The disclosure of the present application relates to input mechanisms, and more particularly, to sensing input through the use of force and proximity sensors.
Virtually every consumer product device on the market has some form of input mechanism that allows a user to interact with the device. One of the most common input mechanisms is the button, which when pressed by a user causes the device to change a state associated with the button. The button may take many forms, from a mechanical push button, such as a rubber knob commonly found on TV remote controls and calculators, to a virtual button, such as a graphical user interface input area displayed on a flat and/or rigid touch-sensitive surface commonly found on ATMs and some handheld computing devices.
Irrespective of the form, the button is usually associated with two states—“pressed” or “not pressed”. Pressing or selecting a button changes the “not pressed” state to “pressed”, causing the “pressed” state to be activated. Releasing the button changes the “pressed” state back to “not pressed”, causing the “pressed” state to be deactivated. In this sense, the button allows a user to define the state of input into the device.
For example, when a device is powered off and a user presses the power button, the button press activates the power button's “pressed” state, which triggers the device to power on. When the user releases the button, the button release deactivates the “pressed” state, usually to no effect. In a different example, when a user presses a horn on a car (which can be considered a large button), the horn press activates the horn's “pressed” state, triggering the car to sound the horn. When the user releases the horn, the horn release deactivates the “pressed” state, triggering the car to stop sounding the horn.
The mechanism behind the operation of many buttons is a force sensor. When a user presses a button, a force sensor detects the force being applied to the button from the user's finger, hand or other object. When the output of the sensor indicates that the force exceeds a threshold amount (e.g., a strong enough press of the user's finger to indicate the user is intending to press the button), the “pressed” state of the button is activated, triggering an action to be taken by the device due to the button being pressed.
Thus, in order for the button to work properly, it is important that the button's sensor output be interpreted correctly to indicate that the button has been pressed or released. An incorrect interpretation of the button's sensor output can result in a phantom button press or release, which can trigger an unintended action with potentially damaging consequences.
In order to correctly interpret whether a user is pressing a button of a device, methods of the present disclosure can detect both the force applied to the button area as well as the proximity of a user's finger to the button area.
In this manner, proximity detection can be used to verify that a detected force is actually caused by an intended press of a button and not some other effect, such as temperature change or a stuck button, for example.
For instance, when in certain situations a temperature change causes a force sensor to indicate a force being applied to a button, the combination of proximity detection with force detection can prevent the temperature change from being confused for a user's button press if the proximity sensor indicates that no finger is in the button area.
Similarly, when in certain situations a stuck button causes a force sensor to indicate a force being applied to a button, the combination of proximity detection with force detection can prevent the stuck button from being confused for a user continuing to hold down a button if the proximity sensor indicates that the user's finger has left the button area.
In addition to resolving these signal conditioning issues, the present disclosure teaches that the same physical sensor can be utilized to switch back and forth between force detection and proximity detection, since the same sensor element can be directed to detect both resistance (to indicate applied force) and capacitance (to indicate proximity of a user's finger).
The use of a single sensor device to accomplish both force and proximity sensing can be advantageous from an implementation and a cost standpoint. From an implementation standpoint, it can be beneficial to have dual-sensing ability in one physical sensor because it ensures that the same input area can be detected for force and proximity. From a cost standpoint, it is less expensive to use one physical sensor for detecting both force and proximity, rather than two sensors whereby one is used for detecting only force and the other for detecting only proximity.
Further, the present disclosure teaches the ability of a device to programmatically change threshold amounts of the force and/or proximity output required in order to activate an input state of a button. For example, if the device can alter the level of force required to activate a button's “pressed” state, and/or the level of proximity of a finger to the button area to activate the button's “pressed” state, the effective size of the button area can be changed without changing the physical sensor associated with the button.
Such an ability could allow a user to resize a virtual button displayed on a device surface by merely adjusting the sensor threshold parameters via software control.
The present disclosure teaches the use of resistive force detection in combination with capacitive proximity detection in order to implement a button, for example. The resistive force detection and capacitive proximity detection may work through a rigid cover or housing, including glass, for example. The same physical sensor element may be used for both resistive force detection and capacitive proximity detection.
The resistive force sensor can be used to detect force applied by a user's finger to an input area of a device. To address situations in which the force sensor output changes due to unintended effects, such as, for example, temperature changes, a stuck button or even a user applying force to the device but not directly over the force sensor area, the capacitive proximity sensor can be used to detect the proximity of the user's finger to the input area in order to confirm the finger press.
Temperature change and sticking buttons relate to signal conditioning issues referred to as baseline drift and hysteresis, respectively. These issues make it difficult to properly interpret the sensor's output signal as clearly indicating either the “pressed” or “not pressed” state.
Baseline drift occurs when factors other than a user pressing a button, such as changes in temperature, cause the sensor to output a signal indicating that a user pressed the button. In this situation, the simple act of placing a cell phone or portable music player in the sun or near a hot appliance could cause the sensor's output to indicate that a button has been pressed.
Hysteresis occurs when a button “sticks”, or fails to return completely to its original position, after being pressed. In this situation, because the “stuck” button is still exerting a force on the sensor, the sensor output may incorrectly indicate that the user is continuing to press the button.
In an effort to better illustrate these issues, a basic description of the workings of a force sensor is warranted. In a basic sense, a force sensor usually works by detecting the resistance of a sensor element, and outputting a signal indicating the level of the detected resistance. A sensor element usually includes two contacts positioned closely together—but not touching—while at rest, as shown in
Thus, when a force sensor detects a drop in resistance of the sensor element, the drop is interpreted as a force being applied to the sensor. The greater the drop in resistance, the greater the level of force interpreted as being applied to the sensor.
In order to detect a drop in resistance, a baseline resistance is usually established from which to measure any subsequent drop. The baseline resistance is the level of resistance detected in the sensor element when at rest—i.e., when no intended force is being applied to the sensor.
To illustrate these issues graphically,
Although a force sensor output indicates a level of resistance, force sensor output plot 100 plots the sensor output in terms of conductance over time for better presentation purposes. Conductance is the inverse of resistance (depicted as 1/R), and enables the resistance output to be plotted with an increasing, rather than a decreasing, slope in relation to an increasing force being applied to the sensor (and vice-versa).
In an ideal situation, plot 100 shows that the force sensor only provides an output above baseline 130 when the user is pressing the button beginning at point 140. When the user releases the user's finger from the button at point 160, the output returns to baseline 130. In such a situation, a simple threshold algorithm can be utilized to interpret the button press—when the output exceeds a threshold amount of resistance, the button is considered pressed; when the output falls below the threshold amount, the button is considered released.
