The present invention relates generally to solar concentrators. More particularly, the present invention relates to systems and methods for improving the efficiency of luminescent solar concentrators.
The modernization and urbanization of developing countries places an increasing demand on supplies of fossil fuels and the use of such fuels places an increasing burden on the environment. As market demand drives fuel prices upward and as increased consumption accelerates environmental pollution, alternative energy sources become more economically feasible and socially popular. Among the various alternative energy sources, solar energy is one of the most promising due to the endless supply of free energy from the sun. One method of harnessing the sun's energy is through optical solar concentration.
Solar concentration is used in combination with traditional photovoltaic cells to reduce the area of cells necessary to generate a given amount of electrical energy. In particular, sunlight shining on a solar concentrator is optically concentrated and transmitted to a solar cell. Through optical concentration, or geometric gain, a smaller photovoltaic cell can be used to generate a given amount of electrical energy. By reducing the photovoltaic cell area necessary to generate a given amount of electrical energy, optical concentration reduces the cost of energy production.
There are two distinct approaches to solar concentration. One approach uses lenses or mirrors and tracks the sun throughout the day. This tracking approach can produce very high concentration (e.g. greater than 500 suns) but requires tracking to within 0.1 degree and, therefore, is expensive and susceptible to tracking errors that may reduce performance. Another approach does not track the sun. One example of this non-tracking approach uses fixed lenses and mirrors, which produces relatively low concentration (e.g. less than 5 suns). Another example is the luminescent solar concentrator (LSC).
Optical solar concentration provides a realistic, near-term prospect for leveraging the cost and expanding the generation capacity of today's established solar cell technologies. The maximum concentration ratio (CR) obtainable using linear geometric optical systems involving lenses, mirrors, or diffractive optics, is fundamentally limited by the acceptance angle (θacc) of the system and the refractive index (nout) at its output aperture through the well-known sine law, CR≦(nout/sin θacc)2. Maintaining high concentration (CR>100) throughout the day thus demands that these concentrators track the sun with high precision, which drives up both capital and maintenance costs of the overall system.
LSCs were developed in the 1970s and have a high fundamental concentration (e.g. greater than 100 suns). LSCs were introduced as an alternative, non-tracking approach that preserves, at least in principle, the potential for high concentration. However, technical issues have limited the utility of LSCs to date. LSCs provide a simple means to concentrate sunlight without tracking the sun. These devices operate by absorbing light and then re-emitting it at lower frequency, typically into the confined modes of a transparent slab, where it is transported toward photovoltaic cells attached to the edges. In the thermodynamic limit, concentration ratio exceeding the equivalent of 100 suns is possible, however, in actual LSCs, optical propagation loss due mostly to reabsorption limits the concentration ratio to approximately 10.
In contrast to their ‘passive’ geometric optical counterparts, LSCs actively shift the optical frequency by absorbing sunlight and re-emitting it with a finite Stoke's shift into the confined optical modes of, e.g. a transparent slab, where it is trapped by total internal reflection and absorbed by photovoltaic cells attached to the edges. The limiting concentration ratio for an LSC follows from thermodynamic considerations and is exponential in the Stoke's shift according to CRlim≈(eem3/eabs3)exp [(eabs−eem)/kbT], where eabs and eem are the absorbed and emitted photon energies, respectively. This theoretical maximum exceeds the equivalent of 100 suns for most emitters employed in LSCs to date, yet the value realized in practice is more than an order of magnitude lower, typically in the range 2<CR<10, which remains too low to provide any economic benefit in reducing the cost of photovoltaic power. The following provides a new approach to LSC optical design that enables a doubling or more in CR for any type of emitter, thereby improving the prospect of low-cost, high-performance luminescent concentration.
Various embodiments of the present invention comprise an all-optical system and method to overcome LSC problems by ‘resonance-shifting’, in which sharply directed emission from a bi-layer cavity into the glass substrate returns to interact with the cavity off-resonance at each subsequent bounce, significantly reducing reabsorption loss en route to the edges. Near-lossless propagation is demonstrated for several different chromophores that ultimately enables a more than two-fold increase in concentration ratio over that of the corresponding conventional LSC.
