to create resin-coated proppant particles; andintroducing the resin-coated proppant particles into a subterranean zone, wherein the resin composition does not substantially cure prior to introducing the resin-coated proppant particles into the subterranean zone.
  • 8. The method of claim 7 wherein the silane coupling agent comprises at least one silane coupling agent selected from the group consisting of: N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and n-beta-(aminoethyl)-gamma-aminopropyl trimethoxysilane.
  • 9. The method of claim 7 wherein the surfactant comprises at least one surfactant selected from the group consisting of: ethoxylated nonyl phenol phosphate ester, a cationic surfactant, a non-ionic surfactant, and an alkyl phosphonate surfactant.
  • 10. The method of claim 7 wherein the amount of the resin composition coated onto the portion of the proppant particles is about 0.1% to about 5% by weight of the portion of the proppant particles.
  • 11. The method of claim 7 wherein the resin composition further comprises a solvent.
  • 12. The method of claim 11 wherein the solvent comprises at least one solvent selected from the group consisting of: 2-butoxy ethanol, butylglycidyl ether, dipropylene glycol methyl ether, dipropylene glycol dimethyl ether, dimethyl sulfoxide, dimethyl formamide, diethyleneglycol methyl ether, diethylene glycol dimethyl ether, ethyleneglycol butyl ether, diethyleneglycol butyl ether, gamma-butyrolactone, butylene carbonate, propylene carbonate, ethylene carbonate, methanol, butyl alcohol, d-limonene, and a fatty acid methyl ester.
  • 13. The method of claim 7 further comprising: providing a fracturing fluid;mixing the resin-coated proppant particles into the fracturing fluid; andintroducing the fracturing fluid comprising the resin-coated proppant particles into the subterranean zone at a pressure sufficient to extend or create at least one fracture in the subterranean zone.
  • 14. The method of claim 13 wherein the fracturing fluid comprises at least one fluid selected from the group consisting of: an aqueous gel and an emulsion.
  • 15. The method of claim 13 wherein the fracturing fluid comprises at least one additive selected from the group consisting of: a breaker, a stabilizer, a fluid loss control additive, a clay stabilizer, and a bactericide.
  • 16. The method of claim 13 wherein the fracturing fluid comprises at least one fluid selected from the group consisting of: fresh water, salt water, brine, and seawater.
  • 17. The method of claim 13 wherein the fracturing fluid comprises an aqueous gel comprised of: water;a gelling agent; anda cross-linking agent.
  • 18. A method comprising: providing a resin composition comprising: about 5% to about 30% phenol by weight of the resin composition;about 40% to about 70% phenol formaldehyde by weight of the resin composition;about 10% to about 40% furfuryl alcohol by weight of the resin composition;about 0.1% to about 3% of a silane coupling agent by weight of the resin composition; andabout 1% to about 15% of a surfactant by weight of the resin composition;providing an initial portion of proppant particles, a middle portion of proppant particles, and a last portion of proppant particles;coating the resin composition onto at least the initial portion of proppant particles and the last portion of proppant particles to create an initial portion of resin-coated proppant particles and a last portion of resin-coated proppant particles, wherein the resin composition does not substantially cure during coating;introducing the initial portion of resin-coated proppant particles into a fracture in a subterranean zone;introducing the middle portion of proppant particles into the fracture in the subterranean zone; andintroducing the last portion of resin-coated proppant particles into the fracture in the subterranean zone.
  • 19. The method of claim 18 wherein the resin composition is not applied to the middle portion of proppant particles.
  • 20. The method of claim 18 further comprising applying the resin composition intermittently to the middle portion of proppant particles.
CROSS-REFERENCE TO A RELATED INVENTION

This application is a continuation-in-part of commonly-owned U.S. patent application Ser. No. 11/833,649, filed Aug. 3, 2007, now abandoned, entitled “Resin Compositions and Methods of Using Resin Compositions to Control Proppant Flow-Back,” which was a divisional of commonly-owned U.S. patent application Ser. No. 10/775,347, filed Feb. 10, 2004, now abandoned, entitled “Resin Compositions and Methods of Using Resin Compositions to Control Proppant Flow-Back,” both of which are incorporated by reference herein for all purposes.