As shown in plot 100, the “pressed” state of the button is activated at point 150, which is when the force of the finger press exceeds the threshold amount of resistance depicted by activation threshold 120. When the output falls below activation threshold 120 at point 170, the “pressed” state of the button is deactivated, indicating that the button has been released by the user. In a real application, the output is never this clean.
Once the output (and hence drifting baseline 130) drifts from starting baseline 220 and exceeds activation threshold 120 at point 150, the “pressed” state of the button is activated. As shown in plot 210, the output is interpreted as if a user is continuing to press the button after point 150.
Thus, the simple threshold algorithm is impractical to implement in a baseline drift situation.
In this situation under the simple threshold algorithm, because the output did not fall back below activation threshold 120, the “pressed” state remains activated as illustrated in corresponding plot 310.
Thus, the simple threshold algorithm is also impractical to implement in a hysteresis situation.
Although some algorithms more complex than the simple threshold algorithm, such as a re-baseline algorithm and derivative algorithm, may attempt to interpret force sensor output properly for switch-like operation in light of baseline drift and hysteresis, each possesses drawbacks that hinder their ability to appropriately compensate for these signal conditioning issues.
The re-baseline algorithm adjusts the baseline (or “re-baselines”) to match the current output level at a specified time interval. Unfortunately, this algorithm depends on picking the correct time interval at which to re-baseline. If the algorithm re-baselines too quickly, it will miss button pushes because it will re-baseline to the force applied by the user's finger. If it re-baselines too slowly, it will allow accidental button pushes because it will not catch the baseline drift in time. In some cases, there is no appropriate “happy medium” interval.
The derivative algorithm relies on the derivative of the sensor output. In other words, it looks not at the change in output at discrete intervals in time (as in the re-baseline algorithm), but rather at how quickly the output changes over a short period of time. It therefore requires the user to press quickly on the button in order for the force to be interpreted as a button press. If the user presses slowly by holding a finger over the button and gradually applying force, the button push could be missed all together.
Accordingly, the use of resistive force detection in combination with capacitive proximity detection can overcome these signal conditioning issues when implementing a button, for example.
In step 420, controller 400 can switch sensor 410 into force detection mode by directing sensor 410 to detect resistance between its sensor contacts. While in force detection mode in step 430, sensor 410 can output a signal indicating the level of detected resistance which may be interpreted by controller 400 as a level of force being applied to sensor 410. In step 440, controller 400 can switch sensor 410 into proximity detection mode by directing sensor 410 to detect capacitance of the sensor element instead of resistance. While in proximity detection mode in step 450, sensor 410 can output a signal indicating the level of detected capacitance which may be interpreted by controller 400 as a level of proximity of an object to sensor 410. As indicated by the bent arrows, switching between the two sensor operation modes may occur in an alternating fashion.
Controller 400 can switch back and forth between detection modes using, for example, a copper pattern shape as a force sensor element for part of the time and as a capacitive sensor element for part of the time. Controller 400 can be programmed or instructed to direct sensor 410 to alternate between resistive force detection and capacitive proximity detection every 25 milliseconds or less, for example, so that a time lag would not be evident to a user between pressing the button and the device identifying the press as a button press (i.e., activating the “pressed” state of the button).
In an another method of the present disclosure, at specified intervals controller 400 may receive only resistive force detection output from one sensor and only capacitive proximity detection output from a different sensor situated in close proximity to the first sensor.
At step 800 the processor can determine if the proximity output exceeds a threshold amount of proximity, indicating proximity of a finger to the sensor area. When the threshold amount of proximity is exceeded at point 940, the processor can disable the adjusting baseline functionality by switching to static baseline 930 mode at step 810. At this point, the processor can continue to determine, without adjusting for baseline drift, whether the proximity and force output exceed the threshold amounts of proximity and force, respectively, at steps 820 and 830, in order to activate the “pressed” button state at step 840.
If the proximity output falls below the threshold amount of proximity (e.g., indicating the finger moved away) at step 820, which occurs prior to the “pressed” state being activated, the processor can simply switch back to adjusting baseline 920 mode at step 870. If the proximity output falls below the threshold amount of proximity at step 850 and points 160 and 950, which occur after the “pressed” state has been activated, the processor can deactivate the “pressed” state at step 860 and switch back to adjusting baseline 920 mode at step 870. As plot 910 illustrates, the button state is correctly activated and deactivated in light of the baseline drift and hysteresis factors.
Of course, in step 850 force output could be utilized instead of proximity output to determine whether to deactivate the switch, similar to step 730, or a combination of both a force output and proximity output may be utilized, for example.
This request could be generated by a user via a user interface associated with the device. Upon receiving the request, at step 1010 the processor may adjust the force and/or proximity thresholds accordingly in order to change the physical detection coverage for a virtual button displayed on an input area of the device.
If rubber 1210 is compressed onto PCB 1220 pattern 1230, then the contact resistance between the two halves of the pattern can be reduced. The change in resistance caused by this force may be measured by, for example, a processor. Adhesive 1240 may be included to allow doped rubber 1210 to actually push harder on PCB 1220 pattern 1230, with adhesive 1240 compressing slightly when the user pushes their finger directly on the input area 1120 of the cover 1110.
Cover 1110 may be adhered to frame 1200, which has a small hole. PCB 1220 may be stuck to the bottom of frame 1200 and have pattern 1230 on it.
Controller 400 may provide the necessary drive and detection circuitry to obtain force and proximity output from sensor 410. Controller 400 can process the received force and proximity output to determine whether input area 1120 was pressed or released by a user with the intent to activate or deactivate the “pressed” state of a button. In order to activate or deactivate the “pressed” state, controller 400 can send a signal indicating such activation or deactivation to processor 1500 (e.g., a central processor responsible for running the device), which may trigger the appropriate programming functionality to react to the indicated button press or release.
Memory 1510 may include, for example, one or more of the following types of storage media: magnetic disks; optical media; and semiconductor memory devices such as static and dynamic random access memory (RAM), Electrically Programmable Read-Only Memory (“EPROM”), Electrically Erasable Programmable Read-Only Memory (“EEPROM”), Programmable Gate Arrays and flash devices.
The processing functionality described herein may be performed by a processor located on the sensor board itself, controller 400 or the central processor responsible for running the device, for example.
