The present disclosure is generally related to a resistance band tensioner.
The resistance band tensioner described herein may be used with weight lifting equipment for squat, dip, and chin exercises.
Squats exercise the muscles of the thighs, hips and buttocks, and also strengthen the bones, ligaments and tendons throughout the lower body. For this reason, squats are regarded as an important exercise for strength-increase in the legs and buttocks.
Ideally, a squat exercise series begins from a standing position. The knees and hips are bent to lower the torso, and then the body is then returned to the upright position. The squat can continue to a number of depths, but a correct squat should be at least to parallel and usually lower if flexibility allows. Squatting below parallel qualifies a squat as deep while squatting above it qualifies as shallow. A below-parallel squat relies on hip drive out of the bottom, thereby exercising the adductors, glutes, and hamstrings to provide power. The knee is not used to stabilize or intercept any part of the load as with a shallow-type squat. Correctly performed full squats can be safe on the knees while removing pressure from the lower lumbar region.
As the body descends, the hips and knees undergo flexion, the ankle dorsiflexes and muscles around the joint contract eccentrically, reaching maximal contraction at the bottom of the movement while slowing and reversing descent. The muscles around the hips provide the power out of the bottom. If the knees slide forward or cave in then tension is taken from the hamstrings, hindering power on the ascent. Returning to vertical contracts the muscles concentrically, and the hips and knees undergo extension while the ankle plantar flexes.
Dips are performed by pushing oneself above the level of a pair of parallel dip bars located approximately shoulder-width apart. The exerciser grasps a dip bar with each hand, then lowers his or her body until elbows are bent and shoulders mildly stretched. The arms are used to push the exerciser upwards to the starting position. Leaning the body forward with elbows kept in works the chest muscles more. Keeping the body straight vertically with elbows close to the body works the triceps more. More strenuous dips can be accomplished by not permitting the exerciser's feet to touch the floor at all during the course of the exercise.
Chins are performed by pulling oneself upwards above a pair of roughly co-linear chin bars, grasping one bar with each hand. The chin bars are located above the shoulder height of the exerciser. The exerciser begins by grasping a chin bar with each hand, with palms facing the exerciser. The exerciser then pulls himself or herself upwards until either chin or chest touches the chin bars. The exerciser then slowly lowers himself or herself back to the standing position from which the chin exercise was initiated. Chin exercises strengthen the biceps, forearms, and lateral muscles.
One of the hardest problems to solve associated with currently available squat, dip, and chin exercise apparatus is the inability to add significant resistance acting against the exerciser's upward motion during squats, dips and chins, thereby rendering the exercise more strenuous. Currently available squat-dip-chin machines are either not weightable, or provide means to use weights to aid the exerciser during the exercise, thus rendering the exercise less strenuous. Thus, in order to make the dips and chins more strenuous it would be desirable to provide means of adding weight against the exercise being performed, not in aid of the exercise. In addition, it would be desirable to provide means for using elastic to work against the exercise, thus increasing the exercise value.
One currently available option is for the exerciser to wear a weight belt, from which weights dangle. While these weights have the effect of increasing the weight of the exerciser, and hence the strenuousness of the exercise, the procedure can be dangerous if the weights swing into the exerciser's limb(s), or if the exerciser were to slip off of the elevated foot support(s) and the heavy weights land on the exerciser's feet or other body part. Thus, it would be desirable to provide a safe way to add force against the squat, dip or chin being performed, by safely adding weight acting against the squat, dip or chin being performed.
It would also be desirable to provide a safe way to add force against the squat, dip or chin being performed, by safely adding elastic members such as resistance bands acting against the squat, dip or chin being performed.
Accordingly, what is needed in the art is a resistance band tensioner that allows a user to easily add resistance bands for the exercises to increase the tension in the bands to levels that was previously unattainable to achieve.