In one embodiment, a luminescent solar concentrator is provided, comprising a transparent substrate, a luminescent film having a variable thickness, and a low refractive index layer disposed between the transparent substrate and the luminescent film. In another embodiment, a method for increasing the efficiency of a luminescent solar concentrator is provided. In this embodiment, the efficiency is increased by providing a low refractive index layer to a surface of the transparent substrate and providing a luminescent film of laterally varying thickness to a surface of the a low refractive index layer, such that the low refractive index layer is disposed between the transparent substrate and the luminescent film. In another embodiment, a method of directing light is provided. In this embodiment, light is directed by absorbing a light at a first location in a luminescent film, emitting the light through a low refractive index layer into a transparent substrate, the emitted light evanescently coupled into the transparent substrate, reflecting the light from a bottom boundary of the transparent substrate, and reflecting the light from a second location in the luminescent film laterally displaced from the first location, wherein the light exhibits non-resonant near-unity reflectivity.
These and other features of the invention, together with the organization and manner of operation thereof, will become apparent from the following detailed description when taken in conjunction with the accompanying drawings, wherein like elements have like numerals throughout the several drawings described below.
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of necessary fee.
a and 1b illustrate the resonance-shifting concept applied to a luminescent solar concentrator;
a and 2b depict the emitter and bi-layer cavity characteristics;
a-c illustrate resonance-shifting with F8BT.
a-d depict an analysis of resonance-shifting with L305.
a illustrates measurement of concentrator performance under operational conditions, in which the area of uniform illumination (geometric gain) is varied as shown. The photodiode is covered (not shown) to prevent it from receiving direct illumination. The resonance-shifting pattern is a 6-level staircase with 2 mm wide steps as shown.
a-b depicts simulation of concentrator performance.
a illustrates emission outcoupling from the bi-layer cavity via a half-ball lens, showing the highly direction rings of emission projected onto a screen.
a-d illustrate reflectivity and optical field intensity profiles calculated from fits to the data of the F8BT cavity in
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the figures, can be arranged, substituted, combined, and designed in a wide variety of different configurations, all of which are explicitly contemplated and made part of this disclosure.
Concentration ratio is defined as the ratio of output to input radiant flux, and in the case of LSCs 10, it is factored according to CR=Gηopt, where the geometric gain G=Aout/Ain is the ratio of output to input aperture areas and ηopt=Pout/Pin is the efficiency of power transfer from sunlight incident on the concentrator (Pin) to that of the luminescence at its output (Pout). The optical efficiency is often approximated as a product, ηopt≈ηabsηStokesηemηprop (G), which depends on the absorbed fraction of the solar spectrum (ηabs), the fractional photon energy loss in down-conversion (ηStokes), and the probability of re-emission into confined modes (ηem). The final factor, ηprop, accounts for all propagation-related losses due to reabsorption and scattering and hence, in contrast to the other losses, is a naturally decreasing function of G. It is this functional dependence that is ultimately responsible for the low CR achieved in practice since, if ηprop were constant, G could simply be increased to compensate for the other losses.
The falloff of ηprop with increasing G is predominantly due to self-absorption by the luminescent material, in which emitted photons are reabsorbed by the tail of the absorption spectrum and then subsequently lost due to non-radiative decay or secondary re-emission out of the waveguide. One strategy for combating this problem is to minimize the overlap between absorption and emission spectra by increasing the Stoke's shift, either via cascaded energy transfer or the use of emitters with intrinsically large shifts, such as rare-earth ions and phosphorescent organic molecules. This approach has recently shown great promise for LSCs 10 based on organic thin films, however, it is not easily applicable to other emitters such as colloidal quantum dots due to their large self-absorption overlap, and more fundamentally, it does not improve CR relative to the thermodynamic limit since CRlim also grows with increasing Stoke's shift, as noted above. Alternatively, wavelength-selective filters have been used to reduce out-coupling of photons re-emitted within the critical angle, but this can adversely affect the in-coupling of direct and diffuse sunlight at wide angles and it ultimately does not resolve the non-radiative component of reabsorption loss.
Resonance-shifting addresses the reabsorption problem differently in that it relies on emission from optical resonances that change with position across the concentrator, such that subsequent interactions with the emissive region are non-resonant with greatly diminished reabsorption.
These modes, by nature, cannot propagate in air and hence the directional emission undergoes total internal reflection at the opposing glass/air interface and returns to the emitter/low-n bi-layer laterally displaced by roughly twice the substrate 12 thickness. If the waveguide thickness (e.g. the luminescent film 16) were to remain unchanged from the original emitting position, the emitted light would be resonantly coupled back into the slab waveguide and reabsorption would be intensified. However, if the original emission returns to find a different waveguide thickness, then it will be non-resonant with the new cavity modes and the reflectivity, R, may consequently approach unity. Since no light is transmitted under conditions of total internal reflection, reabsorption loss, given by the balance 1−R, is drastically reduced.
