This application claims from Korean Patent Application No. 10-2019-0088382, filed on Jul. 22, 2019, and U.S. patent Ser. No. 16/784,788 filed on Feb. 7, 2020, the disclosures of which are incorporated herein by reference in their entirety.
Devices consistent with example embodiments relate to a resistor with a doped region and a semiconductor device having the same.
Electronic devices may include one or more semiconductor devices components. Applications that use semiconductor devices include smart phones, tablet computers, and cameras. A transistor is an example of a semiconductor device, and is used to amplify or modify electronic signals.
Demand for smaller electronic devices is increasing. As a result, demand for smaller semiconductor devices that do not compromise performance transistors is also increasing. However, reducing the size of a semiconductor device such as transistor can cause short channel effects such as drain-induced barrier lowering, velocity saturation, and hot carrier degradation. Therefore, there is a need in the art to provide for semiconductor devices that reduce the likelihood of short channel effects in a circuit.
Example embodiments of inventive concepts are directed to providing a semiconductor device with a resistor in a surrounding gate structure.
According to some example embodiments, a resistor may include a first active region and a second active region each extending in a first horizontal direction, the first active region and the second active region being spaced apart from each other along the first horizontal direction; a device isolation layer contacting the first active region and the second active region; a buried insulating layer disposed between the first active region and the second active region; an N well region formed in a substrate, the N well region surrounding the first active region, the second active region, the device isolation layer and the buried insulating layer; a plurality of channel layers stacked on the first active region and the second active region, the plurality of channel layers being spaced apart from each other in a vertical direction; first gate electrodes surrounding the plurality of the channel layers, the first gate electrodes extending along a second horizontal direction intersecting with the first horizontal direction; a doped region comprising a first doped region and a second doped region each disposed on side surfaces of the first gate electrodes above the first active region and the second active region, respectively, in the vertical direction, the first doped region and the second doped region in contact with the N well region and including n type impurities; a plurality of contact plugs in contact with upper surfaces of the first doped region and the second doped region.
According to some example embodiments, a semiconductor device may include a substrate comprising a resistor region and a transistor region; an N well region disposed on the resistor region; a first active region and a second active region each extending in a first horizontal direction, the first active region and the second active region being spaced apart from each other along the first horizontal direction; a first device isolation layer contacting the first active region and the second active region; a buried insulating layer disposed between the first active region and the second active region; a plurality of channel layers stacked on the first active region and the second active region, the plurality of channel layers being spaced apart from each other in a vertical direction; gate electrodes surrounding the plurality of the first channel layers on at least two opposite sides, the gate electrodes extending along a second horizontal direction intersecting with the first horizontal direction; a first doped region and a second doped region each disposed on side surfaces of the gate electrodes on the first active region and the second active region, the first doped region and the second doped region in contact with the N well region and including n impurities; a plurality of contact plugs in contact with upper surfaces of the first doped region and the second doped region.
According to some example embodiments, a resistor may include an active region comprising a first active region and a second active region each extending in a first horizontal direction, the first active region and the second active region being spaced apart from each other along the first horizontal direction; a device isolation layer contacting the first active region and the second active region; a buried insulating layer disposed between the first active region and the second active region and formed deeper than the device isolation layer; an N well region formed in a substrate; the N well region surrounding the first region, the second active region, the device isolation layer and the buried insulating layer; a plurality of channel layers stacked on the first active region and the second active region, the plurality of channel layers being spaced apart from each other in a vertical direction; gate electrodes surrounding the plurality of the channel layers on at least two opposite sides, the gate electrodes extending along a second horizontal direction intersecting with the first horizontal direction; a doped region comprising a first doped region and a second doped region each disposed on side surfaces of the gate electrodes on the first active region and the second active region, the first doped region and the second doped region in contact with the N well region and including n impurities; inner spacers in contact with a side surface of the doped region and disposed on lower surfaces of the plurality of channel layers; gate spacers disposed on the active region and the plurality of the channel layers, the gate spacers covering the side surfaces of the gate spacers; an interlayer insulating layer covering the device isolation layer, the buried insulating layer, the gate spacers, the first doped region, and the second doped region; a plurality of contact plugs in contact with the first doped region and the second doped region, the plurality of contact plugs penetrating the interlayer insulating layer.
