The present invention relates to an exercise equipment, especially to a resistance system for a rowing machine.
Rowing is an interesting and challenging sport, which exercises all the major muscle groups including quadriceps femoris, biceps, triceps, latissimus dorsi, gluteal, and abdominal muscles. A rowing machine is an exercise equipment that is used to simulate action of the rowing for the purpose of exercise and training the muscles groups.
A conventional resistance system for a rowing machine includes a magnetic brake and an elastic rope. The elastic rope is connected to the magnetic brake and is able to resume its original shape after being stretched. An exerciser pulls the elastic rope repeatedly and resists resistance force formed by the magnetic brake and elasticity of the elastic rope, so as to achieve exercise and training effects.
However, a structure of the magnetic brake is complex and needs high manufacturing cost. Moreover, after being stretched repeatedly, elastic fatigue occurs in the elastic rope. Consequently, the exercise and training effects of the rowing machine having the conventional resistance system are greatly influenced.
To overcome the shortcomings, the present invention provides a resistance system for a rowing machine to mitigate or obviate the aforementioned problems.
An embodiment of the present invention discloses a resistance system for a rowing machine. The resistance system has a mounting bracket, a housing assembly, a paddle wheel, a driving assembly, and a restoring assembly.
The housing assembly is mounted on the mounting bracket and includes a liquid tank. The liquid tank is for storing liquid and has two opposite side walls.
The paddle wheel is mounted in the liquid tank and has a rotating base, multiple paddle blades, and a driven shaft. The paddle blades include a first set of paddle blades and a second set of paddle blades. The first set of paddle blades is erected on and surrounding a first side of the rotating base at intervals. The second set of paddle blades is erected on and surrounding a second side, opposite the first side, of the rotating base at intervals. The driven shaft protrudes from a center of the rotating base and is rotatably mounted through one of the side walls of the liquid tank.
The rotating base includes a center part, a ring and a plurality of ribs. The first set of the paddle blades and the second set of the paddle blades are respectively mounted on the opposite sides of the ring. Each of the ribs connects the ring and the center part. Fixed positions of the first set of the paddle blades and fixed positions of the second set of the paddle blades at the rotating base are staggered.
The driving assembly is mounted on the driven shaft and includes a strip hub, at least one one-way bearing, a driving strip, and a handle. The strip hub is mounted around the driven shaft and has a connecting axle protruding from an end surface of the strip hub and being coaxial with the driven shaft. The at least one one-way bearing is mounted between and is connected to the driven shaft and the strip hub. The driving strip is wound around the strip hub. The handle is connected with the driving strip. The driving strip is adapted to make the paddle wheel and the liquid tank relatively rotating.
The restoring assembly is mounted around the connecting axle of the strip hub and includes a casing and a restoring element. The casing is securely connected to the mounting bracket and is mounted around the connecting axle. The restoring element is resilient, is mounted in the casing, and has two ends respectively connected to the casing and the connecting axle.
The liquid tank is inclined to the ground in a using status of the rowing machine. The mounting bracket includes an angle-adjusting assembly adapted to change the angle between the liquid tank and the ground in the using status of the rowing machine.
Another embodiment of the present invention discloses that the liquid tank further has an annular wall connected to the two side walls to form the shell of the liquid tank with the side walls, and the housing assembly further has two baffles disposed in the liquid tank and attached to the two side walls of the liquid tank respectively. Each of the baffles is annular and has a gap defined through the baffle, and an interior of the liquid tank is divided into an inner compartment surrounded by the baffles and an outer compartment formed between the annular wall of the liquid tank and the baffles. The rotating base is rotatably disposed between the baffles. The paddle blades is disposed in the outer compartment of the liquid tank and protruding toward the two side walls.
The resistance system for the rowing machine has simplified structure. Therefore, it is easy to assemble to the resistance system, and manufacturing cost of the resistance system can be decreased. In addition, a service life of the resistance system as well as the rowing machine can be increased.
Other objectives, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
With reference to
The mounting bracket 10 is connected to a front end of a seat assembly 70 of the rowing machine.
With further reference to
The liquid tank 21 is for storing liquid such as water, and has two side walls 211 and an annular wall 212. The side walls 211 are oppositely defined on the liquid tank 21. The annular wall 212 is formed between the two side walls 211 and connected to the two side walls 211 to form the shell of the liquid tank 21 with the side walls 211. One of the side walls 211 faces the user in a using status of the rowing machine, which shortens the overall length and facilitates placement of the rowing machine.
The baffles 22 are disposed in the liquid tank 21 and are attached to the two side walls 211 of the liquid tank 21 respectively. Each of the baffles 22 is annular and has a gap 221 defined through the baffle 22. An interior of the liquid tank 21 is divided into an inner compartment 201 surrounded by the baffles 22 and an outer compartment 202 formed between the annular wall 212 of the liquid tank 21 and the baffles 22. The inner compartment 201 and the outer compartment 202 in the liquid tank 21 communicates with each other via the gaps 221 of the baffles 22.
