The invention relates generally to systems for applying, and infusing resins for composite materials and subsequent layup of the infused materials, and more particularly, to automated systems for controllably delivering, applying and infusing resins onto one or more fiber tows and subsequent layup of the infused fiber tows.
Resin infused fiber composite materials are being used increasingly in a variety of diverse industries, such as automotive, aircraft, and wind-energy, in part, because of their low weight and high strength properties. It would be desirable to form complex composite components and/or fiber patterns wherein the infusion process and layup process are integrated into an automated in-line feed-through system. Current manufacturing processes typically involve the use of fiber pre-forms with subsequent resin infusion, or preimpregnated fiber sheets called “prepregs” and a separate layup system and procedure using these infused fiber pre-forms or preimpregnated fiber tows.
Currently, efforts are underway to provide infusion of one or more individual fiber tows using systems including rollers with resin flowing through holes in the rollers from the bore to the outside surface. However, these systems do not permit control of the infusion of individual tows. To provide for control of infusion of individual tows, efforts are also underway to provide infusion of an array of fiber tows using systems including resin flowing through individually controllable nozzles. Irrespective of infusion procedure, subsequent to the infusion process, the one or more fiber tows are subject to layup on a separate component layup tool or tools. This process is time consuming and expensive in that separate system are utilized to complete the fabrication of composite parts.
It would therefore be desirable to provide an improved system that permits control of the resin infusion of one or more fiber tows in an automated in-line feed-through system that integrates a layup system and procedure to complete fabrication of a composite part. In addition, it would be desirable for the system to facilitate real time in-line infusion for one or more dry fiber tows and layup of the infused fiber tows for formation of complex composite components in a single manufacturing step.
Briefly, one aspect of the present invention resides in an automated in-line manufacturing system for applying a resin to one or more fiber tows, infusing the one or more fiber tows with the resin to form one or more infused fiber tows and subsequent layup of the one or more infused fiber tows to form a composite part, wherein each of the one or more fiber tows is moving at a respective fiber speed. The automated in-line manufacturing system includes an automated resin delivery, deposition and infusion system, an automated layup system and a controller. The automated resin delivery, deposition and infusion system is configured to deliver and deposit the resin on a respective one of the one or more fiber tows and infuse the resin into the one or more fiber tows to form the one or more infused fiber tows. The automated layup system is configured in-line with the automated resin delivery, deposition and infusion system to receive a feed-through of the one or more infused fiber tows. The automated layup system comprising at least one compaction roller configured to adhere the one or more infused fiber tows to a surface of a substrate and a positioning system to orient the compaction roller relative to the surface of the substrate. The controller is configured to control a flow rate of the resin relative to the fiber speed of the respective one of the one or more fiber tows, control a temperature of the resin, the infused fiber tows and the automated layup system, and control tension of the one or more infused fiber tows within the automated layup system.
Another aspect of the invention resides in an automated in-line manufacturing system for applying a resin to one or more fiber tows, infusing the one or more fiber tows with the resin to form one or more infused fiber tows and subsequent layup of the one or more infused fiber tows to form a composite part, wherein each of the one or more fiber tows is moving at a respective fiber speed. The automated in-line manufacturing system includes an automated resin delivery, deposition and infusion system, an automated layup system and controller. The automated resin delivery, deposition and infusion system is configured to deliver and deposit the resin on a respective one of the one or more fiber tows and infuse the resin into the one or more fiber tows to form the one or more infused fiber tows. The automated layup system is configured in-line with the automated resin delivery, deposition and infusion system to receive the one or more infused fiber tows. The automated layup system comprising a plurality of pinching rollers in a feed path of the one or more infused fiber tows, at least one compaction roller configured to adhere the one or more infused fiber tows to a surface of a substrate and a positioning system to orient the compaction roller relative to the surface of the substrate. The controller is configured to control a flow rate of the resin relative to the fiber speed of the respective one of the one or more fiber tows through the automated resin delivery, deposition and infusion system using feedback based on measurement data of at least one of a resin width and a resin thickness for respective ones of the one or more infused fiber tows, control a temperature of the resin, the infused fiber tows and the automated layup system, and control tension of the one or more infused fiber tows within the automated layup system.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
An automated resin delivery, deposition and infusion system 110 for delivering and applying a resin to one or more fiber tows 120, infusing the fiber tows with a resin to form one or more infused fiber tows 134 and an automated in-line layup system 112 for subsequent layup of the infused fiber tows 134 is described generally with reference to
For the example arrangement shown in
The one or more fiber tows 120 move from the width-controlling roller 124 to a resin delivery, deposition and infusion portion 126 of the automated resin delivery, deposition and infusion system 110. As indicated in
With regard to the resin 130 and one or more fiber tows 120, the invention is not limited to specific resins or fiber types. However, in one non-limiting example, the resin 130 is a thermoset resin useful in composite fibers. Examples of suitable thermoset resins that may be utilized include, but are not limited to epoxies, polyesters, vinylesters, phenolic resins, polyurethanes, polyamides, or combinations of two or more of these. In addition, any suitable reinforcing material may be infused using the apparatus, systems and methods described herein. For example, relatively continuous fibers, or tows, may be arranged to form a unidirectional array of fibers, a cross-plied array of fibers, or bundled in tows that are arranged to form a unidirectional array of tows, or that are woven or cross-plied to form a two-dimensional array, or that are woven or braided to form a three-dimensional fabric. For three-dimensional fabrics, sets of unidirectional tows may, for example, be interwoven transverse to each other.