From a physical standpoint, the decrease in reabsorption is due to reduced overlap of the optical field intensity profile (|E|2) with the luminescent film 16, as illustrated in
The scheme shown in
The goal in designing a resonance-shifting luminescent concentrator (RSLSC) is thus to vary the thickness of the luminescent film 16 across the surface of the concentrator such that resonant emission from any given location does not re-encounter that same resonance in reflectivity elsewhere before reaching the RSLSC edges. The required thickness variation 18—typically a few tens of nanometers over a lateral distance of approximately twice the substrate 12 thickness (i.e. the return length between bounces)—is determined by the resonance width, which in turn depends on modal coupling to the substrate 12 through dlow as well as the extinction coefficient of the emissive layer.
The RSLSC strategy was tested for three different luminescent materials, namely, the green-emitting polymer poly(9,9-di-n-octylfluorene-alt-benzothiadiazole) (F8BT) and two perylene-based Lumogen F-series dyes (denoted here as L170 and L305) that are commercially available from BASF Corporation and are routinely used in LSCs 10.
The angular emission pattern of an F8BT/low-n bi-layer, fabricated as previously by spin-coating on a glass microscope slide (1 mm thick) and out-coupled using a hemispherical prism, is shown in
The transverse electric and magnetic TE1 and TM0 modes are also evident in the prism-coupled angular reflectivity spectra (
In contrast to the ‘bare’ F8BT cavity, the emission pattern denoted by “x” symbols in
b shows the internal optical quantum efficiency (IQE), or fraction of photons absorbed at the excitation spot that are re-emitted and detected by the photodiode 20. A clear increase in edge emission is observed when the excitation point crosses over the resonance-shifted stripe (RS+). However, to rigorously ascribe this change to reduced propagation loss, as opposed to a change in quantum yield of the cavity emission into the substrate 12, the inverse configuration (RS−) as shown in the inset was tested, where the ‘stripe’ region is left bare and 30 nm of Alq3 is deposited elsewhere. The similar result evident in the RS− case confirms that the increase is due to reduced propagation loss.
Combining the IQE data of both RS+ and RS− enables the resonance-shifted propagation loss to be deconvolved from the changes in substrate-coupled emission quantum yield that accompany the variation 18 in cavity thickness and thus calculate a single, ‘average’ propagation efficiency, ηprop(x), which is further explained below. According to the right-hand scale of
c shows the progression of emission emanating from the edge of RS+ and projected onto a white card. Exciting adjacent to the edge (x=0.5 mm), the directional emission exits to the right-hand side without undergoing any bounces, as depicted in the initial illustration. At x=2.5 mm, the emission undergoes a single bounce and now exits to the left-hand side. As the excitation point moves far from the edge (x=29 mm), the emission intensity out each side becomes similar since the TE and TM modes are emitted at different angles and thus do not remain in step with one another. Upon exciting the resonance-shifted stripe (x=31 mm), additional green emission appear, indicated by the white arrows, which contributes to the intensity increase recorded by the photodiode 20 in
Although F8BT provides a qualitatively useful visual demonstration, a more in-depth analysis is complicated by the natural, uncontrolled thickness variation 18 inherent in the spin-coated films. Rigorous experimental and modeling analysis instead focused on more uniform devices fabricated by thermally evaporating films of L170 and L305.
b shows the edge emission spectra of the L305 complementary devices collected through the port of an integrating sphere as shown in the inset diagram. The spectra are strongly modified from the photoluminescence in
c and 4d present simulated optical IQE and edge emission spectra that correspond to the measurements in
These results demonstrate the potential of resonance-shifting to reduce propagation loss, but whether this can ultimately be harnessed to net benefit in an actual RSLSC consisting of many such shifts is most directly addressed by measurement under operating conditions. This is shown schematically in
b shows that the RSLSC with an F8BT emissive layer outperforms its LSC 10 counterpart, delivering more luminescence to the edge-mounted photodiode 20 despite absorbing less of the incident light on average (lower panel). The result is similar for L305 in
a extends the L305 simulation in
For certain embodiments, the stair step thickness variation 18 used in
The number of non-overlapping resonances is determined by the angular width of each, which in turn depends on the low-n layer thickness as well as the extinction coefficient of the luminescent film 16. The resonances cannot be made arbitrarily narrow since the associated increase in cavity Q-factor leads to more initial reabsorption loss, reducing the quantum yield of emission into the substrate 12. The substrate-coupled quantum yield of the cavity structure thus depends on dlow. It can usually be made comparable to or greater than that of the corresponding non-cavity, though in general, the optimum low-n layer thickness decreases as the substrate 12 refractive index increases. In
Resonance-shifting is most effective for thin luminescent films 16, less than ˜1 μm thick that support only one or two modes of each polarization, since highly multimode films make it difficult to avoid overlapping resonances. Dense, strongly absorbing films of organic chromophores or colloidal quantum dots with absorption lengths of a few hundred nanometers are thus well suited for this approach. Although quenched in neat film here, the photoluminescent quantum yield of the Lumogen dyes can be greatly increased by doping into a host matrix, though it should be noted that similar red perylene dyes exhibiting high quantum yield in neat film have also been developed. Colloidal quantum dots, in many respects ideal for use in LSCs 10 due to their broad absorption and tunable emission, may especially benefit from the resonance-shifting approach, as their use to date has been particularly hampered by high reabsorption losses.
