1. Field of the Invention
Embodiments of the present invention relate to methods and systems for zonal isolation, where a zone isolation composition is pumped into an annulus between a borehole and a tubular member allowed to set to form an isolation seal, where the seal has a compressibility sufficient for expandable tubing to be expanded without loss in seal integrity. The cured compositions are ideally suited for use with expansion tubing, where the zonal isolation composition must be compressible, while continuing to isolate the zones.
More particularly, embodiments of the present invention relate to methods and systems for zonal isolation, where the zone isolation composition is pumped into an annulus between a borehole and a tubular member allowed to test to form an isolation seal, where the seal has a compressibility sufficient for expandable tubing to be expanded without loss in seal integrity. The composition includes epoxy resins and hardening agents in the presence or absence of a solvent or solubilizing agent. The invention contemplates different combination of the resins, hardening agents and solubilizing agents for different temperature application: a low temperature zonal isolation composition, a moderate temperature isolation composition and a high temperature isolation composition, where the low temperature composition sets at a low temperature range, the moderate temperature composition set at a moderate temperature range and the high temperature composition sets at a high temperature range. All of the compositions cure to form a compressible zonal isolation epoxy seal capable of use with expansion tubing.
2. Description of the Related Art
Conventional sealants for zonal isolation are cements, foam fluids or resins. In expandable tubing applications, the zonal isolation sealant must be able to compress and to continue to seal after the sealant is pumped behind the pipe and set. Conventional zone isolation systems do not offer the compressibility and/or resilience necessary to permit expandable pipe to expand without fracturing the system due to their hardness obviating zonal isolation. Expandable pipe must, therefore, be expanded prior to the sealant setting. This requires retarding the setting of the sealant for a time sufficient to permit the expandable pipe to be expanded prior to sealant setting. Once the tubing is expanded, the sealant sets. Problems arise when expansion of expandable tubing cannot occur within the retarding window for once the sealant sets, the expandable tubing cannot be expanded due the incompressibility of the cured sealant.
Thus, there is a need in the art for a sealant that is compressible and/or resilient permitting expandable tubing to be expanded before, during and/or after sealant curing. The solution to these problems is a sealant that is compressible or resilient enough to allow expansion of the expandable pipe before, during or after the material has harden.
Embodiments of the present invention provide an epoxy zonal isolation composition including one epoxy resin or a plurality of epoxy resins and one hardening agent or a plurality of hardening agents in the present or absence of a diluent or solvent, where the composition cures to form a cured epoxy zonal isolation composition having sufficient compressibility and/or resilience properties to permit compression of the composition without substantial loss in seal integrity or zonal isolation. In certain embodiments, the compressibility is sufficient to allow expansion of expansion tubing pipe during or especially after hardening or curing of the composition. The sealant compositions are designed to have sufficient strength and bonding characteristics so that the liner, expandable tubing or other tubing inserted into the borehole is held in place in the borehole and the borehole is sealed so that there is no migration of fluids from one zone to another zone. The term substantial loss of seal integrity means that the seal integrity after compression with is at least 75% of the seal integrity before compression. In other embodiments, the term means that the seal integrity after compression with is at least 85% of the seal integrity before compression. In other embodiments, the term means that the seal integrity after compression with is at least 90% of the seal integrity before compression. In other embodiments, the term means that the seal integrity after compression with is at least 95% of the seal integrity before compression.
Embodiments of the present invention provide an epoxy resin system having desired mechanical properties that allow the epoxy resin system to have improved compressibility and/or resiliency properties.
Embodiments of the present invention provide a resilient sealant composition for use as a squeeze material to shut off annular gas migration and/or zonal isolation during primary casing or liner top isolation. The sealant composition is unique because the mechanical properties are set to allow the composition to be ductile and offer long term isolation.
Embodiments of the present invention provide methods for zonal isolation including inserting a tubing into a borehole. After tubing placement, pumping a composition of this invention into an annulus between the wall of the borehole and an outer wall of the tubing. Allowing sufficient time for the composition to cure sealing the annulus. The composition can be pumped in two parts, the resins and the hardening agents are pumped separately downhole and mixed in a static mixing chamber downhole prior to being pumped into the annulus. In the case of expansion tubing, the methods may also include expanding the tubing, where the expansion of the tubing results in a compression of the composition, where the composition maintain isolation after expansion.
Embodiments of the present invention provide methods for squeeze operations including pumping the composition into annulus or a region, where fluid (gas, liquid, or mixture thereof) migration is occurring to form a seal to reduce or eliminate such migration. The methods may also include isolating the region so that the composition locally reduces or prevents fluid (gas, liquid, or mixture thereof) migration. The methods may also include maintaining isolation until the composition is fully cured.
