This application claims priority for Taiwan patent application no. 106128204 filed on Aug. 21, 2017, the content of which is incorporated by reference in its entirety.
The present invention relates to a resonant magnetic coupling wireless power transfer system, particularly to a resonant magnetic coupling wireless power transfer system able to automatically calibrate the inductor-capacitor resonant frequencies.
Wireless power transfer (WPT) is a very convenient technology applicable to various portable devices, such as mobile phones, implantable biomedical devices, sensors, and electric vehicles. There are two main specifications involved with a WPT system. One is the power transfer efficiency (PTE), which is the ratio of the power transferred to the load and the supplied power. PTE is smaller than or equal to 1. The other is the maximal transferred power (MTP), which is the maximal power the load receives from the WPT system.
Both the non-resonant magnetic coupling (NRMC) WPT system and the resonant magnetic coupling (RMC) WPT system are popular WPT technologies. The NRMC WPT system cannot achieve a good enough PTE or a satisfying MTP unless the coupling coefficient (k) of the transmitter coil and the receiver coil approaches 1, i.e. when the two coils have similar diameters, and the distance between the coils is far smaller than the diameters of the coils. Therefore, the NRMC WPT system is usually applicable to one-to-one mode only.
On the other hand, in an application environment having a small coupling coefficient, the RMC WPT system can achieve a PTE that the NRMC WPT system can achieve only in an environment with a larger coupling coefficient. In other words, the RMC WPT system can operate in a longer distance using the same coils. Besides, the RMC WPT system does not need coils having similar diameters. Furthermore, one power transmitter can transfer power to several power receivers in the RMC WPT system. The abovementioned features of the RMC WPT system expand the application field of WPT systems.
Although the RMC WPT system has many advantages, however, some practical implementation issues remain. The main issue is that the RMC WPT system needs the resonance frequencies of the inductor-capacitor (LC) tanks on both the power transmitter and the power receiver sides to be accurately controlled to some particular values. A small deviation of the LC resonant frequency would significantly affect the system's PTE and MTP. Nevertheless, intrinsic errors always exist in the electronic components of a circuit, resulting in that the practical performance of the RMC WPT system is much lower than the optimal performance in theory.
A conventional method for calibrating the LC resonant frequency uses an LCR-meter instrument to measure the inductance and capacitance first and then uses a variable capacitor (varactor) to manually compensate for the inaccurate values of the inductors and capacitors. Another frequently-used method is adding matching networks to regulate the equivalent load impedance seen by the transmitter and the equivalent source impedance seen by the receiver. However, intrinsic errors still exist in the components of the matching networks. Canada patent CA2448316 A1 disclosed a calibration method, which measures the maximal and minimal resonant frequencies first and then uses linear interpolation to guess a target control code of a digitally-controlled capacitor, whereby the calibration time is decreased. While being applied to a WPT system, this method needs to measure the circuit parameters of the WPT system beforehand so as to calculate the target value of calibration. Therefore, the technology is laborious and time-consuming in such an application. Besides, the setup environment for calibration is different from that for normal WPT operation. Thus, the calibration environment and the normal WPT operation environment respectively have different parasitic capacitances and different parasitic inductances. As a result, the calibrated resonant frequency of the WPT system is still deviated from the target during normal WPT operation.
Other calibration methods adjust the PLL's oscillation frequency to calibrate the LC resonant frequency in the PLL, including U.S. Pat. No. 7,940,140 B2, U.S. Pat. No. 8,508,308 B2, U.S. Pat. No. 8,902,009 B1, and U.S. Pat. No. 8,766,712 B2. The U.S. Pat. No. 8,918,070 B2 adjusts the LNA oscillation frequency to calibrate the LC resonant frequency in it. To the best of our knowledge, there has not yet been a dedicated calibration technology developed to calibrate the resonant frequencies of the WPT system and to enhance the performance thereof.
Accordingly, the present invention proposes a RMC WPT system able to automatically calibrate its LC resonant frequencies to address the abovementioned issues.
The primary objective of the present invention is to provide a RMC WPT system able to automatically calibrate the resonant capacitors of the transmitter and the receiver and precisely control the LC resonant frequencies of the transmitter and the receiver, whereby to wirelessly transfer the maximal power to the load.