Although the claimed subject matter has been fully described in connection with examples thereof with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of the present disclosure as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1061578 | Wischhusen et al. | May 1913 | A |
2798907 | Schneider | Jul 1957 | A |
2903229 | Landge | Sep 1959 | A |
2945111 | McCormick | Jul 1960 | A |
3005055 | Mattke | Oct 1961 | A |
3965399 | Walker et al. | Jun 1976 | A |
4103252 | Bobick | Jul 1978 | A |
4110749 | Janko et al. | Aug 1978 | A |
4115670 | Chandler | Sep 1978 | A |
4121204 | Welch et al. | Oct 1978 | A |
4129747 | Pepper | Dec 1978 | A |
4158216 | Bigelow | Jun 1979 | A |
4242676 | Piguet et al. | Dec 1980 | A |
4246452 | Chandler | Jan 1981 | A |
4264903 | Bigelow | Apr 1981 | A |
4293734 | Pepper, Jr. | Oct 1981 | A |
D264969 | McGoutry | Jun 1982 | S |
4380007 | Steinegger | Apr 1983 | A |
4380040 | Posset | Apr 1983 | A |
4475008 | Doi et al. | Oct 1984 | A |
4570149 | Thornburg et al. | Feb 1986 | A |
4587378 | Moore | May 1986 | A |
4644100 | Brenner et al. | Feb 1987 | A |
4719524 | Morishima et al. | Jan 1988 | A |
4734034 | Maness et al. | Mar 1988 | A |
4736191 | Matzke et al. | Apr 1988 | A |
4739191 | Puar | Apr 1988 | A |
4739299 | Eventoff et al. | Apr 1988 | A |
4752655 | Tajiri et al. | Jun 1988 | A |
4755765 | Ferland | Jul 1988 | A |
4764717 | Tucker et al. | Aug 1988 | A |
4798919 | Miessler et al. | Jan 1989 | A |
4810992 | Eventoff | Mar 1989 | A |
4831359 | Newell | May 1989 | A |
4849852 | Mullins | Jul 1989 | A |
4856993 | Maness et al. | Aug 1989 | A |
4866602 | Hall | Sep 1989 | A |
4876524 | Jenkins | Oct 1989 | A |
4897511 | Itaya et al. | Jan 1990 | A |
4914624 | Dunthorn | Apr 1990 | A |
4917516 | Retter | Apr 1990 | A |
4951036 | Grueter et al. | Aug 1990 | A |
4976435 | Shatford et al. | Dec 1990 | A |
4990900 | Kikuchi | Feb 1991 | A |
5008497 | Asher | Apr 1991 | A |
5036321 | Leach et al. | Jul 1991 | A |
5053757 | Meadows | Oct 1991 | A |
5125077 | Hall | Jun 1992 | A |
5159159 | Asher | Oct 1992 | A |
5179648 | Hauck | Jan 1993 | A |
5186646 | Pederson | Feb 1993 | A |
5192082 | Inoue et al. | Mar 1993 | A |
5231326 | Echols | Jul 1993 | A |
5237311 | Mailey et al. | Aug 1993 | A |
5270710 | Gaultier et al. | Dec 1993 | A |
5278362 | Ohashi | Jan 1994 | A |
5305017 | Gerpheide | Apr 1994 | A |
5313027 | Inoue et al. | May 1994 | A |
D349280 | Kaneko | Aug 1994 | S |
5339213 | O'Callaghan | Aug 1994 | A |
5367199 | Lefkowitz et al. | Nov 1994 | A |
5374787 | Miller et al. | Dec 1994 | A |
5404152 | Nagai | Apr 1995 | A |
5408621 | Ben-Arie | Apr 1995 | A |
5414445 | Kaneko et al. | May 1995 | A |
5416498 | Grant | May 1995 | A |
5424756 | Ho et al. | Jun 1995 | A |
5432531 | Calder et al. | Jul 1995 | A |
5438331 | Gilligan et al. | Aug 1995 | A |
D362431 | Kaneko et al. | Sep 1995 | S |
5450075 | Waddington | Sep 1995 | A |
5453761 | Tanaka | Sep 1995 | A |
5473343 | Kimmich et al. | Dec 1995 | A |
5473344 | Bacon et al. | Dec 1995 | A |
5479192 | Carroll, Jr. et al. | Dec 1995 | A |
5483261 | Yasutake | Jan 1996 | A |
5488204 | Mead et al. | Jan 1996 | A |
5495566 | Kwatinetz | Feb 1996 | A |
5508703 | Okamura et al. | Apr 1996 | A |
5510813 | Makinwa et al. | Apr 1996 | A |
5543588 | Bisset et al. | Aug 1996 | A |
5555004 | Ono et al. | Sep 1996 | A |
5559301 | Bryan, Jr. et al. | Sep 1996 | A |
5559943 | Cyr et al. | Sep 1996 | A |
5561445 | Miwa et al. | Oct 1996 | A |
5564112 | Hayes et al. | Oct 1996 | A |
5565887 | McCambridge et al. | Oct 1996 | A |
5578817 | Bidiville et al. | Nov 1996 | A |
5581670 | Bier et al. | Dec 1996 | A |
5585823 | Duchon et al. | Dec 1996 | A |
5589893 | Gaughan et al. | Dec 1996 | A |
5596347 | Robertson et al. | Jan 1997 | A |
5598183 | Robertson et al. | Jan 1997 | A |
5611040 | Brewer et al. | Mar 1997 | A |
5611060 | Belfiore et al. | Mar 1997 | A |
5613137 | Bertram et al. | Mar 1997 | A |
5613600 | Yokoji et al. | Mar 1997 | A |
5617114 | Bier et al. | Apr 1997 | A |
5627531 | Posso et al. | May 1997 | A |
5632679 | Tremmel | May 1997 | A |
5640258 | Kurashima et al. | Jun 1997 | A |
D382550 | Kaneko et al. | Aug 1997 | S |
5657012 | Tait | Aug 1997 | A |
5661632 | Register | Aug 1997 | A |
D385542 | Kaneko et al. | Oct 1997 | S |
5689285 | Asher | Nov 1997 | A |
5726687 | Belfiore et al. | Mar 1998 | A |
5729219 | Armstrong et al. | Mar 1998 | A |
5730165 | Philipp | Mar 1998 | A |
5748185 | Stephan et al. | May 1998 | A |
5751274 | Davis | May 1998 | A |
5754890 | Holmdahl et al. | May 1998 | A |
5777605 | Yoshinobu et al. | Jul 1998 | A |
5786818 | Brewer et al. | Jul 1998 | A |
5790769 | Buxton et al. | Aug 1998 | A |
5805144 | Scholder et al. | Sep 1998 | A |
5808602 | Sellers | Sep 1998 | A |
