1. Field of the Invention
The invention is in the field of electronics and more specifically in the field of signal-processing systems.
2. Related Art
A transconductor is a circuit configured to generate an output current proportional to an input voltage. Transconductors are commonly used for signal detection in applications such as communications, sensors, signal processing, et cetera. High linearity between the input voltage and output current is important to many applications. Transconductors are characterized by the frequency range and voltage range over which a linear output is produced.
Transconductor 100 may be limited in the range of input voltages that can converted to a linearly proportional output current. For example, if the voltage difference |Vinn−Vinp| is close to or greater than a supply voltage (Vcc) of Buffer 120, then Transconductor 100 may not be able to reliably detect these voltages. One solution to this problem is to convert the input voltage signal into a current signal relative to a “virtual ground” before it enters the active section of the transconductor circuit. The differences between each of Vinn and Vinp and the virtual ground determine the values of the current signals. In this approach, the difference between each of Vinn and Vinp and the virtual ground is not limited to being less than Vcc. The virtual ground is preferably set close to the input “common-mode voltage.” The common-mode voltage is the voltage that Vinn and Vinp have in common and can be defined as Vincm=(Vinp+Vinn)/2.
The voltage at the virtual ground Vvg is kept constant over a range of possible values of current inputs (iRp and iRn). The combined currents through the input resistors Rp and Rn can be expressed in terms of a common-mode voltage (Vincm) and a differential-mode voltage (Vindiff) as follows:
where Vincm=(Vinp+Vinn)/2 and Vindiff=Vinp−Vinn.
The output currents ioutp and ioutn are, therefore, a sum of a component proportional to the signal of interest (the differential voltage Vindiff) and an undesired common-mode component (Vincm−Vvg).
In addition to the presence of the undesired common-mode component, a problem with the approach illustrated in
In some cases AC coupling is used to eliminate a DC common-mode voltage. However, this approach may require costly external components or limit the frequency bandwidth of the system.
Transconductors are sometimes used in systems in which the strength of incoming signals may vary considerably. For example, in computing networks, electrical or optical signals may be attenuated by different amounts depending on factors such as the distance traveled from a source. As such, the peak voltages at a receiver may vary by several decades, e.g. 70 dB or more. In applications requiring a high data throughput it may also be desirable to use fast low-voltage circuitry, such as CMOS circuits having a maximum supply voltage of 3.3 Volts or lower. This places further limitations on the transconductor.
The invention includes systems and methods of generating output currents that are proportional to a voltage differential between two inputs. These output currents are compensated for common-mode voltage between the inputs and in some embodiments allow for a wider dynamic range in convertible input voltages and/or frequencies relative to the prior art. The compensation is achieved by generating a common-mode current using a combination of currents received from each of the inputs. The common-mode current is then fed back (or forward) to compensate for the common-mode components in currents generated from each voltage input individually.
A resistor-input transconductor includes at least three components: a first component configured to generate a current proportional to a first voltage input, a second component configured to generate a current proportional to a second voltage input, and a third component configured to generate a common-mode-compensation current proportional to an input that is a combination of the first and second voltage inputs. The common-mode-compensation current can be used at either the input or the output of the first and second components to compensate for the common-mode voltage. The third component allows for common-mode-compensation independent of an external common-mode input voltage.
Various embodiments of the invention include a communication device in which the resistor-input transconductor is used to detect communication signals. For example, some embodiments include a network communication device in which data encoded signals are received over various transmission distances. Because the distance traveled affects the magnitude of the received signals, these signals may vary over a wide dynamic range. Further applications in which the various embodiments of the invention may be used include detection of electro-magnetic signals (e.g., radio, radar, photonic signals, etc.), detection of signals from sensors, detection of signals from photo detectors, communication over power lines or other electrical conductors, or any other application wherein resistor-input transconductors have been used in the prior art.