The above and other objects, features, and advantages of inventive concepts will become more apparent to those of ordinary skill in the art by describing exemplary embodiments thereof in detail with reference to the accompanying drawings, in which:
Embodiments of the present disclosure include semiconductor devices that reduce the likelihood of short channel effects in a circuit. For example, a resistor is described that includes a well region divided into two parts by a buried insulating layer and a semiconductor layer epitaxially grown from a silicon substrate. The semiconductor layer may include materials of the same conductivity type as the N well region.
According to an example embodiment, the resistor may be formed simultaneously with a Multi-Bridge Channel Field Effect Transistor (MBCFET). In this case, the multi-bridge channel structure is also applied to the resistor the manufacturing stage of the MBCFET. Additionally, in MBCFET, the width of the channel can be arbitrarily changed. Therefore, a resistor having different resistances can be implemented according to the width of the channel.
Referring to
The semiconductor device 100 may include a resistor region R1 and a transistor region R2. The resistor region R1 may include a resistor 106, and the transistor region R2 may include a transistor 108. The resistor 106 includes a first active region 104a, a second active region 104b, an N well region NW below the buried insulating layer 122, a first doped region 150a, and a second doped region 150b. The transistor 108 may include a plurality of channel layers 114, a source/drain region 152, and a gate electrode 134.
Substrate 102 may include a semiconductor material. For example, the substrate 102 may be a silicon substrate, a germanium substrate, a silicon-germanium substrate, or a silicon on insulator (SOI) substrate. In an example embodiment, the substrate 102 may be a P-type semiconductor substrate and may include an N well region NW on top of the resistor region R1 of the substrate 102. Substrate 102 may include device isolation layer 120 defining active region 104. For example, a portion of the substrate 102 located between portions of the device isolation layer 120 may correspond to an active region 104. A plurality of active regions 104 may extend in the first horizontal direction D1 and may be spaced apart from each other along the second horizontal direction D2. The plurality of active regions 104 may include a first active region 104a and a second active region 104b disposed at opposite sides of the buried insulating layer 122.
The plurality of channel layers 114 may be stacked spaced apart from each other in a vertical direction on the substrate 102. In
The device isolation layer 120 may fill the inside of a first trench T1 formed on the substrate 102. The device isolation layer 120 may be disposed between the plurality of active regions 104 and may extend in the first horizontal direction D1. The buried insulating layer 122 may fill the inside of a second trench T2 formed on the substrate 102. The buried insulating layer 122 may be disposed in the middle of the plurality of active regions 104. The second trench T2 may be formed deeper than the first trench T1. The buried insulating layer 122 may not penetrate the N well region NW. For example, the N well region NW may surround a bottom surface of the buried insulating layer 122. A top surface of the active region 104 may be located at a similar level as top surfaces of the device isolation layer 120 and the buried insulating layer 122, respectively. In an example embodiment, device isolation layer 120 and buried insulating layer 122 may comprise silicon oxide, silicon nitride, silicon oxynitride, or a low dielectric constant (low-K) dielectric material.
A gate dielectric layer 132 and the gate electrode 134 may surround the channel layer 114. The gate dielectric layer 132 may extend in the second horizontal direction D2 and cover the top surfaces of the active region 104 and the device isolation layer 120. Additionally, the gate dielectric layer 132 may surround the surface of the channel layer 114. The gate electrode 134 may extend in the second horizontal direction D2 and may cover the channel layer 114 and the gate dielectric layer 132. The gate dielectric layer 132 may include a material with a high dielectric constant (high-k) such as hafnium oxide, hafnium oxy-nitride, or the like. The gate electrode 134 may include aluminum, copper, titanium, tantalum, tungsten, molybdenum, tantalum nitride, nickel silicide, cobalt silicide, TiN, WN, TiAl, TiAlN, TaCN, TaC, TaSiN, metal alloys or combinations thereof. In an example embodiment, the gate electrode 134 may comprise tungsten.
