The present invention relates generally to a resistance device for a high voltage switch assembly. More particularly, the present invention relates to a resistance device that prevents accidental closure of the switch assembly from a fully opened position. Still more particularly, the present invention relates to a switch assembly having a resistance device that increases the amount of force required to open and close the switch assembly.
Currently, many high voltage switch assemblies for overhead power distribution lines are opened and closed by a field technician using a hookstick. The hookstick engages conductive switch blades electrically and mechanically connected between conductors of an electrical power distribution system. Manipulating the hook rotates the switch blades between closed and open positions.
High voltage overhead power switches are typically mounted well above ground and experience a variety of externally applied forces, such as weather, wild animals, vandalism, utility pole deformation, and vibration, which may cause a switch blade to move or close unintentionally. Accidental closing of a switch blade may cause equipment damage, loss of electrical service and personnel injury. Furthermore, if a switch blade moves close enough to a contact, flashover may occur. The conductive switch blades must be prevented from unintended closing or movement thereof from the open position. Therefore, a need exists for an overhead switch assembly having a resistance device to prevent accidental closing or movement of the conductive switch blades from the open position.
In accordance with an aspect of the present invention, a need exists for a resistance device for a high voltage switch assembly that prevents closing or movement of conductive switch blades from an open position.
In accordance with another aspect of the present invention, the resistance device increases the force required to move the blades from the fully opened position.
A resistance device for a high voltage electrical switch assembly according to an exemplary embodiment of the present invention increases the amount of force required to fully open the conductive switch blades (or “knife blades”). Additionally, such additional force is required to be overcome to close the switch, thereby substantially preventing accidental closure of the switch. The force created by the resistance device is preferably greatest at approximately 115 degrees from its fully closed position.
The resistance device is disposed between the knife blades and includes a pair of spring members disposed between a cam member and a housing. An aligning pin is disposed in a slot of the cam member to allow for travel of the cam member when engaged by a mounting hinge tab connected to a mounting hinge. In a fully closed position, the cam member of the resistance device does not contact the mounting hinge tab, such that the resistance device spring members are not compressed. At approximately 115 degrees, the cam member has reached its maximum travel distance, which compresses the resistance device spring members, thereby increasing the force required to further open the knife blade. When the knife blade is fully open, the spring members are slightly less compressed then at 150 degrees from the closed position due to a shorter travel distance of the cam member by engagement with the mounting hinge tab. Accordingly, the resistance device creates an additional force that must be overcome throughout closure of the knife blade, thereby substantially preventing accidental closure of the knife blade.
The foregoing objectives are basically attained by a resistance device for an electrical switch assembly that includes a housing having a base and first and second support brackets extending outwardly therefrom. The base receives first and second blades of the electrical switch assembly. A cam member is movably connected to the first and second support brackets. First and second springs are connected between the base and the cam member and bias the cam member away from the base. The amount of force required to open and close the switch assembly is increased by having to overcome the resistance force imparted by the first and second spring members on the cam member.
The foregoing objectives are also basically attained by an electrical switch assembly including a mounting hinge and first and second conductive blades rotatably connected to the mounting hinge and rotatable between open and closed positions. A tab is connected to the mounting hinge. A resistance device is disposed between the first and second conductive blades. A housing has a base and first and second supporting brackets extending outwardly therefrom. The base receives the first and second conductive blades of the electrical switch assembly. A cam member is movably connected to the first and second supporting brackets. First and second spring members are connected between the base and the cam member. The cam member engages the tab and compresses the first and second spring members during rotation of the first and second conductive blades between the open and closed positions to increase a force required to rotate the conductive blades. The first and second spring members bias the cam member away from the base.
The foregoing objectives are also basically attained by a method of operating an electrical switch assembly. A conductor blade is rotated about a mounting hinge from either an open or a closed position. A resistance member connected to the conductor blade is engaged with a tab connected to the mounting hinge to increase a force required to rotate the conductor blade to the closed or the open position.
Objects, advantages, and salient features of the invention will become apparent from the following detailed description, which, taken in conjunction with the annexed drawings, discloses exemplary embodiments of the invention.