Useful fibers to be included in such reinforcing materials, such as tapes, or fabrics, include without limitation, glass fibers, carbon and graphite fibers, basalt fibers, polymeric fibers, including aramide and boron filaments, silica fibers, copper fibers and the like. The fibers may be non-conductive or conductive, depending upon the desired application of the composite fiber. In this particular non-limiting example, the resin 130 is an epoxy resin, and the one or more fiber tows 120 comprise carbon fibers. However, the invention is not limited to these specific resins or fiber types.
In a non-limiting example, delivery, depositing and infusion portion 126 includes one or more nozzles 128 configured to deposit the resin 130 on a respective one of the one or more fiber tows 120. In a preferred embodiment, one nozzle 128 is provided for each of the one or more fiber tows 120. The invention is not limited to any specific arrangement of nozzles. Additional aspects of an application and infusion system incorporating the use of nozzles is further described in copending application, entitled, “Resin Application and Infusion System”, bearing attorney docket number 236021-1 and U.S. patent application bearing Ser. No. 12/575,668, filed by the same assignee, and incorporated herein by this reference.
The resin infusion apparatus described can be provided as a portion of the delivery, deposition and infusion portion 126, and used to infuse any desired resin into any desired reinforcing material. Such a system will desirably comprise a source of the desired resin 130, and one or more computer controlled pumps 131, wherein each of the pumps is configured to supply the resin 130 to ones or more of the nozzles 128, and wherein each of the pumps 131 is controlled by a controller (described presently).
As indicated in
For certain embodiments, the controller 132 is further configured to control the flow rate of the resin 130 through each of the nozzles 128 using feedback based on measurement data of resin width and/or resin thickness for respective ones of the fiber tows 120. For the example configuration depicted in
The automated in-line layup system 112 is disposed in feed-through positioning with the automated resin delivery, deposition and infusion system 110. More specifically, the automated in-line layup system 112 is aligned to receive a feed through of the one or more fiber tows 120 after infusion of the resin 130, and more particularly to receive one or more infused fiber tows 134. The automated in-line layup system 112 is generally comprised of at least one compaction roller 136 configured to deliver a force to adhere the one or more infused fiber tows 134 to a surface 140 of a substrate 138, such as a mold or tool. During setup, the consistency of the resin 130 chosen may be such that the resin 130 will be tacky enough to adhere to the substrate 138 rather than the compaction roller 136. In other non-limiting examples the temperature of the resin infused tow 134 may require the inclusion of a heating or cooling means (described presently) to meet the temperature requirement. The automated in-line layup system 112 may further include a positioning system 142 to orient the compaction roller 136 relative to the surface 140 of the substrate 138. In one non-limiting example, the in-line layup system 112 may be mounted on a robotic head in front of the substrate 138, or mold, such that the one or more resin infused fiber tows 134 will adhere to the substrate 138 and pull the fiber feed through the automated resin delivery, deposition and infusion system 110 when the automated in-line layup system 112 moves with respect to the substrate 138.
The specific configuration of the composite automated in-line manufacturing system 100 may vary based on the application.
Turning now to
As illustrated in
For the example arrangement shown in
A plurality of pores (not shown) are provided in connection with the one or more infusion rollers 228 and perforate the arcuate surfaces thereof, i.e., the plurality of pores connect the interior arcuate surface 227 to the exterior arcuate surface 229. The one or more infusion rollers 228 may be provided with a plurality of pores that extend substantially across the entirety of the length of each of the one or more infusion rollers 228, or any lesser length, or that are spaced in an irregular fashion or pattern wherein the pores are not equidistant from one another. Additional aspects of an application and infusion system incorporating the use of one or more infusion rollers and perforates is further described in copending application, entitled, “Resin Infusion Apparatus and System, Layup System, and Methods of Using These”, bearing attorney docket number 241776-1 and U.S. patent application bearing Ser. No. 12/648,404, and incorporated herein by this reference.