US Referenced Citations (737)
Number Name Date Kind
2238671 Woodhouse Apr 1941 A
2703316 Schneider Mar 1955 A
2869642 McKay et al. Jan 1959 A
3047067 Williams et al. Jul 1962 A
3052298 Malott Sep 1962 A
3070165 Stratton Dec 1962 A
3123138 Robichaux Mar 1964 A
3173484 Huitt et al. Mar 1965 A
3176768 Brandt et al. Apr 1965 A
3195635 Fast Jul 1965 A
3199590 Young Aug 1965 A
3272650 MacVittie Sep 1966 A
3297086 Spain Jan 1967 A
3302719 Fischer Feb 1967 A
3308885 Sandiford Mar 1967 A
3308886 Evans Mar 1967 A
3316965 Watanabe May 1967 A
3329204 Brieger Jul 1967 A
3336980 Rike Aug 1967 A
3364995 Atkins et al. Jan 1968 A
3366178 Malone et al. Jan 1968 A
3375872 McLaughlin et al. Apr 1968 A
3378074 Kiel Apr 1968 A
3404735 Young et al. Oct 1968 A
3415320 Young Dec 1968 A
3455390 Gallus Jul 1969 A
3478824 Hess et al. Nov 1969 A
3481403 Gidley et al. Dec 1969 A
3489222 Millhone et al. Jan 1970 A
3492147 Young et al. Jan 1970 A
3525398 Fisher Aug 1970 A
3565176 Clifford Feb 1971 A
3592266 Tinsley Jul 1971 A
3659651 Graham May 1972 A
3681287 Brown et al. Aug 1972 A
3708013 Dismukes Jan 1973 A
3709298 Pramann Jan 1973 A
3709641 Sarem Jan 1973 A
3741308 Veley Jun 1973 A
3754598 Holloway, Jr. Aug 1973 A
3765804 Brandon Oct 1973 A
3768564 Knox et al. Oct 1973 A
3769070 Schilt Oct 1973 A
3784585 Schmitt et al. Jan 1974 A
3819525 Hattenbrun Jun 1974 A
3828854 Templeton et al. Aug 1974 A
3842911 Knox et al. Oct 1974 A
3850247 Tinsley Nov 1974 A
3854533 Gurley et al. Dec 1974 A
3857444 Copeland Dec 1974 A
3861467 Harnsberger Jan 1975 A
3863709 Fitch Feb 1975 A
3868998 Lybarger et al. Mar 1975 A
3888311 Cooke, Jr. Jun 1975 A
3912692 Casey et al. Oct 1975 A
3933205 Kiel Jan 1976 A
3948672 Harnsberger Apr 1976 A
3955993 Curtice et al. May 1976 A
3960736 Free et al. Jun 1976 A
4000781 Knapp Jan 1977 A
4008763 Lowe, Jr. Feb 1977 A
4015995 Hess Apr 1977 A
4018285 Watkins et al. Apr 1977 A
4029148 Emery Jun 1977 A
4031958 Sandiford et al. Jun 1977 A
4042032 Anderson et al. Aug 1977 A
4060988 Arnold Dec 1977 A
4068718 Cooke, Jr. et al. Jan 1978 A
4070865 McLaughlin Jan 1978 A
4074760 Copeland et al. Feb 1978 A
4085801 Sifferman et al. Apr 1978 A
4085802 Sifferman et al. Apr 1978 A
4089437 Chutter et al. May 1978 A
4127173 Watkins et al. Nov 1978 A
4169798 DeMartino Oct 1979 A
4172066 Zweigle et al. Oct 1979 A
4245702 Haafkens et al. Jan 1981 A
4247430 Constien Jan 1981 A
4259205 Murphey Mar 1981 A
4273187 Satter et al. Jun 1981 A
4291766 Davies et al. Sep 1981 A
4305463 Zakiewicz Dec 1981 A
4336842 Graham et al. Jun 1982 A
4352674 Fery Oct 1982 A
4353806 Canter et al. Oct 1982 A
4387769 Erbstoesser et al. Jun 1983 A
4392988 Dobson et al. Jul 1983 A
4399866 Dearth Aug 1983 A
4415805 Fertl et al. Nov 1983 A
4428427 Friedman Jan 1984 A
4439489 Johnson et al. Mar 1984 A
4441556 Powers et al. Apr 1984 A
4443347 Underdown et al. Apr 1984 A
4460052 Gockel Jul 1984 A
4470915 Conway Sep 1984 A
4493875 Beck et al. Jan 1985 A
4494605 Wiechel et al. Jan 1985 A
4498995 Gockel et al. Feb 1985 A
4501328 Nichols Feb 1985 A
4527627 Graham et al. Jul 1985 A
4541489 Wu Sep 1985 A
4546012 Brooks Oct 1985 A
4553596 Graham et al. Nov 1985 A
4564459 Underdown et al. Jan 1986 A
4572803 Yamazoe et al. Feb 1986 A
4585064 Graham et al. Apr 1986 A
4649998 Friedman Mar 1987 A
4664819 Glaze et al. May 1987 A
4665988 Murphey et al. May 1987 A
4669543 Young Jun 1987 A
4670501 Dymond et al. Jun 1987 A
4675140 Sparks et al. Jun 1987 A
4681165 Bannister Jul 1987 A
4683954 Walker et al. Aug 1987 A
4694905 Armbruster Sep 1987 A
4715967 Bellis Dec 1987 A
4716964 Erbstoesser et al. Jan 1988 A
4733729 Copeland Mar 1988 A
4739832 Jennings, Jr. et al. Apr 1988 A
4772646 Harms et al. Sep 1988 A
4777200 Dymond et al. Oct 1988 A