As used in this application, the terms “front”, “rear”, “upper”, “lower”, “upwardly”, “downwardly” and other relative orientational descriptors are intended to facilitate the description of the base assembly, and are not intended to limit the structure of the base assembly to any particular position of orientation.
The above benefits and other advantages of the various embodiments of the present invention will be more apparent from the following detailed description of exemplary embodiments of the present invention and from the accompanying drawing figures, in which:
Throughout the drawings, like reference numbers will be understood to refer to like parts, components and structures.
In an exemplary embodiment of the present invention shown in
The resistance device 21 is connected between two conductive blades 13 and 14 of the switch assembly 11, as shown in
The housing 31, as shown in FIGS. 7 and 13-17, has first and second supporting brackets 32 and 33 extending upwardly from a base 34. Preferably, the housing 31 has retaining pins 71 and 72 that are unitarily formed with the housing as one-piece members thereof. Alternatively, each of the first supporting bracket 32 and the second supporting bracket 33 has a first opening 35 and 37 for receiving the retaining pins 71 and 72, such as by press-fit, for securing the housing to the blades 13 and 14. Preferably, the first openings 35 and 37 do not extend entirely through the first and second supporting brackets 32 and 33, as shown in
A first groove 81 is formed in the base 34 of the housing 31 and is adapted to receive a blade 14. A second groove 82 is formed in the base 34 and is adapted to receive the other blade 13. The grooves 81 and 82 in the base 34 and the retaining pins 71 and 72 facilitate rigidly connecting the housing 31 to blades 13 and 14, and substantially prevent movement of the housing during operation of the blades. A first opening 83 and a second opening 84 are disposed in the base 34 and receive the first and second spring members 51 and 53, respectively.
The cam member 41, as shown in FIGS. 6 and 8-12 is movably connected between the two base members 32 and 33 of the housing 31. The cam member 41 has a first surface 42 having a first groove 43 and a second surface 44 having a second groove 45. The first and second grooves 43 and 45 receive the second and first aligning pins 74 and 73, respectively. An upper surface 46 and a lower surface 47 are defined between the first and second surfaces 42 and 44. The first and second grooves 43 and 45 preferably extend from the upper surface 46 of the cam member 41 and end above the lower surface 47, as shown in
As shown in
The first spring member 51 has a first end 52 disposed in the first opening 83 in the base 34 of the housing 31. A second end 54 of the first spring member 51 is received in the first opening 48 in the cam member 41. The second spring member 53 has a first end 55 disposed in the second opening 84 in the base 34 of the housing 31. A second end 56 of the second spring member 53 is received in the second opening 49 in the cam member 41. The first and second spring members 51 and 53 allow the cam member 41 to move with respect to the housing 31 and bias the cam member away from the base 34 of the housing 31. The aligning pins 73 and 74 received in the grooves 45 and 43 of the cam member 41 guide movement of the cam member 41 with respect to the housing 31. Preferably, the first and second spring members are coil springs.
Preferably, the housing 31 and the cam member 41 are made of stainless steel.
The resistance assembly 21 according to the exemplary embodiments of the present invention is used with a hookstick operated high voltage switch assembly 11, as shown in
A hookstick 12 is connected between the first and second conductive blades 13 and 14 of the switch assembly 11. First ends of the first and second conductive blades 13 and 14 are rotatably connected to a mounting hinge 15 of the switch assembly. Second ends of the first and second conductive blades 13 and 14 are removably connected to a terminal 16.