Gate spacers 140 may be disposed outside the gate electrode 134. For example, the gate spacers 140 may be disposed to face each other with the gate electrode 134 interposed therebetween. The gate spacers 140 may extend in the second horizontal direction D2. The gate spacer 140 may be formed of one or more layers.
Inner spacers 142 may be disposed at both sides of the gate electrode 134 along the second horizontal direction D2. The inner spacers 142 may be disposed on a bottom surface of each channel layer 114 and may contact outer surfaces of the doped region 150 and the source/drain region 152, respectively. The inner spacers 142 may electrically separate the gate electrode 134 from the doped region 150 or the source/drain region 152. In an example embodiment, the inner spacers 142 may comprise a silicon nitride material.
The doped region 150 may be disposed on the active region 104 of the resistor region R1 and may be disposed on the side of the gate electrode 134. A plurality of doped regions 150 may include the first doped region 150a and the second doped region 150b disposed at both sides of the buried insulating layer 122. The doped region 150 may be in contact with the N well region NW. The doped region 150 may be doped with the same type of conductive material as the N well region NW. For example, the doped region 150 may include n-type impurities. In an example embodiment, the doped region 150 may include an n-type impurity with a higher concentration than the N well region NW. Since the doped region 150 is doped with the same type of conductive material as the N well region NW, the resistor 106 may not function as a transistor. The first doped region 150a may be electrically connected to the second doped region 150b through first active region 104a, the N well region NW, and the second active region 104b.
The source/drain region 152 may be disposed on the active region 104 of the transistor region R2 and may be disposed on a side of the gate electrode 134. Adjacent source/drain regions 152 may be electrically connected through each channel layer 114. In an example embodiment, the source/drain regions 152 may include n-type impurities.
The interlayer insulating layer 160 may cover the device isolation layer 120, the buried insulating layer 122, the gate spacer 140, the doped region 150, and the source/drain region 152. The interlayer insulating layer 160 may include silicon oxide, silicon nitride, silicon oxynitride, or a low-K dielectric material and may be composed of one or more layers. The low-K dielectric materials may include, for example, Undoped Silica Glass (USG), Borosilica Glass (BSG), PhosphoSilica Glass (PSG), BoroPhosphoSilica Glass (BPSG), Plasma Enhanced Tetra Ethyl Ortho Silicate (PETOS), Fluoride Silicate Glass (FSG) (High Density Plasma) oxide or a combination thereof.
The capping layer 170 may be disposed on the interlayer insulating layer 160. The capping layer 170 may cover top surfaces of the gate electrode 134, the gate spacer 140, and the interlayer insulating layer 160. The capping layer 170 may include silicon oxide, silicon nitride, silicon oxynitride, or a combination thereof.
The contact plug 180 may vertically penetrate the interlayer insulating layer 160 and the capping layer 170 to contact the top surface of the doped region 150 and the source/drain region 152. The contact plug 180 may extend in the second horizontal direction D2 and may have a bar shape. Additionally, the contact plug 180 may be electrically connected to the doped region 150 or the source/drain region 152. A silicide layer 182 may be further disposed below the contact plug 180. Additionally, the silicide layer 182 may be disposed between the doped region 150 and the contact plug 180 and between the source/drain region 152 and the contact plug 180. Although not shown, a diffusion barrier layer surrounding side and bottom surfaces of the contact plug 180 may be disposed. The contact plug 180 may include W, Co, Cu, Al, Ti, Ta, TiN, TaN, or a combination thereof. The silicide layer 182 may include a material in which a silicon material is applied to a portion of the contact plug 180.