The resin infusion apparatus described can be provided as a portion of the delivery, deposition and infusion portion 226, and used to infuse any desired resin into any desired reinforcing material. Such a system will desirably comprise a source of the desired resin 230, and a pump 231 capable of applying the desired pressure to the resin 230 to force it through the infusion rollers 228 and out the pores thereof, relatively uniformly, to infuse the desired reinforcing material.
Similarly to the embodiment described in
The automated in-line layup system 212 is disposed in feed-through positioning with the automated resin delivery, deposition and infusion system 210. More specifically, the automated in-line layup system 212 is aligned to receive the one or more infused fiber tows 234. In a non-limiting embodiment, the automated in-line layup system 212 is generally comprised of at least one compaction roller 236 and at least one set of pinching rollers 238 configured to adhere the one or more infused fiber tows 234 to a surface 240 of a substrate 238 to form a composite part 244. The compaction roller 236 is disposed in-line with the one or more infused fiber tow 134 feed through and provides a force for compacting the one or more infused fiber tows 234 onto the surface 240 of the substrate 238. The plurality of pinching rollers 237 are disposed in-line with the feed-through, and more particularly disposed between the automated delivery, deposition and infusion system 210 and the compaction roller 236. The plurality of pinching rollers 237 provide a number of different functions including, but not limited to the following: (i) improving the degree of infusion of resin 230 if the one or more fiber tows 220 have not been entirely infused by the delivery, deposition and infusion portion 226; (ii) shaping the one or more infused fiber tows 234 (or tape) to yield a more rectangular cross section; and (iii) reducing the tension on the feed through of the one or more infused fiber tows 234 just prior to layup by the compaction roller 236. The automated in-line layup system 212 may further include a positioning and control system 242 to orient the compaction roller 236 relative to the surface 240 of the substrate 238. In addition, the positioning and control system 242 may provide control of parameters, such as spacing, or the like of the plurality of pinching rollers 237 and thereby provide control of the feed-through tension.
The specific configuration of the composite automated in-line manufacturing system 200 may vary based on the application.
Illustrated in
Referring now to
Similar to the embodiment described with respect to
The one or more fiber tows 420 move from the width-controlling roller 424 to the application and infusion portion of the automated resin delivery, deposition and infusion system 410. As indicated in
As indicated in
For the example configuration depicted in
For particular embodiments, the controller 432 is further configured to receive fiber feed rate signals for the respective ones of the plurality of fiber tows 430 and to control the pumps 419 based at least in part on the fiber feed rate signals for the respective ones of the plurality of fiber tows 420. For certain embodiments, the fiber tows 420 have different fiber feed rates, such that the controller 432 applies different control signals to the respective pumps 419. The fiber speed may be zero in some instances for one or more of the fiber tows 420. In one non-limiting example, the fiber feed rate signals are read from a metering roller (not shown). The metering roller could be located along the tow path.
The automated in-line layup system 412 is disposed in feed-through positioning with the automated resin delivery, deposition and infusion system 410. More specifically, the automated in-line layup system 412 is aligned to receive the feed-through of the plurality of infused fiber tows 434. The automated in-line layup system 412 is generally comprised of at least one compaction roller 436 and at least one set of pinching rollers 437 configured to adhere the one or more infused fiber tows 434 to a surface 440 of a substrate 438. Similar to the previously described embodiments, the compaction roller 436 is disposed in-line with the feed-through and provides a force for compacting the infused fiber tows 434 to substrate 438. The plurality of pinching rollers 437 are disposed in-line between the automated delivery, deposition and infusion system 410 and the compaction roller 436. The plurality of pinching rollers 437, as previously described, provide further infusion of resin 430 if the one or more fiber tows 420 have not been entirely infused during the infusion step, shaping of the one or more infused fiber tows 434 (or tape) to yield a more rectangular cross section and reduction in the tension on the feed through of the one or more infused fiber tows 434 just prior to layup by the compaction roller 436.
The automated in-line layup system 412 may further include a cooling module 444 and a positioning and control system 442 to orient the compaction roller 436 relative to the surface 440 of the substrate 438. In addition, the positioning and control system 442 may provide control of parameters, such as spacing, or the like of the plurality of pinching rollers 437. After passing through the pinching rollers 437, the resin infused fiber tows 434 are fed through the cooling module 444, in the automated in-line layup system 412 illustrated in
Illustrated in
Beneficially, by integrating an automated resin delivery, application and infusion system 110, 210, 310, 410 in-line and integrated with an automated layup system 112, 212, 312, 412, advanced composite structures can be fabricated, despite having complex shapes requiring separate manufacturing processes and steps to achieve delivery, application and infusion of fiber tows and subsequent layup of the infused fiber tows. The resulting composite automated in-line manufacturing system integrates the in-line resin delivery, application and infusion system and automated layup system of the present invention thus providing fabrication of these complex composite structures with improved control and at lower cost than conventional fiber placement systems.
Although only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.