Ultimately, RSLSCs retain the potential for low-cost fabrication, taking advantage of solution processable low-index and luminescent layers 16 as well as additive stamp-transfer processes to pattern the thickness variation 18 in a roll-to-roll fashion. One of ordinary skill in the art will appreciate that the present invention need not be limited by the mechanism utilized to achieve resonance shifting and other ways of achieving resonance-shifting are contemplated. For example, the luminescent film 16 thickness need not be varied at all if a substrate 12 with a shallow, slowly varying lower surface profile are used (e.g. reflecting light back at slightly different angles), though this could lead to unacceptable out-coupling loss from rays returned below the critical angle. Another way to achieve resonance-shifting is to laterally vary the refractive index gradient in the substrate 12. Still another way to achieve resonance-shifting is to use a curved substrate 12 (e.g. a glass plate deformed into a demisphere, parabloid, or the like), with a luminescent thin film 10 disposed on one side. One skilled in the art will appreciate that other mechanisms for achieving resonance shifting may be employed without deviating form the spirit of this disclosure.
Borosilicate glass microscope slides (60 mm×25.4 mm×1 mm, Fischer) and polished pieces of SF10 glass (58 mm×25.4 mm×1.15 mm, VPG optical glass) were used as substrates 12. Low refractive index layers were fabricated using the sacrificial porogen method as detailed previously, which produces uniform optical quality films with RMS surface roughness <2 nm and a nearly dispersionless refractive index of nlow˜1.14. Films of F8BT were first spin-coated from p-xylene on a water-soluble sacrificial layer and then float-transferred onto the nanoporous low index spacer layer to produce a well-defined interface. The L170 and L305 cavities were produced by thermally evaporating the dyes directly onto the low-n layer. Optical constants and layer thicknesses were determined from global fitting of variable-angle spectroscopic ellipsometry and normal incidence transmission measurements.
Resonance-shifted stripe regions in the F8BT cavities were produced by thermally evaporating Alq3 through a shadow mask, whereas additional L170 and L305 was deposited in the case of the Lumogen cavities. The stair-step pattern of the full RSLSCs was built up sequentially using the appropriate series of shadow masks and was simultaneously deposited on the LSC 10 control devices (which have no low-n layer) to maintain comparable absorption to the RSLSCs.
Cavity reflectivities were collected as a function of angle via an equilateral prism index-matched to the back of each substrate 12 using λ=543 nm and λ=635 nm lasers for the F8BT and Lumogen-based cavities, respectively. Angular emission patterns of the F8BT cavity on glass were obtained exciting at λ=473 nm, out-coupling with an index-matched half-ball lens and detecting with an angular resolution of 0.1 degrees. Both reflectivity and emission signals were chopped at 300 Hz and detected with a Si photodiode 20 and lock-in amplifier.