A contact insulating layer 184 may be disposed on the capping layer 170. The via V and the interconnects L1, L2, L3, L4, L5, L6, and L may pass through the contact insulating layer 184. The via V may electrically connect the contact plug 180 and the interconnects L1, L2, L3, L4, L5, L6, and L. A plurality of vias V may be connected to a contact plug 180 in the second horizontal direction D2. Each contact plug 180 may be connected to the interconnects L1, L2, L3, L4, L5, and L6 through the vias V. The interconnects L1, L2, and L3 may be electrically connected to each other. The interconnects L4, L5, and L6 may be electrically connected to each other. In an example embodiment, the interconnects L1, L2, L3 and the interconnects L4, L5, L6 may be integrated with each other. The contact insulating layer 184 may include a silicon oxide material. The vias V and the interconnects L1, L2, L3, L4, L5, L6, and L may include W, Co, Cu, Al, or a combination thereof.
As shown in
Referring to
Referring to
Referring to
Referring to
An upper portion of the substrate 102, the sacrificial layer 112, and the channel layer 114 may be partially removed along the mask pattern M to form a first trench T1. The device isolation layer 120 may be formed by filling an insulating material in the first trench T1. The device isolation layer 120 may include silicon oxide, silicon nitride, silicon oxynitride, or a low-K dielectric material. An active region 104 of the substrate 102 may be defined by the device isolation layer 120. The active region 104 may extend in the first horizontal direction D1 and may protrude from the substrate 102. The plurality of active regions 104 may be spaced apart from each other along the second horizontal direction D2.
Referring to
Referring to
The dummy gate insulating layer 132D may include silicon oxide and may be formed by a method such as chemical vapor deposition (CVD) or atomic layer deposition (ALD). The dummy gate electrode 134D may include polysilicon. The dummy capping layer 136D may include silicon nitride, silicon oxynitride, or a combination thereof. The gate spacer 140 may include silicon nitride, silicon oxynitride, or a combination thereof.
Referring to
Referring to
The inner spacers 142 may be formed on side surfaces of the sacrificial layer 112. Additionally, the inner spacers 142 may be disposed between the plurality of channel layers 114 and between the channel layers 114 and the active region 104. An outer surface of the inner spacer 142 may be coplanar with an outer surface of the channel layer 114. The inner spacers 142 may include a silicon nitride material.
Referring to
The doped region 150 and the source/drain region 152 may be formed on the active region 104 along the second horizontal direction D2. The doped region 150 and the source/drain region 152 may be formed by a selective epitaxial growth (SEG) process. Adjacent doped regions 150 may be integrated and adjacent source/drain regions 152 may be integrated. Doped region 150 and source/drain region 152 may each be doped with appropriate ions. In an example embodiment, the doped region 150 and the source/drain region 152 may be doped with n-type impurities. Phosphorus (P), arsenic (As), or the like may be used as the n-type impurities.
Referring to
Referring to
Referring to
Referring back to
After the capping layer 170 is formed, a contact plug 180 penetrating the capping layer 170 and the interlayer insulating layer 160 may be formed. The contact plug 180 may be in contact with the top of the doped region 150 and the source/drain region 152. A silicide layer 182 may be formed under the contact plug 180. The silicide layer 182 may be disposed between the doped region 150 and the contact plug 180 and between the source/drain region 152 and the contact plug 180. The contact plug 180 may include W, Co, Cu, Al, Ti, Ta, TiN, TaN, or a combination thereof. The silicide layer 182 may include a material in which a silicon material is applied to portion of the contact plug 180.
A contact insulating layer 184, a via V, and interconnects L1, L2, L3, L4, L5, L6, and L may be formed on the capping layer 170. The contact insulating layer 184 may be disposed on the capping layer 170. The via V and the interconnects L1, L2, L3, L4, L5, L6, and L may pass through the contact insulating layer 184. In an example embodiment, each via V and the interconnects L1, L2, L3, L4, L5, L6, and L may be integrally formed. The contact insulating layer 184 may include silicon oxide. The vias V and the interconnects L1, L2, L3, L4, L5, L6, and L may include W, Co, Cu, Al, or a combination thereof.
