The present application claims the benefit of priority to Korean Patent Application No. 10-2019-0163689, filed on Dec. 10, 2019 in the Korean Intellectual Property Office, the entire disclosure of which is incorporated herein by reference.
The present disclosure relates to a resistor element.
The chip-shaped resistive element is suitable for realizing a precision resistor, and may serve to regulate a current in a circuit and drop a voltage.
With the trend for the miniaturization of electronic devices, there is increasing demand for resistance elements capable of more effectively controlling current flowing through a circuit within the same area.
On the other hand, when forming a resistive layer embedded in a related art resistive element by using a printing method, there is a problem in that alignment accuracy decreases and print smearing occurs. Accordingly, there is a need to implement a resistance element that may more accurately control the flow of current within the same area.
This Summary is provided to introduce a selection of concepts in simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
An aspect of the present disclosure is to provide a resistor element in which the path of current may be more precisely controlled within the same area.
According to an aspect of the present disclosure, a resistor element may include a base substrate having a first surface and a second surface opposing the first surface, a third surface and a fourth surface connecting the first surface and the second surface and opposing each other, and a fifth surface and a sixth surface connecting the first surface and the second surface and opposing each other, a resistive layer having a first surface disposed on the second surface of the base substrate and facing the first surface of the base substrate, a second surface opposing the first surface of the resistive layer, and first to fourth sides connecting the first surface of the resistive layer to the second surface of the resistive layer, and first and second internal electrodes spaced apart from each other on the second surface of the base substrate and connected to the resistive layer. The first and second sides of the resistive layer may face each other in a direction in which the first and second internal electrodes are spaced apart, and the third and fourth sides of the resistive layer may connect the first and second sides to each other and face each other. An angle between each of the third and fourth sides of the resistive layer with the second surface of the base substrate may be greater than an angle between each of the first and second sides of the resistive layer with the second surface of the base substrate.
According to another aspect of the present disclosure, a resistor element may include a base substrate having a first surface and a second surface opposing each other in a thickness direction, a third surface and a fourth surface connecting the first surface to the second surface and opposing each other in a longitudinal direction, and a fifth surface and a sixth surface connecting the first surface to the second surface and opposing each other in a width direction; a resistive layer having a first surface disposed on the second surface of the base substrate and facing the first surface of the base substrate, a second surface opposing the first surface of the resistive layer, and first to fourth sides connecting the first surface of the resistive layer to the second surface of the resistive layer, the first and second sides opposing each other in the longitudinal direction, the third and fourth sides opposing each other in the width direction; and first and second internal electrodes spaced apart from each other on the second surface of the base substrate and connected to the resistive layer. An angle between each of the third and fourth sides of the resistive layer and the second surface of the base substrate may be 20 degrees or more and 90 degrees or less.
The above and other aspects, features, and advantages of the present disclosure will be more clearly understood from the following detailed description, taken in conjunction with the accompanying drawings, in which:
The following detailed description is provided to assist the reader in gaining a comprehensive understanding of the methods, apparatuses, and/or systems described herein. However, various changes, modifications, and equivalents of the methods, apparatuses, and/or systems described herein will be apparent to one of ordinary skill in the art. The sequences of operations described herein are merely examples, and are not limited to those set forth herein, but may be changed as will be apparent to one of ordinary skill in the art, with the exception of operations necessarily occurring in a certain order. Also, descriptions of functions and constructions that would be well known to one of ordinary skill in the art may be omitted for increased clarity and conciseness.
The features described herein may be embodied in different forms, and are not to be construed as being limited to the examples described herein. Rather, the examples described herein have been provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to one of ordinary skill in the art.
Herein, it is noted that use of the term “may” with respect to an example or embodiment, e.g., as to what an example or embodiment may include or implement, means that at least one example or embodiment exists in which such a feature is included or implemented while all examples and embodiments are not limited thereto.
Throughout the specification, when an element, such as a layer, region, or substrate, is described as being “on,” “connected to,” or “coupled to” another element, it may be directly “on,” “connected to,” or “coupled to” the other element, or there may be one or more other elements intervening therebetween. In contrast, when an element is described as being “directly on,” “directly connected to,” or “directly coupled to” another element, there may be no other elements intervening therebetween.
As used herein, the term “and/or” includes any one and any combination of any two or more of the associated listed items.
Although terms such as “first,” “second,” and “third” may be used herein to describe various members, components, regions, layers, or sections, these members, components, regions, layers, or sections are not to be limited by these terms. Rather, these terms are only used to distinguish one member, component, region, layer, or section from another member, component, region, layer, or section. Thus, a first member, component, region, layer, or section referred to in examples described herein may also be referred to as a second member, component, region, layer, or section without departing from the teachings of the examples.