Embodiments of the present invention provide a method for zone isolation including pumping an epoxy-based composition in an annulus between a borehole and a tubing string. The composition is then allowed to cure to form a zonal isolation structure comprising the cured composition. The cured composition is compressible and cures at a temperature range between about 50° and about 300° F. The method may also include prior to pumping, isolating a section of an annulus between the borehole and the tubing string so that the zonal isolation structure is located along a length of the tubing string. The method may also include during or after curing, expanding a section of the tubing string, where the compressibility of the cured is sufficient to allow expansion of tubing without substantial loss in seal integrity or zonal isolation. The zonal isolation structure is locate at a distal end of the borehole. The composition comprises one epoxy resin or a plurality of epoxy resins and one hardening agent or a plurality of hardening agents in the present or absence of a diluent or solvent, where the composition cures to form a cured epoxy composition having sufficient compressibility and/or resilience properties to permit compression of the composition without substantial loss in seal integrity or zonal isolation. The diluents comprise aromatic solvents and heterocyclic aromatic solvents or mixtures and combinations thereof. The epoxy resins may comprise a) glycidyl ethers epoxy resin prepared by the reaction of epichlorohydrin with a compound containing a hydroxyl group carried out under alkaline reaction conditions; (b) epoxy resins prepared by the reaction of epichlorohydrin with mononuclear di- and tri-hydroxy phenolic compounds; (c) epoxidized derivatives of natural oils with mixed long-chain saturated and unsaturated acids having between about 14 and 20 carbon atoms; (d) polyepoxides derived from esters of polycarboxylic acids with unsaturated alcohols; (e) polyepoxides derived from esters prepared from unsaturated alcohols and unsaturated carboxylic acids; (f) epoxidized butadiene based polymers; (g) epoxidized derivatives of dimers of dienes, and (h) mixtures or combinations thereof. The epoxy resins may have a molecular weight between about 50 and about 10,000. The curing agents may comprise polyamine curing agents, alkoxylated polyamine curing agents, heterocylic amine curing agents, or similar compounds including a plurality of amino groups, or mixtures and combinations thereof. The curing agents may comprise alkoxylated aliphatic polyamines, alkoxylated cycloaliphatic polyamines, alkoxylated aromatic polyamines, alkoxylated heterocyclic polyamines or mixtures and combinations thereof. The curing agents may comprise alkoxylated N-alkyl- and N-alkylenyl-substituted 1,3-diaminopropanes or mixtures and combinations thereof. The aromatic heterocyclic amine curing agents may comprise pyrrolidine, alkyl pyrrolidines, oxazoline, alkyl oxazolines, triazoles, alkyl triazoles, pyrazolidine, alkyl pyrazolidine, piperidine, alkyl piperidines, piperazine, alkyl piperazines, imidazoline, imidazolidine, alkyl imidazolidines, azepane, alkyl azepane, azepine, alkyl azepines, morpholine, alkyl morpholines, diazapines, alkyl diazapines, or mixtures and combinations thereof. The curing agents comprise alkyl pyridines and DURA COAT 2B™ available from JACAM Chemicals, LLC, of Sterling, KS.
In certain embodiments, the temperature range is between about 150° F. to about 300° F. and the composition comprises from about 60 wt. % to about 85 wt. % of an epoxy resin or mixture of epoxy resins, from about 1 wt. % to about 15 wt. % of a curing agents, and from about 39 wt. % to about 0 wt. % of a diluent or solvent, where the diluent or solvent is used to reduce the viscosity of the composition. The epoxy resins are glycidyl ethers epoxy resins or mixture of glycidyl ethers epoxy resins, the curing agent is an alkoxylated polyamine or mixture of alkoxylated polyamines and the diluent is an aromatic heterocyclic solvent or mixture of aromatic heterocyclic solvents. The epoxy resin is DURA COAT 1A™ available from JACAM Chemicals, LLC, of Sterling, KS, the curing agent is DURA COAT 2B™ available from JACAM Chemicals, LLC, of Sterling, KS and the diluent is AKOLIDINE™ 11 available from Lonza Group Ltd, Joseph Colleluori, Muenchensteinerstrasse 38, CH-4002 Basel, Switzerland.
In certain embodiments the temperature range is between about 90° F. and about 150° F. and the composition comprises from about 70 wt. % to about 50 wt. % of an epoxy resin or mixture of epoxy resins and from about 30 wt. % to about 50 wt. % of a curing agents. The epoxy resins may be glycidyl ethers epoxy resin or mixture of glycidyl ethers epoxy resins and the curing agent may be a heterocyclic amine. The epoxy resin may be DURA COAT 1A™ available from JACAM Chemicals, LLC, of Sterling, KS and the curing agent may be a imidazoline or mixture or imidazolines.
In certain embodiments the temperature range is between about 50° F. and about 90° F. and the composition comprises from about 75 wt. % to about 99 wt. % of an epoxy resin or mixture of epoxy resins and from about 25 wt. % to about 1 wt. % of a curing agents. The epoxy resins may be glycidyl ethers epoxy resin or mixture of glycidyl ethers epoxy resins and the curing agent is a imidazoline, pyrrolidine, pyrrole, pyridine, piperidine or mixtures thereof. The epoxy resin may be DURA COAT 1A™ available from JACAM Chemicals, LLC, of Sterling, KS and the curing agent may be a imidazoline, pyrrolidine, pyrrole, pyridine, piperidine or mixtures thereof.