4785884 Armbruster Nov 1988 A
4787453 Hewgill et al. Nov 1988 A
4789105 Hosokawa et al. Dec 1988 A
4796701 Hudson et al. Jan 1989 A
4797262 Dewitz Jan 1989 A
4800960 Friedman et al. Jan 1989 A
4809783 Hollenbeck et al. Mar 1989 A
4817721 Pober Apr 1989 A
4829100 Murphey et al. May 1989 A
4838352 Oberste-Padtberg et al. Jun 1989 A
4842070 Sharp Jun 1989 A
4842072 Friedman et al. Jun 1989 A
4846118 Slattery et al. Jul 1989 A
4848467 Cantu et al. Jul 1989 A
4848470 Korpics Jul 1989 A
4850430 Copeland et al. Jul 1989 A
4875525 Mana Oct 1989 A
4886354 Welch et al. Dec 1989 A
4888240 Graham et al. Dec 1989 A
4892147 Jennings, Jr. et al. Jan 1990 A
4895207 Friedman et al. Jan 1990 A
4898750 Friedman et al. Feb 1990 A
4903770 Friedman et al. Feb 1990 A
4921576 Hurd May 1990 A
4934456 Moradi-Araghi Jun 1990 A
4936385 Weaver et al. Jun 1990 A
4942186 Murphey et al. Jul 1990 A
4957165 Cantu et al. Sep 1990 A
4959432 Fan et al. Sep 1990 A
4961466 Himes et al. Oct 1990 A
4969522 Whitehurst et al. Nov 1990 A
4969523 Martin et al. Nov 1990 A
4984635 Cullick et al. Jan 1991 A
4986353 Clark et al. Jan 1991 A
4986354 Cantu et al. Jan 1991 A
4986355 Casad et al. Jan 1991 A
5030603 Rumpf et al. Jul 1991 A
5049743 Taylor, III et al. Sep 1991 A
5056597 Stowe, III et al. Oct 1991 A
5082056 Tackett, Jr. et al. Jan 1992 A
5095987 Weaver et al. Mar 1992 A
5105886 Strubhar et al. Apr 1992 A
5107928 Hilterhaus Apr 1992 A
5128390 Murphey et al. Jul 1992 A
5135051 Facteau et al. Aug 1992 A
5142023 Gruber et al. Aug 1992 A
5165438 Facteau et al. Nov 1992 A
5173527 Calve et al. Dec 1992 A
5178218 Dees Jan 1993 A
5182051 Bandy et al. Jan 1993 A
5199491 Kutta et al. Apr 1993 A
5199492 Surles et al. Apr 1993 A
5211234 Floyd May 1993 A
5216050 Sinclair Jun 1993 A
5218038 Johnson et al. Jun 1993 A
5232955 Csabai et al. Aug 1993 A
5232961 Murphey et al. Aug 1993 A
5238068 Fredrickson et al. Aug 1993 A
5244362 Conally et al. Sep 1993 A
5247059 Gruber et al. Sep 1993 A
5249627 Harms et al. Oct 1993 A
5249628 Surjaatmadia Oct 1993 A
5256729 Kutta et al. Oct 1993 A
5265678 Grundmann Nov 1993 A
5273115 Spafford Dec 1993 A
5278203 Harms Jan 1994 A
5285849 Surles et al. Feb 1994 A
5293939 Surles et al. Mar 1994 A
5295542 Cole et al. Mar 1994 A
5320171 Laramay Jun 1994 A
5321062 Landrum et al. Jun 1994 A
5325923 Surjaatmadja et al. Jul 1994 A
5330005 Card et al. Jul 1994 A
5332037 Schmidt et al. Jul 1994 A
5335726 Rodrigues Aug 1994 A
5351754 Hardin et al. Oct 1994 A
5358051 Rodrigues Oct 1994 A
5359026 Gruber Oct 1994 A
5360068 Sprunt et al. Nov 1994 A
5361856 Surjaatmadja et al. Nov 1994 A
5363916 Himes et al. Nov 1994 A
5373901 Norman et al. Dec 1994 A
5377756 Northrop et al. Jan 1995 A
5377759 Surles Jan 1995 A
5381864 Nguyen et al. Jan 1995 A
5386874 Laramay et al. Feb 1995 A
5388648 Jordan, Jr. Feb 1995 A
5390741 Payton et al. Feb 1995 A
5393810 Harris et al. Feb 1995 A
5396957 Surjaatmadja et al. Mar 1995 A
5402846 Jennings, Jr. et al. Apr 1995 A
5403822 Mueller et al. Apr 1995 A
5420174 Dewprashad May 1995 A
5422183 Sinclair et al. Jun 1995 A
5423381 Surles et al. Jun 1995 A
5439055 Card et al. Aug 1995 A
5460226 Lawton et al. Oct 1995 A
5464060 Hale et al. Nov 1995 A
5475080 Gruber et al. Dec 1995 A
5484881 Gruber et al. Jan 1996 A
5492177 Yeh et al. Feb 1996 A
5492178 Nguyen et al. Feb 1996 A
5494103 Surjaatmadja et al. Feb 1996 A
5494178 Maharg Feb 1996 A
5497830 Boles et al. Mar 1996 A
5498280 Fistner et al. Mar 1996 A
5499678 Surjaatmadja et al. Mar 1996 A
5501275 Card et al. Mar 1996 A
5505787 Yamaguchi Apr 1996 A
5512071 Yam et al. Apr 1996 A
5520250 Harry et al. May 1996 A
5522460 Shu Jun 1996 A
5529123 Carpenter et al. Jun 1996 A
5531274 Bienvenu, Jr. Jul 1996 A
5536807 Gruber et al. Jul 1996 A