Spatially relative terms such as “above,” “upper,” “below,” and “lower” may be used herein for ease of description to describe one element's relationship to another element as illustrated in the figures. Such spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, an element described as being “above” or “upper” relative to another element will then be “below” or “lower” relative to the other element. Thus, the term “above” encompasses both the above and below orientations depending on the spatial orientation of the device. The device may also be oriented in other ways (for example, rotated 90 degrees or at other orientations), and the spatially relative terms used herein are to be interpreted accordingly.
The terminology used herein is for describing various examples only, and is not to be used to limit the disclosure. The articles “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “includes,” and “has” specify the presence of stated features, numbers, operations, members, elements, and/or combinations thereof, but do not preclude the presence or addition of one or more other features, numbers, operations, members, elements, and/or combinations thereof.
Due to manufacturing techniques and/or tolerances, variations of the shapes illustrated in the drawings may occur. Thus, the examples described herein are not limited to the specific shapes illustrated in the drawings, but include changes in shape that occur during manufacturing.
The features of the examples described herein may be combined in various ways as will be apparent after an understanding of the disclosure of this application. Further, although the examples described herein have a variety of configurations, other configurations are possible as will be apparent after an understanding of the disclosure of this application.
The drawings may not be to scale, and the relative size, proportions, and depiction of elements in the drawings may be exaggerated for clarity, illustration, and convenience.
In the drawings, the X direction may be defined as a first direction or a longitudinal direction, a Y direction as a second direction or a width direction, and a Z direction as a third direction or a thickness direction.
A value used to describe a parameter such as a 1-D dimension of an element including, but not limited to, “length,” “width,” “thickness,” diameter,” “distance,” “gap,” and/or “size,” a 2-D dimension of an element including, but not limited to, “area” and/or “size,” a 3-D dimension of an element including, but not limited to, “volume” and/or “size”, and a property of an element including, not limited to, “roughness,” “density,” “weight,” “weight ratio,” and/or “molar ratio” may be obtained by the method(s) and/or the tool(s) described in the present disclosure. The present disclosure, however, is not limited thereto. Other methods and/or tools appreciated by one of ordinary skill in the art, even if not described in the present disclosure, may also be used.
Hereinafter, a resistor element according to an exemplary embodiment will be described in detail with reference to the accompanying drawings, and in describing with reference to the accompanying drawings, the same or corresponding components are assigned the same reference numbers, and overlapped descriptions thereof will be omitted.
Resistor Element
Referring to
The base substrate 100 supports the resistive layer 200 and secures the strength of the resistor element 1000. Referring to
A material of the base substrate 100 is not particularly limited, and for example, a substrate including alumina (Al2O3) or an insulating substrate may be used as the base substrate 100. The base substrate 100 has a predetermined thickness, and may be formed of a thin plate shape in which the shape of any one of the first surface 101 to the sixth surface 106 is rectangular, and the surface is anodized, and may be formed of an insulating alumina (Al2O3) material of which the surface is anodized.
In addition, the base substrate 100 is formed of a material having excellent thermal conductivity, and thus, may serve as a heat diffusion passage through which heat generated in the resistive layer 200 dissipates externally when the resistor element is used.
The resistive layer 200 is disposed on the second surface 102 of the base substrate 100. In addition, the resistive layer 200 is connected to the first to fourth internal electrodes 311, 312, 321 and 322 and the first and second external electrodes 610 and 620, to be described later, thereby forming a predetermined resistance between the first to second external electrodes 610 and 620.
Referring to
In this embodiment, an angle that each of the sides 203, 204, 205 and 206 of the resistive layer 200 forms with the second surface 102 of the base substrate 100 refers to an angle between each of the sides 203, 204, 205 and 206 inside the resistive layer 200 and the base substrate 100. Therefore, inside the resistive layer 200, the angle formed by each side 203, 204, 205, 206 of the resistive layer 200 with the base substrate 100 has a numerical range not exceeding 90 degrees.
Referring to
For example, referring to
In detail, the angle (b) formed between each of the third side 205 and the fourth side 206 of the resistive layer 200 and the second side 102 of the base substrate 100 may be 20 degrees or more and 90 degrees or less. If the angle (b) is less than 20 degrees, the uniformity of the current path through the resistive layer 200 during trimming may be deteriorated. For example, as in the related art printing method, electrical characteristics may be deteriorated. In addition, since the third side 205 and the fourth side 206 of the resistive layer 200 are surfaces processed by a laser; inside the resistive layer 200, the angle between the third side 205 and the fourth side 206 of the resistive layer 200 and the second side 102 of the base substrate 100 does not exceed 90 degrees, as described above.