While embodiments of inventive concepts have been described with reference to the accompanying drawings, it should be understood by those skilled in the art that various modifications may be made without departing from the scope of inventive concepts and without changing features thereof. Therefore, the above-described embodiments should be considered in a descriptive sense and not for purposes of limitation.
According to example embodiments of inventive concepts, a resistance device with a surrounding gate structure may be implemented.
Number | Date | Country | Kind |
---|---|---|---|
10-2019-0088382 | Jul 2019 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
8981480 | Lim | Mar 2015 | B2 |
9035425 | Tsao | May 2015 | B2 |
9373619 | Su | Jun 2016 | B2 |
10128145 | Benaissa | Nov 2018 | B2 |
10381345 | Shin | Aug 2019 | B2 |
11075197 | Shin | Jul 2021 | B2 |
11367796 | Guha | Jun 2022 | B2 |
20060113547 | Shin | Jun 2006 | A1 |
20060118885 | Song | Jun 2006 | A1 |
20070001232 | King | Jan 2007 | A1 |
20070001237 | King | Jan 2007 | A1 |
20070004113 | King | Jan 2007 | A1 |
20070120156 | Liu | May 2007 | A1 |
20070122953 | Liu | May 2007 | A1 |
20070122954 | Liu | May 2007 | A1 |
20070128782 | Liu | Jun 2007 | A1 |
20080099753 | Song | May 2008 | A1 |
20080247103 | Kim | Oct 2008 | A1 |
20120049256 | Lim | Mar 2012 | A1 |
20120228686 | Inoue | Sep 2012 | A1 |
20130032862 | Su | Feb 2013 | A1 |
20140167180 | Xiong | Jun 2014 | A1 |
20140227859 | Benaissa | Aug 2014 | A1 |
20140327074 | Tsao | Nov 2014 | A1 |
20150146330 | Appaswamy et al. | May 2015 | A1 |
20150148330 | Cisar | May 2015 | A1 |
20160163815 | Hoentschel | Jun 2016 | A1 |
20170141102 | Basker | May 2017 | A1 |
20180211952 | Shin | Jul 2018 | A1 |
20190043864 | Takesako et al. | Feb 2019 | A1 |
20190043884 | Zhu | Feb 2019 | A1 |
20190057898 | Shim | Feb 2019 | A1 |
20190067113 | Chiang | Feb 2019 | A1 |
20190157283 | Jung | May 2019 | A1 |
20190164841 | St. Amour | May 2019 | A1 |
20190181226 | Choi | Jun 2019 | A1 |
20190304991 | Seo | Oct 2019 | A1 |
20200043914 | Olac-Vaw | Feb 2020 | A1 |
20200126858 | Gwak | Apr 2020 | A1 |
20200212061 | Choi | Jul 2020 | A1 |
20200286890 | Subramanian | Sep 2020 | A1 |
20200286891 | Subramanian | Sep 2020 | A1 |
20200287015 | Subramanian | Sep 2020 | A1 |
20210028164 | Shin | Jan 2021 | A1 |
20210057419 | Shin | Feb 2021 | A1 |
20210057533 | Hwang | Feb 2021 | A1 |
20210066276 | Kim | Mar 2021 | A1 |
20210066320 | Kim | Mar 2021 | A1 |
20210074716 | Lim | Mar 2021 | A1 |
20210175230 | Shin | Jun 2021 | A1 |
20210335779 | Shin | Oct 2021 | A1 |
20220045051 | You | Feb 2022 | A1 |
20220122965 | Shin | Apr 2022 | A1 |
Number | Date | Country |
---|---|---|
10-2004-0059456 | Jul 2004 | KR |
WO-2013103973 | Jul 2013 | WO |
Number | Date | Country | |
---|---|---|---|
20210335779 A1 | Oct 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16784788 | Feb 2020 | US |
Child | 17371494 | US |