Various embodiments of the invention include a system comprising: a first voltage input; a second voltage input; a first voltage-to-current converter comprising: a first circuit configured to provide a virtual ground, an input resistor Rp disposed between the first voltage input and the virtual ground, and a circuit configured to generate an output current Ioutp responsive to current flowing through the resistor Rp; a second voltage-to-current converter comprising: a second circuit configured to provide the virtual ground, an input resistor Rn disposed between the second voltage input and the virtual ground, and a circuit configured to generate an output current Ioutn responsive to current flowing through the resistor Rn; a third voltage-to-current converter comprising: a third circuit configured to provide the virtual ground, an input resistor Rcmp disposed between the first voltage input and the virtual ground. an input resistor Rcmn disposed between the second voltage input and the virtual ground, and a circuit configured to combine currents flowing through the input resistors Rcmp and Rcmn, and to generate an output current IRcm proportional to the combined currents; and a circuit configured to provide the output current IRcm to the first voltage-to-current converter and the second voltage-to-current converter so as to compensate for the common-mode voltage of the first voltage input and the second voltage input.
Various embodiments of the invention include a system comprising: means for receiving a first input voltage and generating a first output current using the first input voltage; means for receiving a second input voltage and generating a second output current using the second input voltage; means for generating a common-mode current representative of a common-mode voltage of the first input voltage and the second input voltage; and means for providing the common-mode current to the means for generating a first output current and to the means for generating a second output current, such that the first output current and the second output current are compensated for the common-mode voltage.
Various embodiments of the invention include a method comprising the steps of: receiving a first voltage at a first input; applying the first voltage to a first input resistor to generate a first input current; receiving a second voltage at a second input; applying the second voltage to a second input resistor to generate a second input current; generating a common-mode current representative of a common-mode voltage of the first voltage and the second voltage; using the first input current and the common-mode current to generate a first output current; and using the second input current and the common-mode current to generate a second output current, a difference between the first output current and the second output current being proportional to a difference between the first voltage and the second voltage.
Various embodiments of the invention include generation of a current representative of an input common-mode voltage. This current is referred to herein as “iRcm.” At least two different approaches may be used to compensate for the common-mode voltage using iRcm. In a first approach iRcm is fed forward to cancel the common-mode component of a transconductor output. In a second approach iRcm is fed back and subtracted from the input currents entering the virtual ground nodes. It will be apparent to one of ordinary skill in the art that iRcm may be used to compensate for the input common-mode voltage using alternative approaches.
A third Current-copying Component 340 is configured to generate a current iRcm representative of those parts of currents IRn and IRp due to the input common-mode voltage. Current iRcm is subtracted from each of the currents IRn and IRp. This process compensates for the common-mode voltage and allows Transconductor 300 to overcome various disadvantages of the prior art.
Current-copying Component 340 receives a current iRcmp generated by applying Vinp and Vvg across a resistor Rcmp. Current-copying Component 340 also receives a current iRcmn generated by applying Vinn and Vvg across a resistor Rcmn. The currents iRcmp and iRcmn are combined to produce a current iRcm. The current iRcm is twice reproduced using two Current Sources 345 within Current-copying Component 340. These currents are then combined with iRn and iRp to produce output currents ioutn and ioutp, respectively.
The cancellation of the common-mode voltage can be illustrated as follows. Rcmp and Rcmn can be selected to have equal resistances, referred to as Rcm. Thus,
Rcmp=Rcmn32 Rcm
IRcm can then be expressed as,
or as a function of the common-mode voltage Vincm=(Vinp+Vinn)/2,
Now, selecting:
Rcm=2Rp=2Rn
and subtracting Equation 3 from each of Equations 1 and 2 the output currents ioutp and ioutn can be expressed as:
The current copier of Current-copying Component 305 comprises Transistors 520, 522, 524 and 526 and a Current Source 530 connected to the drain of Transistor 520. Current-copying Component 305 may be a gm-boosted current copier or more generally a low-impedance-input current copier. A circuit is said to have low-impedance input when the voltages of its input terminals change by a tolerably amount when current is injected into those terminals. The source of Transistor 520 is the input of a common-gate amplifier. Transistor 520 has a fixed gate-bias voltage. A Node 535 between Current Source 530 and the drain of Transistor 520 is a high-impedance node that amplifies any variation of voltage at the source of Transistor 520. Node 535 is connected to the gate of Transistor 524 such that the voltage variation is converted to a current variation. This current variation is fed back to the input using a current mirror comprising Transistors 522 and 526. This results in a negative-feedback loop which keeps the voltage on the source of Transistor 520 virtually constant for a range of possible values of the input current iRp. A fixed-bias current supplied by Current Source 530 flows through Transistor 520 and, thus, the input current iRp and this bias current flow through the channel of Transistor 522. The input Current iRp is the difference between the fixed-bias current supplied by Current Source 530 and the current through the channel of Transistor 522. Because of the current-mirror configuration of transistors 522 and 526, the same current flows through the channels of Transistor 522 and Transistor 526. Other current-copiers, with or without gm-boosting, which can be used in this invention will be apparent to those of ordinary skill in the art.