5545824 Stengel et al. Aug 1996 A
5547023 McDaniel et al. Aug 1996 A
5551513 Surles et al. Sep 1996 A
5551514 Nelson et al. Sep 1996 A
5582249 Caveny et al. Dec 1996 A
5582250 Constien Dec 1996 A
5588488 Vijn et al. Dec 1996 A
5591700 Harris et al. Jan 1997 A
5594095 Gruber et al. Jan 1997 A
5595245 Scott, III Jan 1997 A
5597784 Sinclair et al. Jan 1997 A
5604184 Ellis et al. Feb 1997 A
5604186 Hunt et al. Feb 1997 A
5609207 Dewprashad et al. Mar 1997 A
5620049 Gipson et al. Apr 1997 A
5639806 Johnson et al. Jun 1997 A
5663123 Goodhue, Jr. et al. Sep 1997 A
5670473 Scepanski Sep 1997 A
5692566 Surles Dec 1997 A
5697440 Weaver et al. Dec 1997 A
5697448 Johnson Dec 1997 A
5698322 Tsai et al. Dec 1997 A
5701956 Hardy et al. Dec 1997 A
5712314 Surles et al. Jan 1998 A
5732364 Kalb et al. Mar 1998 A
5738136 Rosenberg Apr 1998 A
5765642 Surjaatmadja Jun 1998 A
5775425 Weaver et al. Jul 1998 A
5782300 James et al. Jul 1998 A
5783822 Buchanan et al. Jul 1998 A
5787986 Weaver et al. Aug 1998 A
5791415 Nguyen et al. Aug 1998 A
5799734 Norman et al. Sep 1998 A
5806593 Surles Sep 1998 A
5830987 Smith Nov 1998 A
5833000 Weaver et al. Nov 1998 A
5833361 Funk Nov 1998 A
5836391 Jonasson et al. Nov 1998 A
5836392 Urlwin-Smith Nov 1998 A
5836393 Johnson Nov 1998 A
5837656 Sinclair et al. Nov 1998 A
5837785 Kinsho et al. Nov 1998 A
5839510 Weaver et al. Nov 1998 A
5840784 Funkhouser et al. Nov 1998 A
5849401 El-Afandi et al. Dec 1998 A
5849590 Anderson, II et al. Dec 1998 A
5853048 Weaver et al. Dec 1998 A
5864003 Qureshi et al. Jan 1999 A
5865936 Edelman et al. Feb 1999 A
5871049 Weaver et al. Feb 1999 A
5873413 Chatterji et al. Feb 1999 A
5875844 Chatterji et al. Mar 1999 A
5875845 Chatterji et al. Mar 1999 A
5875846 Chatterji et al. Mar 1999 A
5893383 Facteau Apr 1999 A
5893416 Read Apr 1999 A
5901789 Donnelly et al. May 1999 A
5908073 Nguyen et al. Jun 1999 A
5911282 Onan et al. Jun 1999 A
5916933 Johnson et al. Jun 1999 A
5921317 Dewprashad et al. Jul 1999 A
5924488 Nguyen et al. Jul 1999 A
5929437 Elliott et al. Jul 1999 A
5944105 Nguyen Aug 1999 A
5944106 Dalrymple et al. Aug 1999 A
5945387 Chatterji et al. Aug 1999 A
5948734 Sinclair et al. Sep 1999 A
5957204 Chatterji et al. Sep 1999 A
5960784 Ryan Oct 1999 A
5960877 Funkhouser et al. Oct 1999 A
5960878 Nguyen et al. Oct 1999 A
5960880 Nguyen et al. Oct 1999 A
5964291 Bourne et al. Oct 1999 A
5969006 Onan et al. Oct 1999 A
5969823 Wurz et al. Oct 1999 A
5977283 Rossitto Nov 1999 A
5994785 Higuchi et al. Nov 1999 A
RE36466 Nelson et al. Dec 1999 E
6003600 Nguyen et al. Dec 1999 A
6004400 Bishop et al. Dec 1999 A
6006835 Onan et al. Dec 1999 A
6006836 Chatterji et al. Dec 1999 A
6012524 Chatterji et al. Jan 2000 A
6016870 Dewprashad et al. Jan 2000 A
6024170 McCabe et al. Feb 2000 A
6028113 Scepanski Feb 2000 A
6028534 Ciglenec et al. Feb 2000 A
6040398 Kinsho et al. Mar 2000 A
6047772 Weaver et al. Apr 2000 A
6059034 Rickards et al. May 2000 A
6059035 Chatterji et al. May 2000 A
6059036 Chatterji et al. May 2000 A
6063738 Chatterji et al. May 2000 A
6068055 Chatterji et al. May 2000 A
6069117 Onan et al. May 2000 A
6070667 Gano Jun 2000 A
6074739 Katagiri Jun 2000 A
6079492 Hoogteijling et al. Jun 2000 A
6098711 Chatterji et al. Aug 2000 A
6114410 Betzold Sep 2000 A
6123871 Carroll Sep 2000 A
6123965 Jacon et al. Sep 2000 A
6124246 Heathman et al. Sep 2000 A
6130286 Thomas et al. Oct 2000 A
6131661 Conner et al. Oct 2000 A
6135987 Tsai et al. Oct 2000 A
6140446 Fujiki et al. Oct 2000 A
6143698 Murphey et al. Nov 2000 A
6148911 Gipson et al. Nov 2000 A
6152234 Newhouse et al. Nov 2000 A
6162766 Muir et al. Dec 2000 A
6165947 Chang et al. Dec 2000 A
6169058 Le et al. Jan 2001 B1
6172011 Card et al. Jan 2001 B1