The invention can be better understood with reference to the following detailed description together with the appended illustrative drawings in which like elements are numbered the same:
The inventors have found that a thermal setting epoxy based resin system can be used as a zone isolation sealant in downhole zone isolation operations. The epoxy based resin system cures to form a zonal isolation composition having a compressibility sufficient for use in expansion tubing applications, where the composition compresses during tubing expansion without substantial loss in seal integrity, where the term substantial means that the seal integrity after expansion is at least 80% of the seal integrity prior to expansion and after setting. In other embodiments, the seal integrity after expansion is at least 85% of the seal integrity prior to expansion and after setting. In other embodiments, the seal integrity after expansion is at least 90% of the seal integrity prior to expansion and after setting. In other embodiments, the seal integrity after expansion is at least 95% of the seal integrity prior to expansion and after setting. The inventors have also found that the composition may be pumped into an annulus between the wellbore and the expansion tubing, and the tubing expanded while the composition is curing. The compositions of this invention are designed to cure after the composition has been pumped into a zone, where isolation is required or desired. In certain embodiments, the hardening agents have delayed cure on-set. In other embodiments, the hardening agent are added to the resins downhole, just prior to the composition being pumped into the zone. In these latter embodiments, the resin and hardening agents may pass through a static mixer, mechanical mixer, electromechanical mixer or other type of mixer to insure adequate dispersal of the hardening agent in the resin.
Embodiments of the present invention broadly relate to an epoxy-based zonal isolation composition including one epoxy resin or a plurality of epoxy resins and one hardening agent or a plurality of hardening agents in the present or absence of a diluent or solvent. The composition cures to form a cured epoxy-based zonal isolation composition having sufficient compressibility and/or resilience properties to permit compression of the composition without substantial loss in seal integrity or zonal isolation. In certain embodiments, the compressibility is sufficient to allow expansion of expansion tubing pipe during or especially after hardening or curing of the composition. The sealant compositions are designed to have sufficient strength and bonding characteristics so that the liner, expandable tubing or other tubing inserted into the borehole is held in place in the borehole and the borehole is sealed so that there is no migration of fluids from one zone to another zone.
Embodiments of the present invention specifically relate to high-temperature epoxy-based zonal isolation compositions including one epoxy resin or a plurality of epoxy resins and one hardening agent or a plurality of hardening agents in the present or absence of a diluent or solvent. The composition is designed to thermally set at temperature between about 150° F. to about 300° F. In certain embodiments, the high-temperature zonal isolation composition includes from about 60 wt. % to about 85 wt. % of an epoxy resin or mixture of epoxy resins, from about 1 wt. % to about 15 wt. % of a curing agents, and from about 39 wt. % to about 0 wt. % of a diluent or solvent. The diluent or solvent is used to reduce the viscosity of the composition. In other embodiments, the high-temperature zonal isolation composition includes from about 65 wt. % to about 85 wt. % of an epoxy resin or mixture of epoxy resins, from about 5 wt. % to about 10 wt. % of a curing agents, and from about 30 wt. % to about 5 wt. % of a diluent or solvent. In other embodiments, the high-temperature zonal isolation composition includes from about 75 wt. % to about 85 wt. % of an epoxy resin or mixture of epoxy resins, from about 5 wt. % to about 10 wt. % of a curing agents, and from about 20 wt. % to about 5 wt. % of a diluent or solvent. In other embodiments, the high-temperature zonal isolation composition includes from about 80 wt. % to about 85 wt. % of an epoxy resin or mixture of epoxy resins, from about 5 wt. % to about 10 wt. % of a curing agents, and from about 15 wt. % to about 5 wt. % of a diluent or solvent. In certain embodiments, the epoxy resin is a glycidyl ethers epoxy resin or mixture of glycidyl ethers epoxy resins, the curing agent is an alkoxylated polyamine or mixture of alkoxylated polyamines and the diluent is an aromatic heterocyclic solvent or mixture of aromatic heterocyclic solvents. In other embodiments, the epoxy resin is DURA COAT 1A™ available from JACAM Chemicals, LLC, of Sterling, KS, the curing agent is DURA COAT 2B™ available from JACAM Chemicals, LLC, of Sterling, KS and the diluent is AKOLIDINE™ 11 available from Lonza Group Ltd, Joseph Colleluori, Muenchensteinerstrasse 38, CH-4002 Basel, Switzerland.
Embodiments of the present invention specifically relate to mid-temperature epoxy-based zonal isolation compositions including one epoxy resin or a plurality of epoxy resins and one hardening agent or a plurality of hardening agents in the present or absence of a diluent or solvent. The composition is designed to thermally set at temperature between about 90° F. and about 150° F. In certain embodiments, the mid-temperature zonal isolation composition includes from about 70 wt. % to about 50 wt. % of an epoxy resin or mixture of epoxy resins and from about 30 wt. % to about 50 wt. % of a curing agents. In other embodiments, the mid-temperature zonal isolation composition includes from about 60 wt. % to about 50 wt. % of an epoxy resin or mixture of epoxy resins and from about 40 wt. % to about 50 wt. % of a curing agents. In other embodiments, the mid-temperature zonal isolation composition includes from about 55 wt. % to about 50 wt. % of an epoxy resin or mixture of epoxy resins and from about 45 wt. % to about 50 wt. % of a curing agents. The mid-temperature zonal isolation compositions may be diluted with up to about 20 wt. % of a diluent or solvent, where the diluent or solvent is used to reduce the viscosity of the composition. In other embodiments, the epoxy resin is glycidyl ethers epoxy resin or mixture of glycidyl ethers epoxy resins and the curing agent is a heterocyclic amine. In certain embodiments, the epoxy resin is DURA COAT 1A™ available from JACAM Chemicals, LLC, of Sterling, KS, and the curing agent is a imidazoline or mixture or imidazolines.