The following presents a simplified summary of one or more embodiments in order to provide a basic understanding of some aspects of such embodiments. This summary is not an extensive overview of the one or more embodiments, and is intended to neither identify key or critical elements of the embodiments nor delineate the scope of such embodiments. Its sole purpose is to present some concepts of the described embodiments in a simplified form as a prelude to the more detailed description that is presented later.
In a particular embodiment, a resistance band tensioner is disclosed. The tensioner includes a main body and a pivot pin disposed on the main body proximate a first end, where the main body is configured to rotate about the pivot pin between an up position and a down position. The tensioner also includes a handle extending from a second end of the main body, where the handle is configured for a user to grasp with a hand. The handle generally extends from the main body along a longitudinal centerline of the main body and may be angled to provide additional leverage to a user. A cantilever shaft extends outward from the main body, where the shaft is adapted to secure a first portion of a resistance band around its periphery. The shaft extends perpendicular to the main body and is interposed between the handle and the pivot pin. In addition, the tensioner includes a locking pin to lock the tensioner in the down position when the resistance band is placed under tension by rotating the main body from the up position to the down position.
The main body may also include a pair of side panels equidistantly spaced and secured together by a cross member, where the pair of side panels includes a pair of locking apertures that are aligned to receive the locking pin therethrough. The main body may be configured to fit within a U-shaped channel that is adapted to be secured to a frame of weight lifting equipment. Further, the U-shaped channel may include a plurality of receiving apertures disposed on each sidewall of the U-shaped channel, wherein the locking pin is configured to lock the tensioner in the down position when the receiving apertures of the U-shaped channel and the locking apertures of the side panels of the main body are aligned so that the locking pin can slide through. A second portion of the resistance band is adapted to be secured to a piece of the weight lifting equipment and to stretch and provide resistance as the piece of weight lifting equipment is moved by a user during exercise and the first portion of the resistance band is anchored by the tensioner that is locked in the down position.
The pair of side panels of the main body may include a pair of pivot apertures, where the pivot pin is configured to secure the first end of the tensioner to the U-shaped channel when the receiving apertures of the U-shaped channel and the pivot apertures of the side panels of the main body are aligned so that the pivot pin can slide through. The pivot pin may also include a perpendicular bore proximate a first end configured to receive a cotter pin to prevent the pivot pin from sliding back out of the receiving apertures.
To the accomplishment of the foregoing and related ends, one or more embodiments comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative aspects and are indicative of but a few of the various ways in which the principles of the embodiments may be employed. Other advantages and novel features will become apparent from the following detailed description when considered in conjunction with the drawings and the disclosed embodiments are intended to include all such aspects and their equivalents.
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments or designs.
Referring now to
The side panels 120, 122 may be joined together by cross member 124 to form an open box beam. Alternatively, the main body 102 may be solid material. As can be seen in
As best shown in
Referring now to
Moving to
The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the disclosed embodiments. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the principles defined herein may be applied to other embodiments without departing from the scope of the disclosure. Thus, the present disclosure is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope possible consistent with the principles and novel features as defined by the following claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 11/811,920 filed Jun. 11, 2007, now U.S. Pat. No. 7,871,360, and U.S. patent application Ser. No. 12/156,487 filed Jun. 2, 2008, now U.S. Pat. No. 7,918,770, and U.S. patent application Ser. No. 12/658,855 filed Feb. 16, 2010, now U.S. Pat. No. 8,147,389, and pending U.S. patent application Ser. No. 12/944,809 filed Nov. 10, 2010, and claims the benefit of the earlier filing date of these applications.
Number | Name | Date | Kind |
---|---|---|---|
4492375 | Connelly | Jan 1985 | A |
5407404 | Killian et al. | Apr 1995 | A |
6482139 | Haag | Nov 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20130210592 A1 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11811920 | Jun 2007 | US |
Child | 13840168 | US | |
Parent | 12156487 | Jun 2008 | US |
Child | 11811920 | US | |
Parent | 12658855 | Feb 2010 | US |
Child | 12156487 | US | |
Parent | 12944808 | Nov 2010 | US |
Child | 12658855 | US |