6172077 Curtis et al. Jan 2001 B1
6176315 Reddy et al. Jan 2001 B1
6177484 Surles Jan 2001 B1
6184311 O'Keeffe et al. Feb 2001 B1
6186228 Wegener et al. Feb 2001 B1
6187834 Thayer et al. Feb 2001 B1
6187839 Eoff et al. Feb 2001 B1
6189615 Sydansk Feb 2001 B1
6192985 Hinkel et al. Feb 2001 B1
6192986 Urlwin-Smith Feb 2001 B1
6196317 Hardy Mar 2001 B1
6202751 Chatterji et al. Mar 2001 B1
6209643 Nguyen et al. Apr 2001 B1
6209644 Brunet Apr 2001 B1
6209646 Reddy et al. Apr 2001 B1
6210471 Craig Apr 2001 B1
6214773 Harris et al. Apr 2001 B1
6231664 Chatterji et al. May 2001 B1
6234251 Chatterji et al. May 2001 B1
6238597 Yim et al. May 2001 B1
6241019 Davidson et al. Jun 2001 B1
6242390 Mitchell et al. Jun 2001 B1
6244344 Chatterji et al. Jun 2001 B1
6257335 Nguyen et al. Jul 2001 B1
6260622 Blok et al. Jul 2001 B1
6271181 Chatterji et al. Aug 2001 B1
6274650 Cui Aug 2001 B1
6279652 Chatterji et al. Aug 2001 B1
6279656 Sinclair et al. Aug 2001 B1
6283214 Guinot et al. Sep 2001 B1
6302207 Nguyen et al. Oct 2001 B1
6306998 Kimura et al. Oct 2001 B1
6310008 Rietjens Oct 2001 B1
6311773 Todd et al. Nov 2001 B1
6315040 Donnelly Nov 2001 B1
6321841 Eoff et al. Nov 2001 B1
6323307 Bigg et al. Nov 2001 B1
6326458 Gruber et al. Dec 2001 B1
6328105 Betzold Dec 2001 B1
6328106 Griffith et al. Dec 2001 B1
6330916 Rickards et al. Dec 2001 B1
6330917 Chatterji et al. Dec 2001 B2
6342467 Chang et al. Jan 2002 B1
6350309 Chatterji et al. Feb 2002 B2
6357527 Norman et al. Mar 2002 B1
6364018 Brannon et al. Apr 2002 B1
6364945 Chatterji et al. Apr 2002 B1
6367165 Huttlin Apr 2002 B1
6367549 Chatterji et al. Apr 2002 B1
6372678 Youngman et al. Apr 2002 B1
6376571 Chawla et al. Apr 2002 B1
6387986 Moradi-Araghi et al. May 2002 B1
6390195 Nguyen et al. May 2002 B1
6394181 Schnatzmeyer et al. May 2002 B2
6401817 Griffith et al. Jun 2002 B1
6405796 Meyer et al. Jun 2002 B1
6405797 Davidson et al. Jun 2002 B2
6406789 McDaniel et al. Jun 2002 B1
6408943 Schultz et al. Jun 2002 B1
6415509 Echols et al. Jul 2002 B1
6422183 Kato Jul 2002 B1
6422314 Todd et al. Jul 2002 B1
6439309 Matherly et al. Aug 2002 B1
6439310 Scott, III et al. Aug 2002 B1
6440255 Kohlhammer et al. Aug 2002 B1
6446727 Zemlak et al. Sep 2002 B1
6448206 Griffith et al. Sep 2002 B1
6450260 James et al. Sep 2002 B1
6454003 Chang et al. Sep 2002 B1
6457518 Castano-Mears et al. Oct 2002 B1
6458885 Stengel et al. Oct 2002 B1
6478092 Voll et al. Nov 2002 B2
6485947 Rajgarhia et al. Nov 2002 B1
6488091 Weaver et al. Dec 2002 B1
6488763 Brothers et al. Dec 2002 B2
6494263 Todd Dec 2002 B2
6503870 Griffith et al. Jan 2003 B2
6508305 Brannon et al. Jan 2003 B1
6510896 Bode et al. Jan 2003 B2
6520255 Tolman et al. Feb 2003 B2
6527051 Reddy et al. Mar 2003 B1
6528157 Hussain et al. Mar 2003 B1
6531427 Shuchart et al. Mar 2003 B1
6534449 Gilmour et al. Mar 2003 B1
6536939 Blue Mar 2003 B1
6538576 Schultz et al. Mar 2003 B1
6543545 Chatterji et al. Apr 2003 B1
6550959 Huber et al. Apr 2003 B2
6552333 Storm et al. Apr 2003 B1
6554071 Reddy et al. Apr 2003 B1
6555507 Chatterji et al. Apr 2003 B2
6569814 Brady et al. May 2003 B1
6582819 McDaniel et al. Jun 2003 B2
6588926 Huber et al. Jul 2003 B2
6588928 Huber et al. Jul 2003 B2
6593402 Chatterji et al. Jul 2003 B2
6599863 Palmer et al. Jul 2003 B1
6605570 Miller et al. Aug 2003 B2
6608162 Chiu et al. Aug 2003 B1
6609578 Patel et al. Aug 2003 B2
6616320 Huber et al. Sep 2003 B2
6620857 Valet Sep 2003 B2
6626241 Nguyen Sep 2003 B2
6632527 McDaniel et al. Oct 2003 B1
6632778 Ayoub et al. Oct 2003 B1
6632892 Rubinsztajn et al. Oct 2003 B2
6642309 Komitsu et al. Nov 2003 B2
6648501 Huber et al. Nov 2003 B2
6659175 Malone et al. Dec 2003 B2
6659179 Nguyen Dec 2003 B2