In the embodiment, the liquid tank 21 is formed by attaching two half-housings 210 in a watertight manner. The gap 221 of one of the baffles 22 corresponds in position to the gap 221 of the other baffle 22.
With further reference to
Preferably, the liquid tank 21 is connected to the driven shaft 33 via at least one bearing 34 thereof, such that the driven shaft 33 is able to rotate smoothly and stably relative to the liquid tank 21. Preferably, at least one sealing member 34 is mounted between the liquid tank 21 and the driven shaft 33, so as to avoid leakage of the liquid in the liquid tank 21.
The at least one strip guiding member 40A, 40B is mounted on the mounting bracket 10. In an embodiment, each of the at least one strip guiding member 40A, 40B is cylindrical.
With further reference to
The strip hub 51 is mounted around the outer end of the driven shaft 33 and has an annular recess 511 and a connecting axle 512. The annular recess 511 is formed in and around an annular side surface of the strip hub 51. The connecting axle 512 protrudes from an end surface of the strip hub 51 and is coaxial with the driven shaft 33. The at least one one-way bearing 52 is mounted between and is connected to the driven shaft 33 and the strip hub 51.
The driving strip 53 is adapted to make the paddle wheel 30 and the liquid tank 21 relatively rotating. The driving strip 53 is wound around the strip hub 51 in the annular recess 511, abuts against and is oriented by the at least one strip guiding member 40A, 40B, and has an inner connecting end and an outer pulling end 531. The inner connecting end of the driving strip 53 is connected with the strip hub 51. The outer pulling end 531 of the driving strip 53 extends toward the seat assembly 70. The handle 54 is connected with the outer pulling end 531 of the driving strip 53.
With the at least one one-way bearing 52 disposed between the driven shaft 33 and the strip hub 51, when the strip hub 51 is driven to rotate to unwind the driving strip 53, the strip hub 51 drives the driven shaft 33, i.e. the paddle wheel 30, to rotate; when the strip hub 51 is driven to rotate to wind the driving strip 53, the strip hub 51 is free from driving the driven shaft 33, i.e. the paddle wheel 30, to rotate.
The restoring assembly 60 is mounted around the connecting axle 512 of the strip hub 51 and includes a casing 61 and a restoring element 62. The casing 61 is securely connected to the mounting bracket 10 and is mounted around the connecting axle 512, such that the connecting axle 512 protrudes into the casing 61. The restoring element 62 is resilient, is mounted in the casing 61, and has two ends respectively connected to the casing 61 and the connecting axle 512.
Preferably, the casing 61 is connected to the connecting axle 512 via at least one bearing 63 thereof. In an embodiment, the restoring element 62 is a volute spring that is wound around the connecting axle 512 of the strip hub 51.
When using the rowing machine, a user sits on the seat assembly 70, faces toward the resistance system AA, and holds the handle 54 of the driving assembly 50.
As the user pulls the driving strip 53 to unwind the driving strip 53, the strip hub 51 is driven to rotate to make the paddle wheel 30 rotated. Meanwhile, a resilient restoring force of the restoring element 62 is formed, and the connecting axle 512 of the strip hub 51 is rotated in a direction. Turbulence caused by the paddle blades 32 moving the liquid in the liquid tank 21 provides fluid resistance to rotation of the wheel paddle 30. Moreover, the liquid pushed by the paddle blades 32 of the paddle wheel 30 flows in the outer compartment 202 and is guided toward the liquid level at balance by the baffles 22 in the liquid tank 21, which reduces the vibration of the liquid tank 21.
As the user releases the driving strip 53, the restoring element 62 drives the strip hub 51 to rotate reversely to wind the driving strip 53. With the at least one one-way bearing 52 disposed between the driven shaft 33 and the strip hub 51, the strip hub 51 is free from driving the paddle wheel 30 to rotate. Thus, the fluid resistance does not hinder rotation of the strip hub 51.
The resistance system AA for the rowing machine as described has simplified structure. Therefore, it is easy to assemble to the resistance system AA, and manufacturing cost of the resistance system AA can be decreased. In addition, a service life of the resistance system AA as well as the rowing machine can be increased.
With reference to
With reference to
With reference to
With reference to
With reference to
Even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and features of the invention, the disclosure is illustrative only. Changes may be made in the details, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
The present application is a continuation-in-part application claiming the benefit of U.S. non-provisional application Ser. No. 16/225,041, filed on Dec. 19, 2018, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 16225041 | Dec 2018 | US |
Child | 17002524 | US |