Embodiments of the present invention specifically relate to low-temperature epoxy-based zonal isolation compositions including one epoxy resin or a plurality of epoxy resins and one hardening agent or a plurality of hardening agents in the present or absence of a diluent or solvent. The composition is designed to thermally set at temperature between about 50° F. and about 90° F. In certain embodiments, the low-temperature zonal isolation composition includes from about 75 wt. % to about 99 wt. % of an epoxy resin or mixture of epoxy resins and from about 25 wt. % to about 1 wt. % of a curing agents. In other embodiments, the low-temperature zonal isolation composition includes from about 85 wt. % to about 97.5 wt. % of an epoxy resin or mixture of epoxy resins and from about 15 wt. % to about 2.5 wt. % of a curing agents. In other embodiments, the low-temperature zonal isolation composition includes from about 90 wt. % to about 95 wt. % of an epoxy resin or mixture of epoxy resins and from about 10 wt. % to about 5 wt. % of a curing agents. The low-temperature zonal isolation compositions may be diluted with up to about 20 wt. % of a diluent or solvent, where the diluent or solvent is used to reduce the viscosity of the composition. In other embodiments, the epoxy resin is glycidyl ethers epoxy resin or mixture of glycidyl ethers epoxy resins and the curing agent is a heterocyclic amine. In certain embodiments, the epoxy resin is DURA COAT 1A™ available from JACAM Chemicals, LLC, of Sterling, KS, and the curing agent is a imidazoline, pyrrolidine, pyrrole, pyridine, piperidine or mixtures thereof.
Embodiments of the present invention also broadly relates to methods for zonal isolation including inserting a tubing into a borehole. After tubing placement, pumping a composition of this invention into an annulus between the wall of the borehole and an outer wall of the tubing. The method also includes allowing sufficient time for the composition to cure sealing the annulus. The composition can be pumped in two parts, the resins and the hardening agents are pumped separately downhole and mixed in a static mixing chamber downhole prior to being pumped into the annulus.
Embodiments of the present invention also provide methods for squeeze operations including pumping the composition into annular spaces, regions or locations in a complete well, where gas or oil migration is occurring to form a seal to reduce or eliminate such migration.
Suitable epoxy resin include, without limitation, (a) glycidyl ethers epoxy resin prepared by the reaction of epichlorohydrin with a compound containing a hydroxyl group (e.g., bisphenol A) carried out under alkaline reaction conditions; (b) epoxy resins prepared by the reaction of epichlorohydrin with mononuclear di- and tri-hydroxy phenolic compounds such as resorcinol and phloroglucinol, selected polynuclear polyhydroxy phenolic compounds such as bis(p-hydroxyphenyl)methane and 4,4′-dihydroxy biphenyl, or aliphatic polyols such as 1,4-butanediol and glycerol; (c) epoxidized derivatives of natural oils such as the triesters of glycerol with mixed long-chain saturated and unsaturated acids having between about 14 and 20 carbon atoms (e.g., 16, 18 and 20 carbon atoms) (soybean oil is a typical triglyceride which can be converted to a polyepoxide); (d) polyepoxides derived from esters of polycarboxylic acids such as maleic acid, terephthalic acid, oxalic acid, succinic acid, azelaic acid, malonic acid, tartaric acid, adipic acid or similar acids, with unsaturated alcohols; (e) polyepoxides derived from esters prepared from unsaturated alcohols and unsaturated carboxylic acids; (f) epoxidized butadiene based polymers such as butadiene-styrene copolymers, polyesters available as derivatives of polyols such as ethylene glycol with unsaturated acid anhydrides such as maleic anhydride and esters of unsaturated polycarboxylic acids; (g) epoxidized derivatives of dimers of dienes such as 4-vinyl cyclohexene-1 from butadiene and dicyclopentadiene from cyclopentadiene, and (h) mixtures or combinations thereof. Epoxy resins suitable for use in the invention have molecular weights generally within the range between about 50 and about 10,000. In other embodiments, the range is between about 2000 and about 1500. In other embodiments, the epoxy resin is commercially available Epon 828 epoxy resin, a reaction product of epichlorohydrin and 2,2-bis(4-hydroxyphenyl)propane (bisphenol A) and having a molecular weight of about 400, an epoxide equivalent (ASTM D-1652) of about 185-192. Exemplary examples of some epoxy resins include, without limitation: epoxidized esters of 2,3-epoxypentyl-3,4-epoxybutyrate; 2,3-epoxybutyl-3,4-epoxyhexanoate; 3,4-epoxyoctyl-2,3-epoxycyclohexane carboxylate; 2,3-epoxydodecyl-4,5-epoxyoctanoate; 2,3-epoxyisobutyl-4,5-epoxydodecanoate; 2,3-epoxycyclododedcyl-3,4-epoxypentanoate; 3,4-epoxyoctyl-2,3-epoxycyclododecane carboxylate or similar compounds; and polyepoxides derived from the latter include the following: dimethyl 3,4,7,8-diepoxydecanedioate; dibutyl 3,4,5,6-diepoxycyclohexane-1,2-carboxylate; dioctyl 3,4,7,8-diepoxyhexadecanedioate; diethyl 5,6,9,10-diepoxytetradecanedioate or similar anhydrides. In other embodiments the epoxy resin is DURA COAT 1A™ available from JACAM Chemicals, LLC, of Sterling, KS. Other epoxy resins are available from JACAM Chemicals, LLC, of Sterling, KS or maybe found in U.S. Pat. Nos. 5,936,059; 7,557,169; 7,547,373; 7,267,782; 6,943,219; and 6,277,903.