6664343 Narisawa et al. Dec 2003 B2
6667279 Hessert et al. Dec 2003 B1
6668926 Nguyen et al. Dec 2003 B2
6669771 Tokiwa et al. Dec 2003 B2
6677426 Noro et al. Jan 2004 B2
6681856 Chatterji et al. Jan 2004 B1
6686328 Binder Feb 2004 B1
6691780 Nguyen et al. Feb 2004 B2
6702094 Ishikawa et al. Mar 2004 B2
6705400 Nguyen et al. Mar 2004 B1
6710019 Sawdon et al. Mar 2004 B1
6713170 Kaneko et al. Mar 2004 B1
6725926 Nguyen et al. Apr 2004 B2
6725930 Boney et al. Apr 2004 B2
6725931 Nguyen et al. Apr 2004 B2
6729404 Nguyen et al. May 2004 B2
6729405 DiLullo et al. May 2004 B2
6732800 Acock et al. May 2004 B2
6745159 Todd et al. Jun 2004 B1
6749025 Brannon et al. Jun 2004 B1
6753299 Lunghofer et al. Jun 2004 B2
6763888 Harris et al. Jul 2004 B1
6764981 Eoff et al. Jul 2004 B1
6766858 Nguyen et al. Jul 2004 B2
6767868 Dawson et al. Jul 2004 B2
6776235 England Aug 2004 B1
6776236 Nguyen Aug 2004 B1
6799686 Echols et al. Oct 2004 B2
6817414 Lee Nov 2004 B2
6830105 Thesing Dec 2004 B2
6832650 Nguyen et al. Dec 2004 B2
6832651 Ravi et al. Dec 2004 B2
6832655 Ravensbergen et al. Dec 2004 B2
6837309 Boney et al. Jan 2005 B2
6840318 Lee et al. Jan 2005 B2
6851474 Nguyen Feb 2005 B2
6852173 Banerjee et al. Feb 2005 B2
6861394 Ballard et al. Mar 2005 B2
6866099 Nguyen et al. Mar 2005 B2
6877560 Nguyen et al. Apr 2005 B2
6881709 Nelson et al. Apr 2005 B2
6886635 Hossaini et al. May 2005 B2
6887834 Nguyen et al. May 2005 B2
6892813 Nguyen et al. May 2005 B2
6933381 Mallon et al. Aug 2005 B2
6938693 Boney et al. Sep 2005 B2
6949491 Cooke, Jr. Sep 2005 B2
6962200 Nguyen et al. Nov 2005 B2
6978836 Nguyen et al. Dec 2005 B2
6981560 Nguyen et al. Jan 2006 B2
6997259 Nguyen Feb 2006 B2
7007752 Reddy et al. Mar 2006 B2
7013976 Nguyen et al. Mar 2006 B2
7017665 Nguyen Mar 2006 B2
7021379 Nguyen et al. Apr 2006 B2
7025134 Byrd et al. Apr 2006 B2
7028774 Nguyen et al. Apr 2006 B2
7032663 Nguyen Apr 2006 B2
7032667 Nguyen et al. Apr 2006 B2
7036589 Nguyen May 2006 B2
7040403 Nguyen et al. May 2006 B2
7044220 Nguyen et al. May 2006 B2
7044224 Nguyen May 2006 B2
7049272 Sinclair et al. May 2006 B2
7056868 Benton et al. Jun 2006 B2
7059406 Nguyen Jun 2006 B2
7059407 Tolman et al. Jun 2006 B2
7063150 Slabaugh et al. Jun 2006 B2
7063151 Nguyen et al. Jun 2006 B2
7066258 Justus et al. Jun 2006 B2
7073581 Nguyen et al. Jul 2006 B2
7080688 Todd et al. Jul 2006 B2
7081439 Sullivan et al. Jul 2006 B2
7089167 Poe Aug 2006 B2
7091159 Eoff et al. Aug 2006 B2
7093658 Chatterji et al. Aug 2006 B2
7104325 Nguyen et al. Sep 2006 B2
7114560 Nguyen et al. Oct 2006 B2
7114570 Nguyen et al. Oct 2006 B2
7117942 Dalrymple et al. Oct 2006 B2
7131491 Blauch et al. Nov 2006 B2
7131493 Eoff et al. Nov 2006 B2
7153575 Anderson et al. Dec 2006 B2
7156194 Nguyen Jan 2007 B2
7178596 Blauch et al. Feb 2007 B2
7182136 Dalrymple et al. Feb 2007 B2
7196040 Heath et al. Mar 2007 B2
7198681 Nguyen et al. Apr 2007 B2
7204311 Welton et al. Apr 2007 B2
7205264 Boles Apr 2007 B2
7210528 Brannon et al. May 2007 B1
7211547 Nguyen May 2007 B2
7216711 Nguyen et al. May 2007 B2
7228904 Todd et al. Jun 2007 B2
7237609 Nguyen Jul 2007 B2
7244693 Kotlar et al. Jul 2007 B2
7252146 Slabaugh et al. Aug 2007 B2
7255169 van Batenburg et al. Aug 2007 B2
7261156 Nguyen et al. Aug 2007 B2
7264051 Nguyen et al. Sep 2007 B2
7264052 Nguyen et al. Sep 2007 B2
7265079 Wilbert et al. Sep 2007 B2
7267171 Dusterhoft et al. Sep 2007 B2
7267717 Watanabe et al. Sep 2007 B2
7273099 East, Jr. et al. Sep 2007 B2
7281580 Parker et al. Oct 2007 B2
7281581 Nguyen et al. Oct 2007 B2
7299875 Nguyen et al. Nov 2007 B2
7306037 Nguyen et al. Dec 2007 B2
7318473 East et al. Jan 2008 B2
7318474 Welton et al. Jan 2008 B2
7325608 van Batenburg et al. Feb 2008 B2