Another objective of the present invention is to provide a RMC WPT system, which can achieve a high (sub-optimal) PTE and the MTP simultaneously, and which can further cooperate with the optimal equivalent load resistor to achieve the optimal PTE.
To achieve the abovementioned objectives, the present invention proposes a RMC WPT system with calibration capabilities of its LC resonant frequencies, which comprises a power transmitter and at least one power receiver. The power transmitter transfers an alternating-current (AC) power to at least one power receiver. The power transmitter includes at least a power amplifier and an LC resonator. The LC resonator can be equivalent to a circuit including a first resonant capacitor and a primary coil connected in series. While the first resonant capacitor is calibrating, the first resonant capacitor thereof is tuned until the peak voltage of a primary-side-observation (PSO) voltage achieves its maximal value, whereby the first resonant capacitor achieves its optimal capacitance value enabling the maximal power to be transferred to the load. The PSO voltage is either the voltage across the primary coil or the voltage across the first resonant capacitor.
In one embodiment, the abovementioned power receiver includes a secondary coil and a series resonant load circuit connected in parallel. The series resonant load circuit can be equivalent to be a second resonant capacitor and a load resistor connected in series. A mutual inductance exists between the primary coil and the secondary coil. The mutual inductance can be expressed by a coupling coefficient and the inductances of the two coils.
In another embodiment, the abovementioned power receiver includes a secondary coil and a shunt resonant load circuit connected in parallel. The shunt resonant load circuit can be equivalent to be a second resonant capacitor and a load resistor connected in parallel. A mutual inductance exists between the primary coil and the secondary coil. The mutual inductance can be expressed by a coupling coefficient and the inductances of the two coils.
A process to calibrate the abovementioned first resonant capacitor comprises steps: setting the first resonant capacitor to have an arbitrary initial value, detecting the peak voltage of the PSO voltage, and storing the peak voltage as a first PSO peak voltage (Step S1); adding a predetermined first-resonant-capacitor-incremental (FRCI) step value to the capacitance of the first resonant capacitor (Step S2); detecting the peak voltage of the PSO voltage again, and storing the peak voltage of the detected PSO voltage as a second PSO peak voltage (Step S3); determining whether the absolute value of the difference of the first PSO peak voltage and the second PSO peak voltage is within a predetermined PSO tolerable range; if the difference is within the predetermined PSO tolerable range, stopping the calibration process, and preserving the last value of the first resonant capacitor as the calibration result, else undertaking the next step (Step S4); if the second PSO peak voltage is greater than the first PSO peak voltage, adding a predetermined FRCI step value to the capacitance of the first resonant capacitor, else subtracting a predetermined FRCI step value from the capacitance of the first resonant capacitor (Step S5); replacing the value of the first PSO peak voltage with the value of the second PSO peak voltage, returning to Step S3, and undertaking the steps in sequence (Step S6).
In one embodiment, while the first resonant capacitor is being calibrated, the secondary coil may be in an open-circuit or a short-circuit state. Alternatively, the whole power receiver is removed before the first resonant capacitor is being calibrated to emulate the open-circuit state of the secondary coil. Thereby, the first resonant capacitor is calibrated to have a specified value ready for being used in calibrating the second resonant capacitor.
The present invention further undertakes a process to calibrate the abovementioned second resonant capacitor to achieve the sub-optimal PTE. While the second resonant capacitor is being calibrated, the second resonant capacitor thereof is tuned until the peak voltage of a secondary-side-observation (SSO) voltage achieves its maximal value, whereby the second resonant capacitor achieves its optimal value enabling the power to be transferred to the load with the sub-optimal PTE. The SSO voltage is the voltage across the secondary coil or the voltage across the second resonant capacitor.
The process to calibrate the second resonant capacitor comprises steps: setting the second resonant capacitor to have an initial value, detecting the peak voltage of the SSO voltage, and storing the peak voltage as a first SSO peak voltage (Step S1); adding a predetermined second-resonant-capacitor-incremental (SRCI) step value to the capacitance of the second resonant capacitor (Step S2); detecting the SSO voltage again, and storing its peak voltage as a second SSO peak voltage (Step S3); determining whether the absolute value of the difference of the first SSO peak voltage and the second SSO peak voltage is within a predetermined SSO tolerable range; if the absolute value of the difference is within the predetermined SSO tolerable range, stopping the calibration process, and preserving the last value of the second resonant capacitor as the calibration result, else undertaking the next step (Step S4); if the second SSO peak voltage is greater than the first SSO peak voltage, adding a predetermined SRCI step value to the capacitance of the second resonant capacitor, else subtracting a predetermined SRCI step value from the capacitance of the second resonant capacitor (Step S5); replacing the first SSO peak voltage with the second SSO peak voltage, returning to Step S3, and undertaking the steps in sequence (Step S6).