Suitable curing agents for the epoxy resins include, without limitation, polyamine curing agents, alkoxylated polyamine curing agents, heterocylic amine curing agents, or similar compounds including a plurality of amino groups, or mixtures and combinations thereof. Exemplary alkoxylated polyamine curing agents include, without limitation, alkoxylated aliphatic polyamines, alkoxylated cycloaliphatic polyamines, alkoxylated aromatic polyamines, alkoxylated heterocyclic polyamines or mixtures and combinations thereof. In certain embodiments, the alkoxylated polyamines are alkoxylated N-alkyl- and N-alkylenyl-substituted 1,3-diaminopropanes or mixtures and combinations thereof. In other embodiments, the alkoxylated polyamines include alkoxylated N-hexadecyl-1,3-diaminopropane, N-tetradecyl-1,3-diaminopropane, N-octadecyl-1,3-diaminopropane, N-pentadecyl-1,3-diaminopropane, N-heptadecyl-1,3-diaminopropane, N-nonadecyl-1,3-diaminopropane, N-octadecnyl-1,3-diaminopropane or mixtures and combinations thereof. In other embodiments, the alkoxylated polyamines include commercially available mixtures of ethoxylated N-alkylated and N-alkenylated diamines. In other embodiments, the polyamine is a commercial product, ethoxylated N-tallow-1,3-diaminopropane, where the degree of ethoxylation is approximately 10 moles ethoxylate per mole of tallow diamine. In other embodiments the epoxy curing agent is DURA COAT 2B™ available from JACAM Chemicals, LLC, of Sterling, KS. Other epoxy curing agents are available from JACAM Chemicals, LLC, of Sterling, KS or may be found in U.S. Pat. Nos. 5,936,059; 7,557,169; 7,547,373; 7,267,782; 6,943,219; and 6,277,903. Exemplary aromatic heterocyclic amine curing agents include, without limitation, pyrrolidine, alkyl pyrrolidines, oxazoline, alkyl oxazolines, triazoles, alkyl triazoles, pyrazolidine, alkyl pyrazolidine, piperidine, alkyl piperidines, piperazine, alkyl piperazines, imidazoline, imidazolidine, alkyl imidazolidines, azepane, alkyl azepane, azepine, alkyl azepines, morpholine, alkyl morpholines, diazapines, alkyl diazapines, or mixtures and combinations thereof. In certain embodiments, the curing agents are a mixture of alkyl pyridines such as AKOLIDINE™ 11, available from Lonza Group Ltd, Joseph Colleluori, Muenchensteinerstrasse 38, CH-4002 Basel, Switzerland and DURA COAT 2B™ available from JACAM Chemicals, LLC, of Sterling, KS. In other embodiments, the diluent is pyrrolidine. In other embodiments, the diluent is imodazoline.
Suitable diluents or solvents for use in the present invention include, without limitation, aromatic solvents and heterocyclic aromatic solvents or mixtures and combinations thereof. Exemplary examples include, without limitation, benzene, toluene, xylene, aromatic oils, aromatic naphtha, pyrrole, alkyl pyrrols, imidazole, alkyl imidazole, pyridine, alkyl pyridines, pyrazole, alkyl pyrazoles, oxazole, alkyl oxazoles, or mixtures and combinations thereof.
Referring now to
Referring now to
Referring now to
Referring now to
This example illustrates the formulation of an epoxy zonal isolation composition for high temperature applications, where the composition has a set temperature in a high-temperature range between about 150° F. to about 300° F.
22.6 grams of DURA COAT 1A™ available from JACAM Chemicals, LLC, of Sterling, KS was added to 2.6 grams of Akolidine 11 with mixing. To this solution was added 2.0 grams of DURA COAT 2B™ available from JACAM Chemicals, LLC, of Sterling, KS to form a high-temperature zonal isolation composition (HTZIC) of this invention. Table I tabulates the components, the amount and weight percentages of the HTZI composition of this invention, while Table II tabulates properties of the components.
Referring now to
This example illustrates the formulation of an epoxy zonal isolation composition for mid-temperature applications, where the composition has a set temperature in a mid-temperature range between about 90° F. and about 150° F.
50 grams of DURA COAT 1A™ available from JACAM Chemicals, LLC, of Sterling, KS was added to 50 grams of imodaziline to form a mid-temperature zonal isolation (MTZI) composition of this invention. Table III tabulates the components, the amount and weight percentages of the MTZI composition of this invention.
This example illustrates the formulation of an epoxy zonal isolation composition for low-temperature applications, where the composition has a set temperature in a low-temperature range between about 50° F. and about 90° F.
92.5 grams of DURA COAT 1A™ available from JACAM Chemicals, LLC, of Sterling, KS was added to 7.5 grams of pyrrolidine to form a low-temperature zonal isolation (LTZI) composition of this invention. Table IV tabulates the components, the amount and weight percentages of the LTZI composition of this invention.
All references cited herein are incorporated by reference for every purpose permitted by controlling United States Laws. Although the invention has been disclosed with reference to its preferred embodiments, from reading this description those of skill in the art may appreciate changes and modification that may be made which do not depart from the scope and spirit of the invention as described above and claimed hereafter.