Luminescence was detected from the concentrator edge by attaching directly to the surface of a bare, rectangular Si photodiode 20 (5 mm×25.4 mm, Silonex) with index-matching fluid (n=1.52 for glass, n=1.72 for SF10, Cargille Labs) to prevent any air gaps. The remaining three edges were blackened with ink to minimize edge reflections, which complicate the modeling analysis. Laser excitation (λ=473 nm for F8BT and L170, λ=543 nm for L305) was chopped at 300 Hz and directed onto the cavity surface approximately 5 degrees from normal incidence. The focal point (˜200 μm diameter) was scanned as a function of position, x, along the middle of each sample while synchronously collecting the edge luminescence, transmitted, and reflected beam intensities at each point. The optical internal quantum efficiency was calculated using these data and then corrected for the solid angle change multiplying by π/2 tan−1(w/2x) as previously, where w is the length of the edge with the attached photodiode 20. This correction is not valid for small x on the order of the 1 mm substrate 12 thickness and hence the propagation efficiency, ηprop (x), was estimated relative to the point x=5 mm through the relationship IQE(x)=ηemηprop(x) for the LSC 10 control, since the emission quantum yield, ηem, is constant throughout. The emission quantum yield is not constant crossing over the resonance-shifted stripe region of the cavities and so in this case the propagation efficiency is derived by geometrically averaging the complementary cavity data to deconvolve changes in ηem according to the following:
√{square root over (IQERS−(x)IQERS+(x))}{square root over (IQERS−(x)IQERS+(x))}=ηprop,avg(x)√{square root over (ηem+ηem−)}
Edge-emission spectra were collected through the port of an integrating sphere that was fiber-coupled to a cooled Si CCD spectrograph.
Broad area illumination with an intensity of approximately 30 mW/cm2, chopped at 300 Hz and incident normal to the sample, was provided by a quartz-tungsten-halogen lamp homogenized using a tapered light pipe to achieve spatial uniformity with <1% r.m.s. intensity variation. The photodiode 20 was attached and the other edges blackened as above, with a small cover used to prevent direct illumination of the photodiode 20. The lamp output was subsequently shortpass filtered below λ=500 nm to minimize noise from scattered near-infrared light not absorbed by the luminescent film layers 16, and testing of blank samples (e.g. plain glass) ensured that stray light remained negligible in comparison to the luminescence signal.
Anisotropic transfer matrix modeling was used to fit the angular reflectivity data for the F8BT cavities since these films are uniaxial, with ordinary and extraordinary refractive indices no=1.70 and ne=1.65, and isotropic extinction k=1.5×10−4 at λ=543 nm as previously. The model fits for the F8BT cavity in
Dashed arrows in
Global fits of variable angle spectroscopic ellipsometry and normal incidence transmission data are used to extract the optical constants of each film for modeling. Since this procedure is not sensitive to the weak extinction present below the absorption edge of each material, extinction coefficients determined from the resonant reflectivity fitting (λ=543 nm for F8BT, λ=635 nm for L170 and L305) are used as data points to fix the magnitude at these wavelengths and then extrapolate the functional decay determined by ellipsometry.
Total dipolar radiated and dissipated (into the lossy luminescent film 16) power, was calculated for the cavities numerically using the method of source terms, assuming randomly oriented dipoles distributed throughout the emissive layer and excited in proportion to the amount of incident light absorbed at each position. From this the total power is obtained for each polarization emitted into the substrate 12 as a function of angle for each wavelength in the emission spectrum, normalized to the calculated substrate-coupled emission quantum yield:
ηem(λ)=2π∫[ITE(θ,λ)+ITM(θ,λ)] sin(θ)dθ, [Equation 1]
where θ is the angle in the substrate 12 and ITE and ITM are the TE and TM polarized power patterns, respectively. Using the transfer matrix-calculated reflectivities, RTE(0,λ) and RTM(θ,λ), the respective propagation losses in the {circumflex over (x)} direction for each emitted angle according to the geometry illustrated in
The power reaching the photodiode 20 at the right-hand edge (see
I(x,y,λ)=∫φ
where the azimuthal angular limits are:
Integrating Equation 3 over the normalized photoluminescence spectrum gives the total power arriving from each position. Secondary re-emission events (e.g. emission following reabsorption) are neglected and light scattered from the other edges are not accounted for since this is minimized by edge blackening in our experiments. Further integration of Equation 3 over x and y gives the edge-intensity under area illumination. Symmetry considerations and the appropriate change of variables in Equation 3 enable the calculation of light from all edges.
The simulation of ideally patterned RSLSCs in
The foregoing description of embodiments of the present invention have been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the present invention to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the present invention. The embodiments were chosen and described in order to explain the principles of the present invention and its practical application to enable one skilled in the art to utilize the present invention in various embodiments, and with various modifications, as are suited to the particular use contemplated.
This application is a divisional application of U.S. application Ser. No. 13/199,323 filed Aug. 26, 2011, reference of which is incorporated in its entirety.
The United States Government claims certain rights in this invention pursuant to Contract No. DE-AC02-06CH11357 between the U.S. Department of Energy and UChicago Argonne, LLC, representing Argonne National Laboratory.
Number | Date | Country | |
---|---|---|---|
Parent | 13199323 | Aug 2011 | US |
Child | 14457590 | US |