5812498 | Teres et al. | Sep 1998 | A |
5825352 | Bisset et al. | Oct 1998 | A |
5825353 | Will | Oct 1998 | A |
5828364 | Siddiqui | Oct 1998 | A |
5835079 | Shieh | Nov 1998 | A |
5838304 | Hall | Nov 1998 | A |
5841423 | Carroll, Jr. et al. | Nov 1998 | A |
D402281 | Ledbetter et al. | Dec 1998 | S |
5850213 | Imai et al. | Dec 1998 | A |
5856822 | Du et al. | Jan 1999 | A |
5856827 | Sudo | Jan 1999 | A |
5859629 | Tognazzini | Jan 1999 | A |
5875311 | Bertram et al. | Feb 1999 | A |
5880411 | Gillespie et al. | Mar 1999 | A |
5883619 | Ho et al. | Mar 1999 | A |
5889236 | Gillespie et al. | Mar 1999 | A |
5889511 | Ong et al. | Mar 1999 | A |
5894117 | Kamishima | Apr 1999 | A |
5903229 | Kishi | May 1999 | A |
5907152 | Dandiliker et al. | May 1999 | A |
5907318 | Medina | May 1999 | A |
5909211 | Combs et al. | Jun 1999 | A |
5914706 | Kono | Jun 1999 | A |
5923388 | Kurashima et al. | Jul 1999 | A |
D412940 | Kato et al. | Aug 1999 | S |
5943044 | Martinelli et al. | Aug 1999 | A |
5956019 | Bang et al. | Sep 1999 | A |
5959611 | Smailagic et al. | Sep 1999 | A |
5964661 | Dodge | Oct 1999 | A |
5973668 | Watanabe | Oct 1999 | A |
6000000 | Hawkins et al. | Dec 1999 | A |
6002389 | Kasser | Dec 1999 | A |
6005299 | Hengst | Dec 1999 | A |
6025832 | Sudo et al. | Feb 2000 | A |
6031518 | Adams et al. | Feb 2000 | A |
6034672 | Gaultiet et al. | Mar 2000 | A |
6057829 | Silfvast | May 2000 | A |
6075533 | Chang | Jun 2000 | A |
6084574 | Bidiville | Jul 2000 | A |
D430169 | Scibora | Aug 2000 | S |
6097372 | Suzuki | Aug 2000 | A |
6122526 | Parulski et al. | Sep 2000 | A |
6124587 | Bidiville et al. | Sep 2000 | A |
6128006 | Rosenberg et al. | Oct 2000 | A |
6163312 | Furuya | Dec 2000 | A |
6166721 | Kuroiwa et al. | Dec 2000 | A |
6179496 | Chou | Jan 2001 | B1 |
6181322 | Nanavati | Jan 2001 | B1 |
D437860 | Suzuki et al. | Feb 2001 | S |
6188391 | Seely et al. | Feb 2001 | B1 |
6188393 | Shu | Feb 2001 | B1 |
6191774 | Schena et al. | Feb 2001 | B1 |
6198054 | Janniere | Mar 2001 | B1 |
6198473 | Armstrong | Mar 2001 | B1 |
6211861 | Rosenberg et al. | Apr 2001 | B1 |
6219038 | Cho | Apr 2001 | B1 |
D442592 | Ledbetter et al. | May 2001 | S |
6225976 | Yates et al. | May 2001 | B1 |
6225980 | Weiss et al. | May 2001 | B1 |
6226534 | Aizawa | May 2001 | B1 |
6227966 | Yokoi | May 2001 | B1 |
D443616 | Fisher et al. | Jun 2001 | S |
6243078 | Rosenberg | Jun 2001 | B1 |
6243080 | Molne | Jun 2001 | B1 |
6248017 | Roach | Jun 2001 | B1 |
6254477 | Sasaki et al. | Jul 2001 | B1 |
6256011 | Culver | Jul 2001 | B1 |
6262717 | Donohue et al. | Jul 2001 | B1 |
6262785 | Kim | Jul 2001 | B1 |
6266050 | Oh et al. | Jul 2001 | B1 |
D448810 | Goto | Oct 2001 | S |
6297795 | Kato et al. | Oct 2001 | B1 |
6310610 | Beaton et al. | Oct 2001 | B1 |
D450713 | Masamitsu et al. | Nov 2001 | S |
6314483 | Goto et al. | Nov 2001 | B1 |
6323845 | Robbins | Nov 2001 | B1 |
6323846 | Westerman et al. | Nov 2001 | B1 |
D452250 | Chan | Dec 2001 | S |
6340800 | Zhai et al. | Jan 2002 | B1 |
D454568 | Andre et al. | Mar 2002 | S |
6357887 | Novak | Mar 2002 | B1 |
D455793 | Lin | Apr 2002 | S |
6373470 | Andre et al. | Apr 2002 | B1 |
6377530 | Burrows | Apr 2002 | B1 |
6396523 | Segal et al. | May 2002 | B1 |
6424338 | Anderson | Jul 2002 | B1 |
6429846 | Rosenberg et al. | Aug 2002 | B2 |
6429852 | Adams et al. | Aug 2002 | B1 |
6468630 | Mishima et al. | Oct 2002 | B1 |
6473069 | Gerphelde | Oct 2002 | B1 |
6492979 | Kent et al. | Dec 2002 | B1 |
6496181 | Bomer et al. | Dec 2002 | B1 |
6497412 | Bramm | Dec 2002 | B1 |
D468365 | Bransky et al. | Jan 2003 | S |
D469109 | Andre et al. | Jan 2003 | S |
6504530 | Wilson et al. | Jan 2003 | B1 |
6525713 | Soeta et al. | Feb 2003 | B1 |
D472245 | Andre et al. | Mar 2003 | S |
6587091 | Serpa | Jul 2003 | B2 |
6606244 | Liu et al. | Aug 2003 | B1 |
6636197 | Goldenberg et al. | Oct 2003 | B1 |
6639584 | Li | Oct 2003 | B1 |
6640250 | Chang et al. | Oct 2003 | B1 |
6650975 | Ruffner | Nov 2003 | B2 |
D483809 | Lim | Dec 2003 | S |
6664951 | Fujii et al. | Dec 2003 | B1 |
6677927 | Bruck et al. | Jan 2004 | B1 |
6686904 | Sherman et al. | Feb 2004 | B1 |
6690387 | Zimmerman et al. | Feb 2004 | B2 |
6703550 | Chu | Mar 2004 | B2 |
6724817 | Simpson et al. | Apr 2004 | B1 |
6727889 | Shaw | Apr 2004 | B2 |
D489731 | Huang | May 2004 | S |
6738045 | Hinckley et al. | May 2004 | B2 |
6750803 | Yates et al. | Jun 2004 | B2 |
6781576 | Tamura | Aug 2004 | B2 |
6788288 | Ano | Sep 2004 | B2 |
6791533 | Su | Sep 2004 | B2 |
6795057 | Gordon | Sep 2004 | B2 |
D497618 | Andre et al. | Oct 2004 | S |
6844872 | Farag et al. | Jan 2005 | B1 |
6886842 | Vey et al. | May 2005 | B2 |
6894916 | Reohr et al. | May 2005 | B2 |
D506476 | Andre et al. | Jun 2005 | S |