The present invention is a continuation of, claims priority to and the benefit of U.S. patent application Ser. No. 12/784,479 filed 20 May 2010 (May 20, 2010) (20 May 2010) now U.S. Pat. No. 8,899,328 issued 2 Dec. 2014 (Dec. 02, 2014).
Number | Name | Date | Kind |
---|---|---|---|
2196042 | Timpson | Apr 1940 | A |
2390153 | Kern | Dec 1945 | A |
2805958 | Bueche et al. | Jul 1959 | A |
3059909 | Wise | Oct 1962 | A |
3163219 | Wyant et al. | Dec 1964 | A |
3301723 | Chrisp | Jan 1967 | A |
3301848 | Halleck | Jan 1967 | A |
3303896 | Tillotson et al. | Feb 1967 | A |
3317430 | Priestley et al. | May 1967 | A |
3565176 | Wittenwyler | Feb 1971 | A |
3856921 | Shrier et al. | Dec 1974 | A |
3888312 | Tiner et al. | Jun 1975 | A |
3933205 | Kiel | Jan 1976 | A |
3937283 | Blauer et al. | Feb 1976 | A |
3960736 | Free et al. | Jun 1976 | A |
3965982 | Medlin | Jun 1976 | A |
3990978 | Hill | Nov 1976 | A |
4007792 | Meister | Feb 1977 | A |
4052159 | Fuerst et al. | Oct 1977 | A |
4067389 | Savins | Jan 1978 | A |
4108782 | Thompon | Aug 1978 | A |
4112050 | Sartori et al. | Sep 1978 | A |
4112051 | Sartori et al. | Sep 1978 | A |
4112052 | Sartori et al. | Sep 1978 | A |
4113631 | Thompson | Sep 1978 | A |
4378845 | Medlin et al. | Apr 1983 | A |
4385935 | Skjeldal | May 1983 | A |
4461716 | Barbarin et al. | Jul 1984 | A |
4479041 | Fenwick et al. | Oct 1984 | A |
4506734 | Nolte | Mar 1985 | A |
4514309 | Wadhwa | Apr 1985 | A |
4541935 | Constien et al. | Sep 1985 | A |
4549608 | Stowe et al. | Oct 1985 | A |
4561985 | Glass, Jr. | Dec 1985 | A |
4623021 | Stowe | Nov 1986 | A |
4654266 | Kachnik | Mar 1987 | A |
4657081 | Hodge | Apr 1987 | A |
4660643 | Perkins | Apr 1987 | A |
4683068 | Kucera | Jul 1987 | A |
4686052 | Baranet et al. | Aug 1987 | A |
4695389 | Kubala | Sep 1987 | A |
4705113 | Perkins | Nov 1987 | A |
4714115 | Uhri | Dec 1987 | A |
4718490 | Uhri | Jan 1988 | A |
4724905 | Uhri | Feb 1988 | A |
4725372 | Teot et al. | Feb 1988 | A |
4739834 | Peiffer et al. | Apr 1988 | A |
4741401 | Walles et al. | May 1988 | A |
4748011 | Baize | May 1988 | A |
4779680 | Sydansk | Oct 1988 | A |
4795574 | Syrinek et al. | Jan 1989 | A |
4817717 | Jennings, Jr. et al. | Apr 1989 | A |
4830106 | Uhri | May 1989 | A |
4846277 | Khalil et al. | Jul 1989 | A |
4848468 | Hazlett et al. | Jul 1989 | A |
4852650 | Jennings, Jr. et al. | Aug 1989 | A |
4869322 | Vogt, Jr. et al. | Sep 1989 | A |
4892147 | Jennings, Jr. et al. | Jan 1990 | A |
4926940 | Stromswold | May 1990 | A |
4938286 | Jennings, Jr. | Jul 1990 | A |
4978512 | Dillon | Dec 1990 | A |
5005645 | Jennings, Jr. et al. | Apr 1991 | A |
5024276 | Borchardt | Jun 1991 | A |
5067556 | Fudono et al. | Nov 1991 | A |
5074359 | Schmidt | Dec 1991 | A |
5074991 | Weers | Dec 1991 | A |
5082579 | Dawson | Jan 1992 | A |
5106518 | Cooney et al. | Apr 1992 | A |
5110486 | Manalastas et al. | May 1992 | A |
5169411 | Weers | Dec 1992 | A |
5224546 | Smith et al. | Jul 1993 | A |
5228510 | Jennings, Jr. et al. | Jul 1993 | A |
5246073 | Sandiford et al. | Sep 1993 | A |
5259455 | Nimerick et al. | Nov 1993 | A |
5330005 | Card et al. | Jul 1994 | A |
5342530 | Aften et al. | Aug 1994 | A |
5347004 | Rivers et al. | Sep 1994 | A |
5363919 | Jennings, Jr. | Nov 1994 | A |
5465792 | Dawson et al. | Jan 1995 | A |
5402846 | Jennings, Jr. et al. | Apr 1995 | A |
5411091 | Jennings, Jr. | May 1995 | A |
5424284 | Patel et al. | Jun 1995 | A |
5439055 | Card et al. | Aug 1995 | A |
5462721 | Pounds et al. | Oct 1995 | A |
5472049 | Chaffe et al. | Dec 1995 | A |
5482116 | El-Rabaa et al. | Jan 1996 | A |
5488083 | Kinsey, III et al. | Jan 1996 | A |
5497831 | Hainey et al. | Mar 1996 | A |