7334635 Nguyen Feb 2008 B2
7334636 Nguyen Feb 2008 B2
7343973 Dusterhoft et al. Mar 2008 B2
7345011 Nguyen et al. Mar 2008 B2
7350571 Nguyen et al. Apr 2008 B2
7350579 Gatlin et al. Apr 2008 B2
7353865 Nguyen et al. Apr 2008 B2
7363978 Welton et al. Apr 2008 B2
7392847 Gatlin et al. Jul 2008 B2
7398825 Nguyen et al. Jul 2008 B2
7407010 Rickman et al. Aug 2008 B2
7413010 Blauch et al. Aug 2008 B2
7419937 Rimmer et al. Sep 2008 B2
7426961 Stephenson et al. Sep 2008 B2
7428037 Laufer et al. Sep 2008 B2
7448451 Nguyen et al. Nov 2008 B2
7493957 Nguyen et al. Feb 2009 B2
7500519 Weaver et al. Mar 2009 B2
7500521 Nguyen et al. Mar 2009 B2
7541318 Weaver et al. Jun 2009 B2
20010016562 Muir et al. Aug 2001 A1
20020036088 Todd Mar 2002 A1
20020043370 Poe Apr 2002 A1
20020048676 McDaniel et al. Apr 2002 A1
20020070020 Nguyen Jun 2002 A1
20020104217 Echols et al. Aug 2002 A1
20020160920 Dawson et al. Oct 2002 A1
20020169085 Miller et al. Nov 2002 A1
20020189808 Nguyen et al. Dec 2002 A1
20030006036 Malone et al. Jan 2003 A1
20030013871 Mallon et al. Jan 2003 A1
20030060374 Cooke, Jr. Mar 2003 A1
20030106690 Boney et al. Jun 2003 A1
20030114314 Ballard et al. Jun 2003 A1
20030114317 Benton et al. Jun 2003 A1
20030130133 Vollmer Jul 2003 A1
20030131999 Nguyen et al. Jul 2003 A1
20030148893 Lungofer et al. Aug 2003 A1
20030186820 Thesing Oct 2003 A1
20030188766 Banerjee et al. Oct 2003 A1
20030188872 Nguyen et al. Oct 2003 A1
20030196805 Boney et al. Oct 2003 A1
20030205376 Ayoub et al. Nov 2003 A1
20030230408 Acock et al. Dec 2003 A1
20030230431 Reddy et al. Dec 2003 A1
20030234103 Lee et al. Dec 2003 A1
20040000402 Nguyen et al. Jan 2004 A1
20040014607 Sinclair et al. Jan 2004 A1
20040014608 Nguyen et al. Jan 2004 A1
20040040706 Hossaini et al. Mar 2004 A1
20040040708 Stephenson et al. Mar 2004 A1
20040040712 Ravi et al. Mar 2004 A1
20040040713 Nguyen et al. Mar 2004 A1
20040043906 Heath et al. Mar 2004 A1
20040045712 Eoff et al. Mar 2004 A1
20040048752 Nguyen et al. Mar 2004 A1
20040055747 Lee Mar 2004 A1
20040060702 Kotlar et al. Apr 2004 A1
20040106525 Wilbert et al. Jun 2004 A1
20040129923 Nguyen et al. Jul 2004 A1
20040138068 Rimmer et al. Jul 2004 A1
20040149441 Nguyen et al. Aug 2004 A1
20040152601 Still et al. Aug 2004 A1
20040152602 Boles Aug 2004 A1
20040162224 Nguyen et al. Aug 2004 A1
20040177961 Nguyen et al. Sep 2004 A1
20040194960 Nguyen et al. Oct 2004 A1
20040194961 Nguyen et al. Oct 2004 A1
20040206499 Nguyen et al. Oct 2004 A1
20040211559 Nguyen et al. Oct 2004 A1
20040211561 Nguyen et al. Oct 2004 A1
20040221992 Nguyen et al. Nov 2004 A1
20040231845 Cooke, Jr. Nov 2004 A1
20040231847 Nguyen et al. Nov 2004 A1
20040256097 Byrd et al. Dec 2004 A1
20040256099 Nguyen et al. Dec 2004 A1
20040261993 Nguyen Dec 2004 A1
20040261997 Nguyen et al. Dec 2004 A1
20040261999 Nguyen Dec 2004 A1
20050000694 Dalrymple et al. Jan 2005 A1
20050000731 Nguyen et al. Jan 2005 A1
20050006093 Nguyen et al. Jan 2005 A1
20050006095 Justus et al. Jan 2005 A1
20050006096 Nguyen et al. Jan 2005 A1
20050028976 Nguyen Feb 2005 A1
20050028979 Brannon et al. Feb 2005 A1
20050034862 Nguyen Feb 2005 A1
20050034865 Todd et al. Feb 2005 A1
20050045326 Nguyen Mar 2005 A1
20050045330 Nguyen et al. Mar 2005 A1
20050045384 Nguyen et al. Mar 2005 A1
20050051331 Nguyen et al. Mar 2005 A1
20050051332 Nguyen et al. Mar 2005 A1
20050059555 Dusterhoft et al. Mar 2005 A1
20050061509 Nguyen et al. Mar 2005 A1
20050089631 Nguyen et al. Apr 2005 A1
20050092489 Welton et al. May 2005 A1
20050126780 Todd et al. Jun 2005 A1
20050139359 Maurer et al. Jun 2005 A1
20050145385 Nguyen Jul 2005 A1
20050173116 Nguyen et al. Aug 2005 A1
20050178551 Tolman et al. Aug 2005 A1
20050194135 Nguyen et al. Sep 2005 A1