6922189 | Fujiyoshi | Jul 2005 | B2 |
6930494 | Tesdahl et al. | Aug 2005 | B2 |
6977808 | Lam et al. | Dec 2005 | B2 |
6978127 | Bulthuis et al. | Dec 2005 | B1 |
7006077 | Uusimäki | Feb 2006 | B1 |
7015894 | Morohoshi | Mar 2006 | B2 |
7046230 | Zadesky et al. | May 2006 | B2 |
7069044 | Okada et al. | Jun 2006 | B2 |
7084856 | Huppi | Aug 2006 | B2 |
7091886 | Depue et al. | Aug 2006 | B2 |
7113196 | Kerr | Sep 2006 | B2 |
7119792 | Andre et al. | Oct 2006 | B1 |
7184064 | Zimmerman et al. | Feb 2007 | B2 |
7206038 | Choi et al. | Apr 2007 | B2 |
7215319 | Kamijo et al. | May 2007 | B2 |
7233318 | Farag et al. | Jun 2007 | B1 |
7236154 | Kerr et al. | Jun 2007 | B1 |
7511702 | Hotelling | Mar 2009 | B2 |
7538760 | Hotelling et al. | May 2009 | B2 |
7652230 | Baier | Jan 2010 | B2 |
7663607 | Hotelling et al. | Feb 2010 | B2 |
8040142 | Bokma et al. | Oct 2011 | B1 |
8479122 | Hotelling et al. | Jul 2013 | B2 |
20010011991 | Wang et al. | Aug 2001 | A1 |
20010043545 | Aratani | Nov 2001 | A1 |
20010050673 | Davenport | Dec 2001 | A1 |
20010051046 | Watanabe et al. | Dec 2001 | A1 |
20020027547 | Kamijo | Mar 2002 | A1 |
20020030665 | Ano | Mar 2002 | A1 |
20020033848 | Sciammarella et al. | Mar 2002 | A1 |
20020045960 | Phillips et al. | Apr 2002 | A1 |
20020071550 | Pletikosa | Jun 2002 | A1 |
20020089545 | Levi Montalcini | Jul 2002 | A1 |
20020118131 | Yates et al. | Aug 2002 | A1 |
20020118169 | Hinckley et al. | Aug 2002 | A1 |
20020154090 | Lin | Oct 2002 | A1 |
20020158844 | McLoone et al. | Oct 2002 | A1 |
20020164156 | Bilbrey | Nov 2002 | A1 |
20020180701 | Hayama et al. | Dec 2002 | A1 |
20030002246 | Kerr | Jan 2003 | A1 |
20030025679 | Taylor et al. | Feb 2003 | A1 |
20030043121 | Chen | Mar 2003 | A1 |
20030043174 | Hinckley et al. | Mar 2003 | A1 |
20030050092 | Yun | Mar 2003 | A1 |
20030076301 | Tsuk et al. | Apr 2003 | A1 |
20030076303 | Huppi | Apr 2003 | A1 |
20030091377 | Hsu et al. | May 2003 | A1 |
20030095095 | Pihlaja | May 2003 | A1 |
20030095096 | Robbin et al. | May 2003 | A1 |
20030098851 | Brink | May 2003 | A1 |
20030184517 | Senzui et al. | Oct 2003 | A1 |
20030206202 | Moriya | Nov 2003 | A1 |
20040056845 | Harkcom et al. | Mar 2004 | A1 |
20040156192 | Kerr et al. | Aug 2004 | A1 |
20040215986 | Shakkarwar | Oct 2004 | A1 |
20040224638 | Fadell et al. | Nov 2004 | A1 |
20040227736 | Kamrath et al. | Nov 2004 | A1 |
20040239622 | Proctor et al. | Dec 2004 | A1 |
20040252109 | Trent, Jr. et al. | Dec 2004 | A1 |
20040253989 | Tupler et al. | Dec 2004 | A1 |
20040263388 | Krumm et al. | Dec 2004 | A1 |
20040267874 | Westberg et al. | Dec 2004 | A1 |
20050030048 | Bolender | Feb 2005 | A1 |
20050041018 | Philipp | Feb 2005 | A1 |
20050052425 | Zadesky et al. | Mar 2005 | A1 |
20050110768 | Marriott et al. | May 2005 | A1 |
20050204309 | Szeto | Sep 2005 | A1 |
20050275567 | Depue | Dec 2005 | A1 |
20060026521 | Hotelling et al. | Feb 2006 | A1 |
20060097991 | Hotelling et al. | May 2006 | A1 |
20060109252 | Kolmykov-Zotov et al. | May 2006 | A1 |
20060181517 | Zadesky et al. | Aug 2006 | A1 |
20060197750 | Kerr et al. | Sep 2006 | A1 |
20060197753 | Hotelling | Sep 2006 | A1 |
20060244733 | Geaghan | Nov 2006 | A1 |
20060250377 | Zadesky et al. | Nov 2006 | A1 |
20060274905 | Lindahl et al. | Dec 2006 | A1 |
20060279548 | Geaghan | Dec 2006 | A1 |
20070013671 | Zadesky et al. | Jan 2007 | A1 |
20070052044 | Forsblad et al. | Mar 2007 | A1 |
20070052691 | Zadesky et al. | Mar 2007 | A1 |
20070080936 | Tsuk et al. | Apr 2007 | A1 |
20070080938 | Robbin et al. | Apr 2007 | A1 |
20070083822 | Robbin et al. | Apr 2007 | A1 |
20070085841 | Tsuk et al. | Apr 2007 | A1 |
20070097547 | Yazawa et al. | May 2007 | A1 |
20070119698 | Day | May 2007 | A1 |
20070152975 | Ogihara | Jul 2007 | A1 |
20070152977 | Ng et al. | Jul 2007 | A1 |
20070152983 | McKillop et al. | Jul 2007 | A1 |
20070242057 | Zadesky et al. | Oct 2007 | A1 |
20070268274 | Westerman et al. | Nov 2007 | A1 |
20070273671 | Zadesky et al. | Nov 2007 | A1 |
20070276525 | Zadesky et al. | Nov 2007 | A1 |
20070279394 | Lampell | Dec 2007 | A1 |
20080006453 | Hotelling et al. | Jan 2008 | A1 |
20080006454 | Hotelling | Jan 2008 | A1 |
20080007533 | Hotelling et al. | Jan 2008 | A1 |
20080007539 | Hotelling et al. | Jan 2008 | A1 |
20080012837 | Marriott et al. | Jan 2008 | A1 |
20080018611 | Serban et al. | Jan 2008 | A1 |
20080018615 | Zadesky et al. | Jan 2008 | A1 |
20080018616 | Lampell et al. | Jan 2008 | A1 |
20080018617 | Ng et al. | Jan 2008 | A1 |
20080036734 | Forsblad et al. | Feb 2008 | A1 |
20080055259 | Plocher | Mar 2008 | A1 |
20080087476 | Prest et al. | Apr 2008 | A1 |
20080088582 | Prest et al. | Apr 2008 | A1 |
20080088596 | Prest et al. | Apr 2008 | A1 |