The output ioutp is generated using a Transistor 540. The drain of Transistor 540 is connected to a second instance of Current Source 530 configured to provide the same bias current as the first instance of Current Source 530. Transistor 540 and Transistors 522 and 526 have the same gate-source voltage and, thus, the same drain current. Therefore, the output current ioutp is the difference between the bias current supplied by Current Source 530 and the current through the channel of Transistor 540. Because the current through the channel of Transistor 540 (the drain current) is the same as the current through the channel of Transistor 522, the output current ioutp will be the same as the input current iRp.
Current-copying Components 310 and 340 operate using a similar set of circuits. Current-copying Component 340 includes additional instances of Current Source 530 and Transistor 540 such that two outputs are produced. These two outputs are used as feedback (or forward) to Current-copying Components 305 and 310 as, for example, illustrated in
Communications Interface 610 is configured to receive the communication signal and provide the signal as a voltage to the inputs of Transconductor 300. Communication Interface 610 may include an antenna, photon detector, chemical sensor, magnetic sensor, force sensor, motion sensor, microphone, powerline communication interface, electrical connector coupler (e.g., Ethernet, USB, serial port, parallel port, bus, etc.), or the like. For example, in some embodiments Communication Interface 610 includes the various powerline communication interfaces disclosed in U.S. Patent applications 12/075,888, 12/144,511, 11/493,292 or 11/752,865, the disclosures of which are hereby incorporated herein by reference. Communication Interface 610 may be configured to receive analog and/or digital signals.
Transconductor 300 is configured to receive a signal voltage from Communication Interface 610 and provide a current proportional to the signal to Processing Device 620. In various embodiments, proportionality is maintained as the signal varies over at least 40, 50, 60 or 70 dB.
Processing Device 620 may be digital or analog. For example, in some embodiments Processing Device 620 includes an analog speaker configured to make a sound responsive to the received signal. In other embodiments, Processing Device 620 includes an integrated circuit, active and/or passive components, memory, or the like. For example, in some embodiments Processing Device 620 includes a processor configured to interpret the received signals and perform logical operations in response (e.g., execute computing instructions stored in hardware, firmware, and/or software). Processing Device 620 optionally includes an analog-to-digital converter configured to generate a digital value representative of a difference between Vinp and Vinn responsive to Ioutn and Ioutp. Processing Device 620 optionally includes a current-to-voltage converter configured to convert to Ioutn and Ioutp to a proportional voltage.
In an Apply First Voltage Step 730 the first received voltage is applied to Vinp to generate a current through a resistor, e.g., iRp through Rp. This current is typically a function of a virtual ground voltage Vvg established using Voltage Source 315.
In an Apply Second Voltage Step 740 the second received voltage is applied to Vinn to generate a current through a resistor, e.g., iRn through Rn. This current is typically a function of the virtual ground voltage Vvg.
In a Generate CM Current Step 750 a common-mode current iRcm generated using Transconductor 300. This current is representative of the common-mode voltage of the first received voltage and the second received voltage. In some embodiments, iRcm is generated by applying Vinp and Vinn to resistors Rcmp and Rcmn, respectively, and combining the resulting currents.
In a Generate First Output Current 760, a first output current ioutp, is generated using the current generated in Apply First Voltage Step 730 and the common-mode current iRcm generated in Generate CM Current Step 750. This current may be generated by feeding forward or feeding back iRcm, as described elsewhere herein.
In a Generate Second Output Current 770, a second output current ioutn is generated using the current generated in Apply Second Voltage Step 740 and the common-mode current iRcm generated in Generate CM Current Step 750. This current may be generated by feeding forward or feeding back iRcm, as described elsewhere herein.