Below, embodiments are described in detail in cooperation with the attached drawings to make easily understood the objectives, technical contents, and accomplishments of the present invention.
The present invention proposes an RMC WPT system with calibration capabilities of its LC resonant frequencies, which can calibrate the resonant capacitors to achieve the maximal peak voltages in an appropriate calibration environment, whereby to realize the target of self-calibration. The present invention may be a series-loaded RMC WPT system or a shunt-loaded RMC WPT system. No matter which type of system the present invention is applied to, the technical spirit thereof is identical.
Refer to
A primary-side controller 14 is electrically connected with the peak voltage detector 12, receiving and storing the peak voltages, and tuning the first resonant capacitor C1 according to the values of the peak voltages. The primary-side controller 14 also controls the equivalent output resistance of the power amplifier PA in the calibration mode. Similarly, the power receiver 20 also includes a peak voltage detector 22. The peak voltage detector 22 is electrically connected with the secondary coil L2 or the second resonant capacitor C2 and used to detect the peak voltages of the SSO voltage VL2. A secondary-side controller 24 is electrically connected with the peak voltage detector 22, receiving and storing the peak voltages and tuning the second resonant capacitor C2 according to the values of the peak voltages. The secondary-side controller 24 also controls the operations of the switches SS, SO, and SR according to the operation mode.
The process to calibrate the first resonant capacitor C1 comprises the steps shown in
Each of the first resonant capacitor C1 and the second resonant capacitor C2 is a digitally-controlled variable capacitor or a voltage-controlled variable capacitor. While the first resonant capacitor C1 is being calibrated to have a specified value needed in calibrating the second resonant capacitor C2, the secondary coil L2 is in a short-circuit state or an open-circuit state.
In a non-short-circuit and non-open-circuit state, the calibration result of the first resonant capacitor C1 is the optimal value for the load state at the time of calibration.
Refer to
For the RMC WPT system with calibration capabilities of its LC resonant frequencies shown in
The process to calibrate the second resonant capacitor C2 in
Refer to
The power transmitter 30 further includes a peak voltage detector 32. The peak voltage detector 32 is electrically connected with the primary coil L1 or the first resonant capacitor C1 and used to detect the peak voltage of the PSO voltage VL1. A primary-side controller 34 is electrically connected with the peak voltage detector 32, receiving and storing the peak voltages and tuning the first resonant capacitor C1 according to the values of the peak voltages. The primary-side controller 34 also controls the equivalent output resistance of the power amplifier PA in the calibration mode. Similarly, the power receiver 40 also includes a peak voltage detector 42. The peak voltage detector 42 is electrically connected with the secondary coil L2 or the second resonant capacitor C2 and used to detect the peak voltages of the SSO voltage VL2. A secondary-side controller 44 is electrically connected with the peak voltage detector 42, receiving and storing the peak voltages of the SSO voltage VL2 and tuning the second resonant capacitor C2 according to the peak voltages of the SSO voltage VL2. The secondary-side controller 44 also controls the operations of the switches SS and So according to the operation mode.
In the system architecture shown in
After the description of the technical characteristics of the present invention, the theoretical principles of the present invention will be described in detail below, so as to prove that the present invention can achieve the optimal performance of the RMC WPT system via automatically calibrating the resonant capacitors of the power transmitter and the power receiver to optimize the resonant frequencies of the LC resonators thereof (the optimal frequency is not necessarily the carrier wave frequency fc).
As shown in
Both the RMC WPT systems shown in
In the following analysis, the quality factors defined in Table. 2 will be used to express the results of the analysis.
Usually, the RMC WPT system cannot achieve good performance unless the quality factors of the two inductors L1 and L2 are much larger than 1. In practical applications, it is demanded: k2QSQ2>>1.