20080088597 | Prest et al. | Apr 2008 | A1 |
20080088600 | Prest et al. | Apr 2008 | A1 |
20080111795 | Bollinger | May 2008 | A1 |
20090020343 | Rothkopf et al. | Jan 2009 | A1 |
20090058819 | Gioscia et al. | Mar 2009 | A1 |
20100079402 | Grunthaner | Apr 2010 | A1 |
20100253645 | Bolender | Oct 2010 | A1 |
20110115738 | Suzuki et al. | May 2011 | A1 |
20130018489 | Grunthaner | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
1139235 | Jan 1997 | CN |
1455615 | Nov 2003 | CN |
1499356 | May 2004 | CN |
3615742 | Nov 1987 | DE |
19722636 | Dec 1998 | DE |
10022537 | Nov 2000 | DE |
20019074 | Feb 2001 | DE |
10 2006 000637 | Jul 2007 | DE |
0178157 | Apr 1986 | EP |
0419145 | Mar 1991 | EP |
0419145 | Mar 1991 | EP |
0498540 | Aug 1992 | EP |
0521683 | Jan 1993 | EP |
0 672 981 | Sep 1995 | EP |
0674288 | Sep 1995 | EP |
0 707 280 | Apr 1996 | EP |
0 707 280 | Apr 1996 | EP |
0 731 407 | Sep 1996 | EP |
0 744 886 | Nov 1996 | EP |
0551778 | Jan 1997 | EP |
0880091 | Nov 1998 | EP |
1 026 713 | Aug 2000 | EP |
1081922 | Mar 2001 | EP |
1098241 | May 2001 | EP |
1 133 057 | Sep 2001 | EP |
1162826 | Dec 2001 | EP |
1205836 | May 2002 | EP |
1251455 | Oct 2002 | EP |
1 467 392 | Oct 2004 | EP |
1482401 | Dec 2004 | EP |
1 496 467 | Jan 2005 | EP |
1542437 | Jun 2005 | EP |
1 589 407 | Oct 2005 | EP |
1 659 481 | May 2006 | EP |
2 686 440 | Jul 1993 | FR |
2072389 | Sep 1981 | GB |
2315186 | Jan 1998 | GB |
2391060 | Jan 2004 | GB |
2402105 | Dec 2004 | GB |
57-95722 | Jun 1982 | JP |
57-97626 | Jun 1982 | JP |
61-117619 | Jun 1986 | JP |
61-124009 | Jun 1986 | JP |
63-20411 | Jan 1988 | JP |
63-106826 | May 1988 | JP |
63-181022 | Jul 1988 | JP |
63-298518 | Dec 1988 | JP |
03-57617 | Jun 1991 | JP |
3-192418 | Aug 1991 | JP |
3192418 | Aug 1991 | JP |
04-32920 | Feb 1992 | JP |
5-041135 | Feb 1993 | JP |
5-080938 | Apr 1993 | JP |
5-101741 | Apr 1993 | JP |
05-36623 | May 1993 | JP |
5-189110 | Jul 1993 | JP |
5-205565 | Aug 1993 | JP |
5-211021 | Aug 1993 | JP |
5-217464 | Aug 1993 | JP |
05-233141 | Sep 1993 | JP |
05-262276 | Oct 1993 | JP |
5-265656 | Oct 1993 | JP |
5-274956 | Oct 1993 | JP |
05-289811 | Nov 1993 | JP |
5-298955 | Nov 1993 | JP |
5-325723 | Dec 1993 | JP |
06-20570 | Jan 1994 | JP |
6-084428 | Mar 1994 | JP |
6-089636 | Mar 1994 | JP |
6-96639 | Apr 1994 | JP |
6-111695 | Apr 1994 | JP |
6-139879 | May 1994 | JP |
06-187078 | Jul 1994 | JP |
06-208433 | Jul 1994 | JP |
6-267382 | Sep 1994 | JP |
06-283993 | Oct 1994 | JP |
6-333459 | Dec 1994 | JP |
7-107574 | Apr 1995 | JP |
7-41882 | Jul 1995 | JP |
7-201249 | Aug 1995 | JP |
07-201256 | Aug 1995 | JP |
07-253838 | Oct 1995 | JP |
7-261899 | Oct 1995 | JP |
7-261922 | Oct 1995 | JP |
07-296670 | Nov 1995 | JP |
7-319001 | Dec 1995 | JP |
08-016292 | Jan 1996 | JP |
8-115158 | May 1996 | JP |
8-203387 | Aug 1996 | JP |
8-293226 | Nov 1996 | JP |
8-298045 | Nov 1996 | JP |
08-299541 | Nov 1996 | JP |
8-316664 | Nov 1996 | JP |
09-044289 | Feb 1997 | JP |
09-069023 | Mar 1997 | JP |
09-128148 | May 1997 | JP |
9-134248 | May 1997 | JP |
9134248 | May 1997 | JP |
9-218747 | Aug 1997 | JP |
9-230993 | Sep 1997 | JP |
9-231858 | Sep 1997 | JP |
09-233161 | Sep 1997 | JP |
9-251347 | Sep 1997 | JP |
9-258895 | Oct 1997 | JP |
9-288926 | Nov 1997 | JP |
10-74127 | Mar 1998 | JP |
10-074429 | Mar 1998 | JP |
1074127 | Mar 1998 | JP |
10-198507 | Jul 1998 | JP |
10-227878 | Aug 1998 | JP |
10-326149 | Dec 1998 | JP |
11-184607 | Jul 1999 | JP |
11-194863 | Jul 1999 | JP |
11-194872 | Jul 1999 | JP |
11-194882 | Jul 1999 | JP |
11-194883 | Jul 1999 | JP |
11-194891 | Jul 1999 | JP |
11-195353 | Jul 1999 | JP |
11-203045 | Jul 1999 | JP |
1999-272378 | Oct 1999 | JP |
2000-163031 | Jun 2000 | JP |
2000-215549 | Aug 2000 | JP |
2000-267786 | Sep 2000 | JP |
2000-353045 | Dec 2000 | JP |
2001-11769 | Jan 2001 | JP |
2001-22508 | Jan 2001 | JP |
2002-215311 | Aug 2002 | JP |
2002-342033 | Nov 2002 | JP |
2003-280807 | Oct 2003 | JP |
2005-251218 | Sep 2005 | JP |
2005-285140 | Oct 2005 | JP |
2005-293606 | Oct 2005 | JP |
2006-4453 | Jan 2006 | JP |
2006-178962 | Jul 2006 | JP |
3852854 | Dec 2006 | JP |
2007-123473 | May 2007 | JP |
1998-71394 | Oct 1998 | KR |
1999-50198 | Jul 1999 | KR |
2000-08579 | Feb 2000 | KR |
2001-0052016 | Jun 2001 | KR |
431607 | Apr 2001 | TW |
00470193 | Dec 2001 | TW |
547716 | Aug 2003 | TW |
I220491 | Aug 2004 | TW |
WO-9417494 | Aug 1994 | WO |
WO 9500897 | Jan 1995 | WO |
WO-9814863 | Apr 1998 | WO |
WO-9949443 | Sep 1999 | WO |
WO-0235460 | May 2002 | WO |
WO-03044645 | May 2003 | WO |
WO 03044956 | May 2003 | WO |
WO 03090008 | Oct 2003 | WO |
WO 2004040606 | May 2004 | WO |
WO-2005055620 | Jun 2005 | WO |
WO-2005073634 | Aug 2005 | WO |
WO 2005076117 | Aug 2005 | WO |