5501275 | Card et al. | Mar 1996 | A |
5539044 | Dindi et al. | Jul 1996 | A |
5551516 | Norman et al. | Sep 1996 | A |
5624886 | Dawson et al. | Apr 1997 | A |
5635458 | Lee et al. | Jun 1997 | A |
5649596 | Jones et al. | Jul 1997 | A |
5669447 | Walker et al. | Sep 1997 | A |
5674377 | Sullivan, III et al. | Oct 1997 | A |
5688478 | Pounds et al. | Nov 1997 | A |
5693837 | Smith et al. | Dec 1997 | A |
5711396 | Joerg et al. | Jan 1998 | A |
5722490 | Ebinger | Mar 1998 | A |
5744024 | Sullivan, III et al. | Apr 1998 | A |
5755286 | Ebinger | May 1998 | A |
5775425 | Weaver et al. | Jul 1998 | A |
5787986 | Weaver et al. | Aug 1998 | A |
5806597 | Tjon-Joe-Pin et al. | Sep 1998 | A |
5807812 | Smith et al. | Sep 1998 | A |
5833000 | Weaver et al. | Nov 1998 | A |
5853048 | Weaver et al. | Dec 1998 | A |
5871049 | Weaver et al. | Feb 1999 | A |
5875844 | Chatterji et al. | Mar 1999 | A |
5877127 | Card et al. | Mar 1999 | A |
5908073 | Nguyen et al. | Jun 1999 | A |
5908814 | Patel et al. | Jun 1999 | A |
5964295 | Brown et al. | Oct 1999 | A |
5969006 | Onan et al. | Oct 1999 | A |
5979557 | Card et al. | Nov 1999 | A |
5980845 | Cherry | Nov 1999 | A |
6001887 | Keup et al. | Dec 1999 | A |
6016871 | Burts, Jr. | Jan 2000 | A |
6035936 | Whalen | Mar 2000 | A |
6047772 | Weaver et al. | Apr 2000 | A |
6054417 | Graham et al. | Apr 2000 | A |
6059034 | Rickards et al. | May 2000 | A |
6060436 | Synder et al. | May 2000 | A |
6063972 | Duncum et al. | May 2000 | A |
6069118 | Hinkel | May 2000 | A |
6123394 | Jeffrey | Sep 2000 | A |
6133205 | Jones | Oct 2000 | A |
6147034 | Jones et al. | Nov 2000 | A |
6162449 | Maier et al. | Dec 2000 | A |
6162766 | Muir et al. | Dec 2000 | A |
6169058 | Le et al. | Jan 2001 | B1 |
6228812 | Dawson et al. | May 2001 | B1 |
6247543 | Patel et al. | Jun 2001 | B1 |
6267938 | Warrender et al. | Jul 2001 | B1 |
6283212 | Hinkel et al. | Sep 2001 | B1 |
6291405 | Lee et al. | Sep 2001 | B1 |
6330916 | Rickards et al. | Dec 2001 | B1 |
6725931 | Nguyen et al. | Apr 2004 | B2 |
6756345 | Pakulski et al. | Jun 2004 | B2 |
6793018 | Dawson et al. | Sep 2004 | B2 |
6832650 | Nguyen et al. | Dec 2004 | B2 |
6858566 | Reddy et al. | Feb 2005 | B1 |
6875728 | Gupta et al. | Apr 2005 | B2 |
7055628 | Grainger et al. | Jun 2006 | B2 |
7140433 | Gatlin et al. | Nov 2006 | B2 |
7186353 | Novak | Mar 2007 | B2 |
7268100 | Kippie et al. | Sep 2007 | B2 |
7350579 | Gatlin et al. | Apr 2008 | B2 |
7392847 | Gatlin et al. | Jul 2008 | B2 |
7517447 | Gatlin | Apr 2009 | B2 |
7565933 | Kippie et al. | Jul 2009 | B2 |
7566686 | Kippie et al. | Jul 2009 | B2 |
7712535 | Venditto et al. | May 2010 | B2 |
7723273 | Zaid et al. | May 2010 | B1 |
7767628 | Kippie et al. | Aug 2010 | B2 |
7829510 | Gatlin et al. | Nov 2010 | B2 |
7886824 | Kakadjian et al. | Feb 2011 | B2 |
7915203 | Falana et al. | Mar 2011 | B2 |
7932214 | Zamora et al. | Apr 2011 | B2 |
7942201 | Ekstrand et al. | May 2011 | B2 |
7956017 | Gatlin et al. | Jun 2011 | B2 |
7956217 | Falana et al. | Jun 2011 | B2 |
7971659 | Gatlin et al. | Jul 2011 | B2 |
7989404 | Kakadjian et al. | Aug 2011 | B2 |
7992653 | Zamora et al. | Aug 2011 | B2 |
8011431 | van Petegem et al. | Sep 2011 | B2 |
8012913 | Gatlin et al. | Sep 2011 | B2 |
8028755 | Darnell et al. | Oct 2011 | B2 |
8034750 | Thompson et al. | Oct 2011 | B2 |
8084401 | Lukocs et al. | Dec 2011 | B2 |
8093431 | Falana et al. | Jan 2012 | B2 |
8097567 | Wilson, Jr. | Jan 2012 | B2 |
8141661 | Kakadjian et al. | Mar 2012 | B2 |
8158562 | Wilson, Jr. et al. | Apr 2012 | B2 |
8172952 | Wanner et al. | May 2012 | B2 |
8220546 | Kakadjian et al. | Jul 2012 | B2 |