As will be shown in the following, analyzing the lumped circuit model in
It can be observed in Table. 3 that the C2,opt of the series-loaded RMC system is independent of RL, k, and the design parameters of the power transmitter. Therefore, C2 can be calibrated in the environment that these parameters have the values different from the values these parameters have in the normal WPT operation environment. The calibration result of C2 is then stored and used in the normal WPT operation mode. In other words, no matter whether the values of RL, k, and the design parameters of the power transmitter are the same as those in the normal WPT operation environment, the correctness of the calibration results would not be affected.
Below will describe a preferred embodiment of calibrating the first resonant capacitor C1 of the RMC WPT system.
In addition to a high PTE, the WPT system also demands a high MTP. The analysis results of the lump model shown in
Equations (1) and (2) are applicable to both the series-loaded and shunt-loaded RMC WPT systems. Equation (2) depicts that HPL is independent of C1. As a result, the maximal |VL1(C1)| also generates the maximal PL according to Equation (1). Therefore, the present invention proposes: automatically tuning C1 to acquire the maximal |VL1|. Once the optimal C1 is found, it is denoted by C1,opt and used to provide the maximal power for the RL.
Define
for the shunt-loaded RMC system, and
for the series-loaded RMC system.
In order to understand the relationship between C1 and |VL1|, Detailed analysis shows that
Simultaneously define
The two kinds of the RMC WPT systems both have the conditions: HdVL1<0 and b>0. By Equations (8), (9), (10), and the two conditions HdVL1<0 and b>0, we have
wherein when
Equation (12) indicates that C10 is the optimal value corresponding to the maximal |VL1|, i.e. C10=C1,opt. Equation (12) also indicates that when C1 is larger than the optimal value C10, the derivative of |VL1| with respect to C1 is negative and if C1 is smaller than the optimal value, the derivative of |VL1| with respect to C1 is positive.
The calibration method of the present invention is based on Equation (12): Varying C1 to detect the slope of |VL1(C1)| with respect to the C1 and adjust C1 according to the detected slope until the tuned C1 is close to C10 which corresponds to the peak value of
The detailed process of calibrating C1 is as follows:
As have been mentioned in the Step 2 above, ΔC1 may also be a negative value. While ΔC1 is negative, increasing a negative value of ΔC1 is equal to decreasing |ΔC1| in the abovementioned Step 2 or Step 5. Similarly, decreasing a negative value of ΔC1 is equal to increasing |ΔC1| in the abovementioned Step 5. Accordingly, the slopes of |VL1(C1)| with respect to ΔC1 are also changed in the abovementioned statements. For example, while Vp1>Vp0, the slope of |VL1(C1)| with respect to ΔC1 is changed to be a negative value, it indicates that C1>C10; if Vp1<Vp0, the slope of |VL1(C1)| with respect to ΔC1 is changed to be a positive value, it indicates that C1<C10.
It is noteworthy that the optimal C10 tracks the variation of the coupling coefficient k according to Equation (11), so does the C1 being calibrated in this scenario. Consequently, the power transmitter can persistently provide maximal power to the load RL against environmental variations.
In addition to calibrating C1 to achieve the highest MTP, the present invention also sets ZL=0 or ZL=00 during calibrating C1, so as to set C1 to have a specified value for calibrating C2. The present invention sets ZL=0 via turning on the switch SS in
A preferred embodiment of calibrating the second resonant capacitor C2 of a shunt-loaded RMC WPT system is described in the following.
For a shunt-loaded RMC system, define
y=ωc2L2C2−1. (13)
Equation (13) is applicable to a shunt-loaded RMC system. In order to understand the relationship between C2 and |VL2|. Detailed analysis leads to
Simultaneously, define
Since HdVL2<0, QS>0, and Q2>0, we have
according to Equations (14) to (17). While C2=C20,
Equation (18) indicates that C20 is the optimal value corresponding to the maximal |VL2|. Equation (18) also indicates that while C2 is larger than the optimal value C20, the derivative of |VL2| with respect to C2 is negative, and if C2 is smaller than the optimal value C20, the derivative of |VL2| with respect to C2 is positive. Because Equation (18) is similar to Equation (12), the method of calibrating C2 is similar to the aforementioned calibration method of C1.