The resistance device 21 is connected between the first and second conductive blades 13 and 14, as shown in
When the first and second conductive blades 13 and 14 are in the fully closed position, as shown in
Pulling on the hookstick 12 to move the blades 13 and 14 in the clockwise direction removes the second ends of the blades from the terminal 16 and rotates the first ends around the mounting hinge 15, as shown in
The hookstick 12 is further pulled to move the blades 13 and 14 to a fully opened position at the lock-open angle A., which is preferably between approximately 130 to 175 degrees inclusive, and preferably at approximately 150 degrees from the fully closed position, as shown in
The aligning pins 71 and 72 abut the ends 90 and 92 of the grooves 43 and 45, which are above the lower surface 47 of the cam member 41 as shown in
The resistance device 121 is connected between two conductive blades 113 and 114 of the switch assembly 111, as shown in
The housing 131, as shown in
A first groove 181 is formed in the base 134 of the housing 131 and is adapted to receive a blade 113. A second groove 182 is formed in the base 134 and is adapted to receive the other blade 114. The grooves 181 and 182 in the base 134 and the retaining pins 171 and 172 facilitate rigidly connecting the housing 131 to the blades 113 and 114, and substantially prevent movement of the housing during operation of the blades. A first opening 183 and a second opening 184 are disposed in the base 134 and receive the first and second spring members 151 and 153, respectively.
The cam member 141, as shown in
As shown in
The first spring member 151 has a first end 152 disposed in the first opening 183 in the base 134 of the housing 131. A second end 154 of the first spring member 151 is received by a first post 148 of the cam member 141. The second spring member 153 has a first end 155 disposed in the second opening 184 in the base 134 of the housing 131. A second end 156 of the second spring member 153 is received by the second post 149 of the cam member 141. The first and second spring members 151 and 153 allow the cam member 141 to move with respect to the housing 131. The aligning pins 173 and 174 received in the grooves 143 and 145 of the cam member 141 guide movement of the cam member 141 with respect to the housing 131.
Operation of the resistance device 121 according to a second exemplary embodiment is substantially identical to that of the first exemplary embodiment. However, the resistance device 121 is connected to the conductive blades 113 and 114 such that the aligning pins 173 and 174 are offset from the center line 119 of the blades. Accordingly, the cam member grooves 143 and 145 are also offset from the center line 119 of the blades. Thus, as shown in
As shown in
The housing 231, as shown in
A first groove 281 is formed in the base 234 of the housing 231 and is adapted to receive a blade 113. A second groove 282 is formed in the base 234 and is adapted to receive the other blade 114. The first and second grooves 281 and 282 in the base 234 and the retaining pins 271 and 272 facilitate rigidly connecting the housing 231 to the blades 113 and 114, and substantially prevent movement of the housing during operation of the blades. A first opening 283 and a second opening 284 are disposed in the base 234 and receive the first and second spring members 251 and 253, respectively.
A protrusion 261 extends outwardly from the second supporting bracket 233. Preferably, the protrusion 261 extends between an upper surface 262 of the base 234 of housing 231 and an upper surface 263 of the second supporting bracket 233, as shown in
The cam member 241, as shown in
As shown in
The first spring member 251 has a first end 252 disposed in the first opening 283 in the base 234 of the housing 231. A second end 254 of the first spring member 251 is received by a first opening 248 of the cam member 241. The second spring member 253 has a first end 255 disposed in the second opening 284 in the base 234 of the housing 231. A second end 256 of the second spring member 253 is received by the second opening 249 of the cam member 241. The first and second spring members 251 and 253 allow the cam member 241 to move with respect to the housing 231. The aligning pin 273 and the protrusion 261 received in the grooves 243 and 245, respectively, of the cam member 241 guide movement of the cam member 241 with respect to the housing 231. Preferably, the first and second spring members 251 and 253 are substantially cylindrical, as shown in
Operation of the resistance device 221 according to the third exemplary embodiment is substantially identical to that of the first and second exemplary embodiments. However, the resistance device 221 is connected to the conductive blades 113 and 114 such that the aligning pin 273 and the protrusion 261 are offset from the center line 119 of the blades. Accordingly, the cam member grooves 243 and 245 are also offset from the center line 119 of the blades. Thus, as shown in
The foregoing embodiments and advantages are merely exemplary and are not to be construed as limiting the scope of the present invention. The description of an exemplary embodiment of the present invention is intended to be illustrative, and not to limit the scope of the present invention. Various modifications, alternatives and variations will be apparent to those of ordinary skill in the art, and are intended to fall within the scope of the invention as defined in the appended claims.
This application claims the benefit under 35 U.S.C. § 119(e) of provisional application Ser. No. 61/309,772, filed Mar. 2, 2010, the entire disclosure of which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61309772 | Mar 2010 | US |