8258339 | Falana et al. | Sep 2012 | B2 |
8273693 | Schwartz | Sep 2012 | B2 |
8287640 | Zamora et al. | Oct 2012 | B2 |
8362298 | Falana et al. | Jan 2013 | B2 |
8466094 | Kakadjian et al. | Jun 2013 | B2 |
8475585 | Zamora et al. | Jul 2013 | B2 |
8507412 | Lukocs et al. | Aug 2013 | B2 |
8507413 | Wilson, Jr. | Aug 2013 | B2 |
8524639 | Falana et al. | Sep 2013 | B2 |
8530394 | Gatlin | Sep 2013 | B2 |
8563481 | Gatlin et al. | Oct 2013 | B2 |
8714283 | Gatlin et al. | May 2014 | B2 |
8728989 | Kakadjian et al. | May 2014 | B2 |
8772203 | Schwartz | Jul 2014 | B2 |
8835364 | Thompson et al. | Sep 2014 | B2 |
8841240 | Kakadjian et al. | Sep 2014 | B2 |
8846585 | Falana et al. | Sep 2014 | B2 |
8851174 | Zamora et al. | Oct 2014 | B2 |
8871694 | Kakadjian et al. | Oct 2014 | B2 |
8899328 | Zamora et al. | Dec 2014 | B2 |
8932996 | Falana et al. | Jan 2015 | B2 |
8944164 | Veldman et al. | Feb 2015 | B2 |
8946130 | Zamora et al. | Feb 2015 | B2 |
8950493 | van Petegem et al. | Feb 2015 | B2 |
20020049256 | Bergeron, Jr. | Apr 2002 | A1 |
20020165308 | Kinniard et al. | Nov 2002 | A1 |
20030220204 | Baran, Jr. et al. | Nov 2003 | A1 |
20040194961 | Nguyen | Oct 2004 | A1 |
20050045330 | Nguyen | Mar 2005 | A1 |
20050092489 | Welton et al. | May 2005 | A1 |
20050137114 | Gatlin et al. | Jun 2005 | A1 |
20090131280 | Federici et al. | May 2009 | A1 |
20100252262 | Ekstrand et al. | Oct 2010 | A1 |
20100305010 | Falana et al. | Dec 2010 | A1 |
20100311620 | Kakadjian et al. | Dec 2010 | A1 |
20110001083 | Falana et al. | Jan 2011 | A1 |
20110177982 | Ekstrand et al. | Jul 2011 | A1 |
20110240131 | Parker | Oct 2011 | A1 |
20120071367 | Falana et al. | Mar 2012 | A1 |
20120073813 | Zamora et al. | Mar 2012 | A1 |
20120097893 | Wanner et al. | Apr 2012 | A1 |
20120273206 | Zamora et al. | Nov 2012 | A1 |
20120279727 | Kakadjian et al. | Nov 2012 | A1 |
20120295820 | Falana et al. | Nov 2012 | A1 |
20120302468 | Falana et al. | Nov 2012 | A1 |
20120325329 | Schwartz | Dec 2012 | A1 |
20130081820 | Falana et al. | Apr 2013 | A1 |
20130096038 | Kim et al. | Apr 2013 | A1 |
20130175477 | Falana et al. | Jul 2013 | A1 |
20130270012 | Kakadjian et al. | Oct 2013 | A1 |
20130274151 | Kakadjian et al. | Oct 2013 | A1 |
20130312977 | Lembcke et al. | Nov 2013 | A1 |
20130331301 | Falana et al. | Dec 2013 | A1 |
20140087977 | Kim et al. | Mar 2014 | A1 |
20140128294 | Gatlin et al. | May 2014 | A1 |
20140128308 | Levey et al. | May 2014 | A1 |
20140166285 | Santra et al. | Jun 2014 | A1 |
20140262287 | Treybig et al. | Sep 2014 | A1 |
20140262319 | Treybig et al. | Sep 2014 | A1 |
20140303048 | Kakadjian et al. | Oct 2014 | A1 |
20140315763 | Kakadjian et al. | Oct 2014 | A1 |
20140318793 | van Petergem et al. | Oct 2014 | A1 |
20140318795 | Thompson, Sr. et al. | Oct 2014 | A1 |
20140323360 | Comarin et al. | Oct 2014 | A1 |
20140323362 | Falana et al. | Oct 2014 | A1 |
20150007989 | Tan et al. | Jan 2015 | A1 |
20150011440 | Zamora et al. | Jan 2015 | A1 |
20150051311 | Zamora et al. | Feb 2015 | A1 |
20150068747 | Hwang et al. | Mar 2015 | A1 |
20150072901 | Samuel et al. | Mar 2015 | A1 |
20150087561 | Falana et al. | Mar 2015 | A1 |
20150087562 | Falana et al. | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
2125513 | Jan 1995 | CA |
4027300 | Mar 1992 | DE |
775376 | Oct 1954 | GB |
1073338 | Jun 1967 | GB |
8151422 | Jun 1996 | JP |
100001461 | Jan 1998 | JP |
10110115 | Apr 1998 | JP |
2005194148 | Jul 2005 | JP |
WO 9856497 | Dec 1998 | WO |
WO 2009141308 | Nov 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20150051311 A1 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12784479 | May 2010 | US |
Child | 14531027 | US |