WO-2005124526 | Dec 2005 | WO |
WO 2006037545 | Apr 2006 | WO |
WO 2006104745 | Oct 2006 | WO |
WO-2009012183 | Jan 2009 | WO |
WO-2009012183 | Jan 2009 | WO |
Entry |
---|
SanDisk Sansa Connect User Guide; 29 pages. |
PCT Search Report and Written Opinion for PCT/US2008/069890, mailed Jan. 29, 2009 (18 pages). |
“Touchpad,” Notebook PC Manual, ACER Information Co. Ltd., Feb. 16, 2005, pp. 11-12. |
Bang & Olufsen Telecom a/s. (2000). “BeoCom 6000 User Guide,” 53 pages. |
Lee, S.K. et al. (Apr. 1985). “A Multi-Touch Three Dimensional Touch-Sensitive Tablet,” Proceedings of CHI: ACM Conference on Human Factors in Computing Systems, pp. 21-25. |
Letter re: Bang & Olufsen a/s by David Safran, Nixon Peabody, LLP, May 21, 2004, with BeoCom 6000 Sales Training Brochure, seven pages. |
Rubine, D.H. (Dec. 1991). “The Automatic Recognition of Gestures,” CMU-CS-91-202, Submitted in Partial Fulfillment of the Requirements of the Degree of Doctor of Philosophy in Computer Science at Carnegie Mellon University, 285 pages. |
Rubine, D.H. (May 1992). “Combining Gestures and Direct Manipulation,” CHI '92, pp. 659-660. |
Westerman, W. (Spring 1999). “Hand Tracking, Finger Identification, and Chordic Manipulation on a Multi-Touch Surface,” A Dissertation Submitted to the Faculty of the University of Delaware in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Electrical Engineering, 364 pages. |
Translation of Trekstor's Defense Statement to the District Court Mannheim of May 23, 2008; 37 pages. |
“Diamond Multimedia Announces Rio PMP300 Portable MP3 Player,” located at http://news.harmony-central.com/Newp/1998/Rio-PMP300.html visited on May 5, 2008, 4 pages. |
“Diamond Multimedia Announces Rio PMP300 Portable MP3 Music Player,” located at http://news.harmony-central.com/Newp/1998/Rio-PMP300.html visited on May 5, 2008. (4 pages). |
“About Quicktip®” www.logicad3d.com/docs/qt.html, downloaded Apr. 8, 2002. |
“Apple Presents iPod: Ultra-Portable MP3 Music Player Puts 1,000 Songs in Your Pocket,” retreived from http://www.apple.com/pr/library/2001/oct/23ipod.html on Oct. 23, 2001. |
“Apple Unveils Optical Mouse and New Pro Keyboard,” Press Release, Jul. 19, 2000. |
“Der Klangmeister,” Connect Magazine, Aug. 1998. |
“Neuros MP3 Digital Audio Computer,” www.neurosaudio.com, downloaded Apr. 9, 2003. |
“OEM Touchpad Modules” website www.glidepoint.com/sales/modules.index.shtml, downloaded Feb. 13, 2002. |
“Product Overview—ErgoCommander®,” www.logicad3d.com/products/ErgoCommander.htm, downloaded Apr. 8, 2002. |
“Product Overview—SpaceMouse® Classic ” www.logicad3d.com/products/Classic.htm, downloaded Apr. 8, 2002. |
“Synaptics Tough Pad Interfacing Guide,” Second Edition, Mar. 25, 1998, Synaptics, Inc., San Jose, CA, pp. 1-90. |
“System Service and Troubleshooting Manual,” www.dsplib.com/intv/Master, downloaded Dec. 11, 2002. |
“Alps Electric introduces the GlidePoint Wave Keyboard; combines a gentily curved design with Alps' advanced GlidePoint Technology”, Business Wire, (Oct. 21, 1996). |
Alps Electric Ships GlidePoint Keyboard for the Macintosh; Includes a GlidePoint Touchpad, Erase-Eaze Backspace Key and Contoured Wrist Rest, Business Wire, (Jul. 1, 1996). |
“APS show guide to exhibitors”, Physics Today, 49(3) (Mar. 1996). |
“Design News literature plus”, Design News, 51(24) (Dec. 18, 1995). |
“Manufactures”, Laser Focus World, Buyers Guide '96, 31(12) (Dec. 1995). |
“National Design Engineering Show”, Design News, 52(5) (Mar. 4, 1996). |
“Preview of exhibitor booths at the Philadelphia show”, Air Conditioning Heating & News, 200(2) (Jan. 13, 1997). |
“Product news”, Design News, 53(11) (Jun. 9, 1997). |
“Product news”, Design News, 53(9) (May 5, 1997). |
Ahl, “Controller Update”, Creative Computing vol. 9, No. 12, Dec. 1983, pp. 142-154. |
Ahmad, “A Usable Real-Time 3D Hand Tracker,” Proceedings of the 28th Asilomar Conference on Signals, Systems and Computers—Part 2 (of 2) vol. 2 (Oct 1994), 5 pages. |
Atari VCS/2600 Peripherals, www.classicgaming.com downloaded Feb. 28, 2007, pp. 1-15. |
Baig, E.C., “Your PC Just Might Need a Mouse,” U.S. News & World Report 108(22) (Jun. 4, 1990). |
Bang & Olufsen Telecom a/s, “BeoCom 6000 User Guide 2000.” BeoCom 6000, Sales Training Brochure, date unknown. |
Bartimo, Jim, “The Portables: Traveling Quickly”, Computerworld (Nov. 14, 1983). |
BeoCom 6000, Sales Training Brochure, date unknown. |
Bray, “Phosphors help switch on xenon,” Physics in Action, pp. 1-3, Apr. 1999. |
Brink et al., “Pumped-up portables”, U.S. News & World Report, 116(21) (May 30, 1994). |
Brown et al., “Windows on Tablets as a Means of Achieving Virtual Input Devices”, Human-Computer Interaction—Interact '90 (1990). |
Buxton et al., “Issues and Techniques in Touch-Sensitive Tablet Input”, Computer Graphics, 19(3), Proceedings of SIGGRAPH '85 (1985). |