In an optional Process Output Currents Step 780 the first and second output currents are processed using Processing Device 620. The processing optionally includes conversion of the currents to voltages, decoding digitally encoded signals, execution of software, hardware or firmware responsive to the currents, conversion of the signals to digital data, and/or the like.
Several embodiments are specifically illustrated and/or described herein. However, it will be appreciated that modifications and variations are covered by the above teachings and within the scope of the appended claims without departing from the spirit and intended scope thereof. For example, in some embodiments Communications Device 600 and/or Transconductor 300 are embodied on a single chip. This chip may be configured to employ low-voltage technology, e.g., CMOS technology.
The embodiments discussed herein are illustrative of the present invention. As these embodiments of the present invention are described with reference to illustrations, various modifications or adaptations of the methods and or specific structures described may become apparent to those skilled in the art. All such modifications, adaptations, or variations that rely upon the teachings of the present invention, and through which these teachings have advanced the art, are considered to be within the spirit and scope of the present invention. Hence, these descriptions and drawings should not be considered in a limiting sense, as it is understood that the present invention is in no way limited to only the embodiments illustrated.
Number | Name | Date | Kind |
---|---|---|---|
4636711 | Freymuth | Jan 1987 | A |
4772870 | Reyes | Sep 1988 | A |
5552729 | Deguchi | Sep 1996 | A |
5552730 | Deguchi | Sep 1996 | A |
5574748 | Vander Mey et al. | Nov 1996 | A |
5598117 | Deguchi | Jan 1997 | A |
5777544 | Vander Mey et al. | Jul 1998 | A |
5929750 | Brown | Jul 1999 | A |
5933071 | Brown | Aug 1999 | A |
6014386 | Abraham | Jan 2000 | A |
6243413 | Beukema | Jun 2001 | B1 |
6356152 | Jezdic et al. | Mar 2002 | B1 |
6373377 | Sacca et al. | Apr 2002 | B1 |
6496067 | Behzad et al. | Dec 2002 | B1 |
6985715 | Lee | Jan 2006 | B2 |
7042351 | Kline | May 2006 | B2 |
7053756 | Mollenkopf et al. | May 2006 | B2 |
7075414 | Giannini et al. | Jul 2006 | B2 |
7274916 | Al-Shyoukh et al. | Sep 2007 | B2 |
7391317 | Abraham et al. | Jun 2008 | B2 |
20020154000 | Kline | Oct 2002 | A1 |
20030016123 | Tager et al. | Jan 2003 | A1 |
20030129978 | Akiyama et al. | Jul 2003 | A1 |
20030133473 | Manis et al. | Jul 2003 | A1 |
20030169155 | Mollenkopf et al. | Sep 2003 | A1 |
20030224728 | Heinonen et al. | Dec 2003 | A1 |
20040047427 | Dostert et al. | Mar 2004 | A1 |
20040107588 | Pu | Jun 2004 | A1 |
20040113756 | Mollenkopf | Jun 2004 | A1 |
20040113757 | White, II et al. | Jun 2004 | A1 |
20040174851 | Zalitzky et al. | Sep 2004 | A1 |
20040246107 | Kline | Dec 2004 | A1 |
20050089061 | Logvinov et al. | Apr 2005 | A1 |
20050141473 | Lim et al. | Jun 2005 | A1 |
20060038662 | White, II et al. | Feb 2006 | A1 |
20060097574 | Gidge et al. | May 2006 | A1 |
20060120399 | Claret et al. | Jun 2006 | A1 |
20060126617 | Cregg et al. | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
0580457 | Jan 1994 | EP |
1134909 | Sep 2001 | EP |
1351408 | Oct 2003 | EP |
1388954 | Feb 2004 | EP |
1531568 | May 2005 | EP |
1548974 | Jun 2005 | EP |
1432138 | Sep 2005 | EP |
0195518 | Dec 2001 | WO |
03015291 | Feb 2003 | WO |
03077443 | Sep 2003 | WO |
03092212 | Nov 2003 | WO |
2004100392 | Nov 2004 | WO |
2005039070 | Apr 2005 | WO |
2006017743 | Feb 2006 | WO |
2006074174 | Jul 2006 | WO |