1. Technical Field
The present disclosure relates to resistance testing devices and, particularly, to a device capable of testing multiple resistances.
2. Description of Related Art
Resistance testing is required for electronic elements before assembly with another electronic element. Plans of the electronic element define a plurality of testing points, one of which is designated as a common point providing reference from which other testing points can be tested.
It is necessary to test the resistance values between the other testing points and the common point using a multimeter or impedance instrument, and record the resistance values. When the testing is finished, the resistance values are input into a computer to determine compliance with specific requirements.
The testing method described, however, is complex, requiring labor and affecting testing efficiency.
Therefore, there is room for improvement within the art.
Many aspects of the resistance testing device can be better understood with reference to the following drawings. These drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present resistance testing device. Moreover, in the drawings like reference numerals designate corresponding sections throughout the views.
Referring to
The base 11 includes a top board 113, an operating board 115, and a protecting board 117. The top board 113 defines a mounting hole 1132 and a first connecting hole 1135 through in a center thereof. The top board 113 further includes two guide columns 1137 symmetrically protruding therefrom, adjacent to the mounting hole 1132 and the first connecting hole 1135. The operating board 115 defines a card slot 1151 receiving a storage card 80 (
Each latching block 13 has an “L”-shaped cross-section, defining a sliding slot 132. The two latching blocks 13 are mounted on the top board 113, with the sliding slot 132 extending parallel to the top board 113. The two latching blocks 13 are symmetrically disposed on both sides of the mounting hole 1132. The two latching blocks 13 and the top board 113 cooperatively enclose a mounting space 119, for receiving the positioning member 15.
The positioning member 15 can be received in the mounting space 119. The positioning member 15 includes a main portion 151, two sliding blocks 153, a positioning portion 155 and a contact rod 158. A fixing hole 1532 is defined in a distal end of each sliding block 153. The fixing hole 1532 receives a fastener (not labelled) therein, slidably received in the sliding slot 132. The positioning portion 155 is a generally rectangular concave and is defined in the main portion 151. The positioning portion 155 is configured to support the electronic element 200. The contact rod 158 is fastened to the main portion 151. The positioning member 15 is sandwiched between the two latching blocks 13 with the sliding cooperation of the two sliding blocks 153 and the mounting space 119.
The monitoring member 17 is an optical fiber sensor. The monitoring member 17 is mounted on the mounting hole 1132. The monitoring member 17 is electrically connected to the central processing assembly 40 to monitor a position of the electronic element 200 and send the position signal to the central processing assembly 40.
The probe mounting board 19 can be T-shaped, including a connecting portion 191 and a mounting portion 193. The connecting portion 191 includes two hollow poles 1912, corresponding to the guide columns 1137. The guide columns 1137 are respectively and slidably received in the hollow poles 1912. The connecting portion 191 further includes a fastening block 1915 at a center thereof receiving the probe mounting board 19 to the driving assembly 20. The mounting portion 193 defines through probe mounting holes 1932 and a second connecting hole 1935. The second connecting hole 1935 corresponds to the first connecting hole 1135, with both allowing passage of the testing probes 30 therethrough.
The driving assembly 20 is mounted on the top board 113 of the testing platform 10 and received in the receiving space 118. The driving assembly 20 is fixed to the connecting portion 191 and drives the testing probes 30 up and down along the guide columns 1137. In this embodiment, the driving assembly 20 includes a mounting board 21, a pneumatic cylinder 23, a fixing board 25, an electromagnetic valve 26, an inlet air pipe 27 and an outlet air pipe 28. The mounting board 21 mounted on the protecting board 117 and covering the receiving space 118 and the two guide columns 1137. The mounting board 21 defines a hole 212, through which the pneumatic cylinder 23 passes. The pneumatic cylinder 23, including a pneumatic cylinder body 231, an inlet air pipe mounting portion 233, an outlet air pipe mounting portion 235 and a piston 237 slidably mounted in the pneumatic cylinder body 231. The fixing board 25, defining a mounting hole 251 at a center through which the piston 237 passes. The fixing board 25 is fixedly mounted on the two free ends of the two guide columns 1137. The electromagnetic valve 26 is fastened to a protecting board 117 and controls the pneumatic cylinder 23. The electromagnetic valve 26 includes an air source inlet end 261, and an inlet air pipe connecting end 263, an outlet air pipe connecting end 265. One end of the inlet air pipe 27 is connected to the inlet air pipe connecting end 263, and the other is connected to the inlet air pipe mounting portion 233 of the pneumatic cylinder 23. One end of the outlet air pipe 28 is connected to the outlet valve connecting end 265, and the other is connected to the outlet air pipe mounting portion 235 of the pneumatic cylinder 23.
The testing probes 30 are correspondingly mounted on the probe mounting hole 1932 of the mounting end 193. One end of each testing probe 30 passes through the probe mounting board 19, exposing under the probe mounting board 19 and facing the mounting space 119. The other end of each testing probe 30 is connected to the relay module 70 through the first connecting hole 1135 and the second connecting hole 1935.
The central processing assembly 40 is mounted within the base 11. The central processing assembly 40 includes a central processing unit (CPU) 41, a driving assembly connecting port 42, a display connecting port 45, a multimeter connecting port 46, a relay module connecting port 47, a storage card housing 48, and an inlet controlling port 49. The driving assembly connecting port 42, the display port 45, the multimeter connecting port 46, the relay module connecting port 47, the storage card housing 48, and the inlet controlling port 49 are all electrically connected to the CPU 41 and respectively and correspondingly connected to the driving assembly 20, the display 50, the multimeter 60, the relay module 70, the storage card 80, and the controls 90. The controls 90 provide input of data to the CPU 41, such as startup and result processing.
The multimeter 60 is mounted within the base 11, with one end connected to the multimeter connecting port 46 and the other to the relay module 70.
The relay module 70 is mounted within the base 11, with one end connected to the relay module controlling port 47 and the other connected to the multimeter 60 and the testing probes 30.
The storage card 80 is detachably inserted into the storage card housing 48 via the card slot 1151.
Referring to
Referring to
Alternatively, the monitoring member 17 can be a photoinduction switch.
Alternatively, the driving assembly 20 can be a stepped motor or other.
It is to be understood, however, that even through numerous characteristics and advantages of the present disclosure have been set forth in the foregoing description, together with details of the structure and function of the disclosure, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of sections within the principles of the disclosure to the full extent indicated by the broad general meaning of the terms, in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
200810301732.9 | May 2008 | CN | national |