Chapweske, Adam “PS/2 Mouse/Keyboard Protocol,” 1999, http://panda.cs.ndsu.nodak.edu/˜achapwes/PICmicro/PS2/ps2.htm. |
Chen et al., “A Study in Interactive 3-D Rotation Using 2-D Control Devices”, Computer Graphics 22(4) (Aug. 1988). |
Chinese Office Action issue Dec. 29, 2006, directed to CN Application No. 200510103886.3, 25 pages. |
De Meyer, Kevin, “Crystal Optical Mouse,” Feb. 14, 2002, Heatseekerz, Web Article 19. |
Evans et al., “Tablet-based Valuators that Provide One, Two, or Three Degrees of Freedom”, Computer Graphics 15(3) (Aug. 1981). |
Evb Elektronik “TSOP6238 IR Receiver Modules for Infrared Remote Control Systems” dated Jan. 2004 1 page. |
Fiore, “Zen Touchpad,” Cornell University, May 2000, 6 pages. |
Gadgetboy, “Point and click with the latest mice,” CNET Asia Product Review, www.asia.cnet.com/reviews . . . are/qadgetboy/0,39001770,380235900,00.htm downloaded Dec. 5, 2001. |
Gfroerer, “Photoluminescence in Analysis of Surfaces and Interfaces,” Encyclopedia of Analytical Chemistry, pp. 1-23, Copyright John Wiley & Sons Ltd, Chichester, 2000. |
Jesitus, John , “Broken promises?”, Industry Week/IW, 246(20) (Nov. 3, 1997). |
Kobayashi et al. (1997) “Dynamic Soundscape: Mapping Time to Space for Audio Browsing,” Computer Human Interaction: 16 pages. |
Kobayashi et al. “Development of the Touch Switches with the Click Response,” Koukuu Denshi Gihou No. 17: pp. 44-48 (Mar. 1994) (published by the Japan Aviation Electronics Industry, Ltd.); Translation of Summary. |
Kobayashi (1996) “Design of Dynamic Soundscape: Mapping Time to Space for Audio Browsing with Simultaneous Listening,” Thesis submitted to Program in Media Arts and Sciences at the Massachusetts Institute of Technology, (58 pages). |
Letter re: Bang & Olufsen a/s by David Safran, Nixon Peabody, LLP May 21, 2004. |
Luna Technologies International, Inc., LUNA Photoluminescent Safety Products, “Photoluminescence—What is Photoluminescence?” from website at http://www.lunaplast.com/photoluminescence.com on Dec. 27, 2005. |
Mims, Forrest M., III, “A Few Quick Pointers; Mouses, Touch Screens, Touch Pads, Light Pads, and the Like Can Make System Easier to Use,” Computers & Electronics (22) (May 1984). |
Nass, Richard, “Touchpad input device goes digital to give portable systems a desktop “mouse-like” feel”, Electronic Design, 44(18) (Sep. 3, 1996). |
Perenson, Melissa, “New & Improved: Touchpad Redux”, PC Magazine (Sep. 10, 1996). |
Petersen, Marty, “Koala Pad Touch Tablet & Micro Illustrator Software,” InfoWorld (Oct. 10, 1983). |
Petruzzellis, “Force-Sensing Resistors” Electronics Now, 64(3), (Mar. 1993). |
Photographs of Innovation 2000 Best of Show Award Presented at the 2000 Int'l CES Innovations 2000 Design & Engineering Showcase, 1 page. |
Soderholm, Lars G., “Sensing Systems for ‘Touch and Feel,’” Design News (May 8, 1989): pp. 72-76. |
Sony presents “Choice Without Compromise” at IBC '97 M2 Presswire (Jul. 24, 1997. |
Spiwak, Marc, “A Great New Wireless Keyboard”, Popular Electronics, 14(12) (Dec. 1997). |
Spiwak, Marc, “A Pair of Unusual Controllers”, Popular Electronics 14(4) (Apr. 1997). |
Sylvania, “Intellvision™ Intelligent Television Master Component Service Manual,” pp. 1, 2 and 8, 1979. |
Tessler, Franklin, “Point Pad”, Macworld 12(10) (Oct. 1995). |
Tessler, Franklin, Smart Input: How to Chose from the New Generation of Innovative Input Devices, Macworld 13(5) (May 1996). |
Tessler, Franklin, “Touchpads”, Macworld 13(2) (Feb. 1996). |
“Triax Custom Controllers due; Video Game Controllers,” HFD—The Weekly Home Furnishing Newspaper 67(1) (Jan. 4, 1993). |
International Search Report and Written Opinion, dated Dec. 6, 2007, directed to related International Application No. PCT/US2007/015501. |
Non-Final Office Action mailed Sep. 16, 2010, for U.S. Appl. No. 11/882,881, filed Aug. 6, 2007, nine pages. |
Final Office Action mailed Feb. 4, 2011, for U.S. Appl. No. 11/882,881, filed Aug. 6, 2007, 14 pages. |
Non-Final Office Action mailed Sep. 1, 2011, for U.S. Appl. No. 11/882,881, filed Aug. 6, 2007, nine pages. |
Final Office Action mailed Jan. 11, 2012, for U.S. Appl. No. 11/882,881, filed Aug. 6, 2007, 15 pages. |
International Search Report mailed Sep. 21, 2012, for PCT Application No. PCT/US2012/046114, filed Jul. 10, 2012, three pages. |
Non-Final Office Action mailed Jul. 12, 2013, for U.S. Appl. No. 11/882,881, filed Aug. 6, 2007, 16 pages. |
Final Office Action mailed Nov. 25, 2013, for U.S. Appl. No. 11/882,881, filed Aug. 6, 2007, 16 pages. |
Non-Final Office Action mailed Oct. 25, 2016, for U.S. Appl. No. 11/882,881, filed Aug. 6, 2007, 37 pages. |
Number | Date | Country | |
---|---|---|---|
20090019949 A1 | Jan 2009 | US |