In addition, a deviation between, a distance (d1) from the fifth surface 105 of the base substrate 100 to the third side 205 of the resistive layer 200 and a distance (d2) from the sixth surface 106 of the base substrate 100 to the fourth side 206 of the resistive layer 200, may be within 20 μm, which is a characteristic structure by laser scribing both sides of the resistive layer 200 opposing in the width direction Y, and this will be described later.
Referring to
Referring to
In an exemplary embodiment of the present disclosure to prevent the occurrence of this problem, the third side 205 and the fourth side 206 of the resistive layer 200 opposing each other in the width direction Y are processed by laser, to improve the precision of alignment of patterns of the resistive layer 200. To measure the printing precision of the pattern of the resistive layer 200, in the present disclosure, 36 sample resistor elements were used to measure the distance (d1) and the distance d2. The result of calculating the deviation (d1-d2) of the distances is described in the Table 2 in the low resistance (10Ω), medium resistance (6 kΩ) and high resistance (160 kΩ) regions in which the resistor element is actually used to increase the reliability of the experimental results.
For example, referring to Table 2,
The resistive layer 200 may include Ag, Pd, Cu, Ni, a Cu—Ni-based alloy, a Ni—Cr-based alloy, Ru oxide, Si oxide, Mn, a Mn-based alloy, etc. as a main component, and may include various materials depending on a required resistance value. In detail, the resistive layer 200 may include a relatively more amount of metal formed of silver (Ag) or palladium (Pd) or alloys thereof in the low-resistance region, and the more toward the high resistance region, the more glass or RuO2 may be included.
The first and second internal electrodes 311 and 312 are spaced apart from each other on the second surface 102 of the base substrate 100 and are connected to the resistive layer 200. Additionally, to support the base substrate 100, the third and fourth internal electrodes 321 and 322 may be disposed to be spaced apart from each other on the first surface 101 of the base substrate 100. Referring to
The first protective layer 400 is disposed on the resistive layer 200 to cover the resistive layer 200 and portions of the first and second internal electrodes 311 and 312. Referring to
Although not illustrated in detail, after forming the first protective layer 400, a process of trimming the resistive layer 200 with a laser may be performed. The resistance value of the resistive layer 200 may be determined by trimming. Trimming refers to a process such as cutting for fine adjustment of the resistance value, and may be a process of determining a resistance value set in each resistance portion during circuit design.
The second protective layer 500 is disposed on the first protective layer 400 to cover the first protective layer 400. Referring to
The first and second external electrodes 610 and 620 may be disposed on the third surface 103 and the fourth surface 104 of the base substrate 100, respectively, and further extend to cover the first and second surfaces 101 and 102 and the fifth and sixth surfaces 105 and 106 of the base substrate 100. Referring to
Although not limited, the first layers 611 and 621 may be formed by a method of applying a conductive paste on the resistive layer 200 and the base substrate 100, and the coating method may be a screen printing method or the like. On the first layers 611 and 621, the second layers 612 and 622 formed by plating may be disposed to cover the first layers 611 and 621.
As set forth above, a resistor element according to an exemplary embodiment may more precisely control the path of current within the same area.
While this disclosure includes specific examples, it will be apparent to one of ordinary skill in the art that various changes in form and details may be made in these examples without departing from the spirit and scope of the claims and their equivalents. The examples described herein are to be considered in a descriptive sense only, and not for purposes of limitation. Descriptions of features or aspects in each example are to be considered as being applicable to similar features or aspects in other examples. Suitable results may be achieved if the described techniques are performed to have a different order, and/or if components in a described system, architecture, device, or circuit are combined in a different manner, and/or replaced or supplemented by other components or their equivalents. Therefore, the scope of the disclosure is defined not by the detailed description, but by the claims and their equivalents, and all variations within the scope of the claims and their equivalents are to be construed as being included in the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
10-2019-0163689 | Dec 2019 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
7098768 | Doi | Aug 2006 | B2 |
9508473 | Yoneda | Nov 2016 | B2 |
9704621 | Ogawa | Jul 2017 | B2 |
20110057765 | Ryu | Mar 2011 | A1 |
20110057767 | Ryu | Mar 2011 | A1 |
20150357097 | Tsai | Dec 2015 | A1 |
20160125981 | Kim et al. | May 2016 | A1 |
20160247610 | Shinoura | Aug 2016 | A1 |
20170202089 | Yun et al. | Jul 2017 | A1 |
20180090247 | Matsumoto | Mar 2018 | A1 |
20200090838 | Nakao | Mar 2020 | A1 |
Number | Date | Country |
---|---|---|
2005-108865 | Apr 2005 | JP |
2015-008189 | Jan 2015 | JP |
10-2016-0052283 | May 2016 | KR |
10-2017-0083352 | Jul 2017 | KR |
Entry |
---|
Korean Office Action dated Nov. 16, 2020 issued in Korean Patent Application No. 10-2019-0163689 (with English translation). |