20050194136 Nguyen et al. Sep 2005 A1
20050194140 Dalrymple et al. Sep 2005 A1
20050194142 Nguyen Sep 2005 A1
20050197258 Nguyen et al. Sep 2005 A1
20050207001 Laufer et al. Sep 2005 A1
20050230111 Nguyen et al. Oct 2005 A1
20050257929 Nguyen et al. Nov 2005 A1
20050263283 Nguyen Dec 2005 A1
20050267001 Weaver et al. Dec 2005 A1
20050269086 Nguyen et al. Dec 2005 A1
20050269101 Stegent et al. Dec 2005 A1
20050274510 Nguyen et al. Dec 2005 A1
20050274517 Blauch et al. Dec 2005 A1
20050274520 Nguyen et al. Dec 2005 A1
20050277554 Blauch et al. Dec 2005 A1
20050282973 Nguyen et al. Dec 2005 A1
20050284632 Dalrymple et al. Dec 2005 A1
20050284637 Stegent et al. Dec 2005 A1
20060048943 Nguyen et al. Mar 2006 A1
20060048944 Van Batenburg et al. Mar 2006 A1
20060052251 Anderson et al. Mar 2006 A1
20060076138 Dusterhoft et al. Apr 2006 A1
20060089266 Dusterhoft et al. Apr 2006 A1
20060113078 Nguyen et al. Jun 2006 A1
20060124303 Nguyen et al. Jun 2006 A1
20060124309 Nguyen et al. Jun 2006 A1
20060137875 Dusterhoft et al. Jun 2006 A1
20060157243 Nguyen et al. Jul 2006 A1
20060175058 Nguyen et al. Aug 2006 A1
20060219405 Nguyen et al. Oct 2006 A1
20060219408 Nguyen et al. Oct 2006 A1
20060234874 Eoff et al. Oct 2006 A1
20060240994 Eoff et al. Oct 2006 A1
20060240995 Rickman et al. Oct 2006 A1
20060260810 Weaver et al. Nov 2006 A1
20060260813 Welton et al. Nov 2006 A1
20060264332 Welton et al. Nov 2006 A1
20060266522 Eoff et al. Nov 2006 A1
20060283592 Sierra et al. Dec 2006 A1
20060289160 van Batenburg et al. Dec 2006 A1
20070007009 Nguyen Jan 2007 A1
20070007010 Welton et al. Jan 2007 A1
20070012445 Nguyen et al. Jan 2007 A1
20070017706 Nguyen Jan 2007 A1
20070029087 Nguyen et al. Feb 2007 A1
20070102156 Nguyen et al. May 2007 A1
20070114032 Stegent et al. May 2007 A1
20070131422 Gatlin et al. Jun 2007 A1
20070131425 Gatlin et al. Jun 2007 A1
20070179065 Nguyen Aug 2007 A1
20070187090 Nguyen et al. Aug 2007 A1
20070187097 Weaver et al. Aug 2007 A1
20070261854 Nguyen et al. Nov 2007 A1
20070267194 Nguyen et al. Nov 2007 A1
20070289781 Rickman et al. Dec 2007 A1
20080006405 Rickman et al. Jan 2008 A1
20080006406 Nguyen et al. Jan 2008 A1
20080011478 Welton et al. Jan 2008 A1
20080060809 Parker et al. Mar 2008 A1
20080110624 Nguyen et al. May 2008 A1
20080115692 Welton et al. May 2008 A1
20080135251 Nguyen et al. Jun 2008 A1
Foreign Referenced Citations (49)
Number Date Country
2063877 Sep 1992 CA
0313243 Apr 1989 EP
0506934 Oct 1992 EP
0510762 Nov 1992 EP
0528595 Feb 1993 EP
0643196 Mar 1995 EP
0834644 Apr 1998 EP
0853186 Jul 1998 EP
0864726 Sep 1998 EP
0879935 Nov 1998 EP
0933498 Aug 1999 EP
1001133 May 2000 EP
1132569 Sep 2001 EP
1326003 Jul 2003 EP
1362978 Nov 2003 EP
1394355 Mar 2004 EP
1396606 Mar 2004 EP
1398460 Mar 2004 EP
1403466 Mar 2004 EP
1464789 Oct 2004 EP
1607572 Dec 2005 EP
1107584 Mar 1968 GB
1264180 Feb 1972 GB
1292718 Oct 1972 GB
2298440 Sep 1996 GB
2382143 May 2003 GB
WO 9315127 Aug 1993 WO
WO 9407949 Apr 1994 WO
WO 9408078 Apr 1994 WO
WO 9408090 Apr 1994 WO
WO 9509879 Apr 1995 WO
WO 9711845 Apr 1997 WO
WO 9927229 Jun 1999 WO
WO 0187797 Nov 2001 WO
WO0181914 Nov 2001 WO
WO 0212674 Feb 2002 WO
WO 03027431 Apr 2003 WO
WO2004009956 Jan 2004 WO
WO 2004009956 Jan 2004 WO
WO 2004037946 May 2004 WO
WO 2004038176 May 2004 WO
WO 2004083600 Sep 2004 WO
WO2004090281 Oct 2004 WO
WO2004104368 Dec 2004 WO
WO 2005021928 Mar 2005 WO
WO2005080749 Sep 2005 WO
WO2006103385 Oct 2006 WO
WO2006116868 Nov 2006 WO
WO2007091007 Aug 2007 WO
Related Publications (1)
Number Date Country
20100132943 A1 Jun 2010 US
Divisions (1)
Number Date Country
Parent 10775347 Feb 2004 US
Child 11833649 US
Continuation in Parts (1)
Number Date Country
Parent 11833649 Aug 2007 US
Child 12643460 US