The present invention uses Equation (18) to calibrate C2 to be C20 by: Varying C2 and detecting the slope of |VL2| with respect to C2 and tuning C2 according to the detected slope of |VL2| with respect to C2 until C2 is close enough to C20 which corresponds to the peak value of
The detailed process of calibrating C2 is as follows:
As have been mentioned in the Step 2 above, ΔC2 may also be a negative value. While ΔC2 is negative, increasing a negative value of ΔC2 is equal to decreasing |ΔC2| in the abovementioned Step 2 or Step 5. Similarly, decreasing a negative value of ΔC2 is equal to increasing |ΔC2| in the abovementioned Step 5. Accordingly, the slopes of |VL2| with respect to ΔC2 are also changed in the abovementioned statements. For example, if VR1>VR0, the slope of |VL2| with respect to ΔC2 is changed to be a negative value, it indicates that C2>C20; if VR1<VR0, the slope of |VL2| with respect to ΔC2 is changed to be a positive value, it indicates that C2<C20.
According to Table. 3, in a shunt-loaded RMC WPT system, the optimal C2 that achieves the maximal PTE is
which is independent of RL. As the intended calibration result of C2 is C2,opt, C1 must be set to be a specified value during calibration so that C2,opt=C20. After the calibration of C2 is completed, C2 will keep the calibrated value in the normal WPT operation mode. As the PTE is independent of C1, the value of C1 in the normal WPT operation mode can be different from the value of C1 used during calibrating C2. Therefore, the two parameters C1 and RL can be set to any fixed values during calibration. However, for the shunt-loaded RMC WPT system, the parameter k must be the same as that in the application. Consequently, on-line calibration is required.
By equaling Equation (17) and Equation (19), we can set C1 to be
during calibrating C2 to make C2,opt=C20.
The second solution in Equation (20) is not preferred because of the difficulties of accurately measuring QS and Q2, accurately setting C1, and the need of a larger varactor to implement C1. On the other hand, Table. 4 indicates that calibrating the C1 with ZL=0 results in a value very close to the first solution in Equation (20) without troublesome setup. Given the calibrated C1 and perform the proposed calibration of C2, the error of the calibration result C20 normalized to C2,opt, can be expressed as
Equation (21) indicates we can further reduce the calibration error by reducing QS to a smaller value QSS during calibrating C2. It can be achieved by increasing RPA. There are two simple ways to increase RPA without changing the connections of the circuit: reducing the effective sizes of the output transistor of the PA (the driving capability) or the supply voltage of the PA. Alternatively, interposing an additional resistor to connect in series with the PA and the LC resonator in the primary side during calibration can also reduce QS.
Firstly, let's define
QSS=λQS, wherein 0<λ<1. (22)
Thus, the normalized calibration error becomes
wherein the error gain Ge2cal
According to Equation (24), setting λ to be λopt can completely vanish the calibration error, wherein
Even though we do not accurately set λ to be λopt, the error gain is still less than 1 as long as λ<1. In other words, the acquired calibration error is still smaller than the calibration error in the case that QS is not reduced.
Table. 4 also indicates that calibrating the C1 with ZL=∞ results in a C1 whose value close to Equation (20) for loose coupling cases without troublesome setup. Given the calibrated C1 under ZL=∞ and performing the proposed calibration of C2, the error of the calibration result C20 normalized to C2,opt can be expressed by
The calibration error is negligible for the loose coupling applications where k2QS<<1.
For stronger coupling applications, the calibration error can be further reduced by reducing QS to a smaller value QSS which can be achieved by increasing RPA during calibration. The normalized calibration error of the calibration result C20 with respect to C2,opt can be expressed by
wherein the error gain Ge2cal is expressed by
The calibration error vanishes while λ is equal to the λopt expressed by Equation (29)
Even though we cannot accurately set λ to be λopt, the error gain Ge2cal is still less than 1 as long as λ<1. In other words, the acquired calibration error is still smaller than the calibration error in the case that QS is not reduced.
Next describes a preferred embodiment of calibrating the second resonant capacitor C2 of a series-loaded RMC WPT system.
The methods of calibrating the second resonant capacitors C2 of the series-loaded RMC WPT system are similar to those of the shunt-loaded RMC WPT system. However, they are different in that the calibration target C2,opt becomes
in the series-loaded system, which has been shown in Table. 3 and is independent of k, RL, and all the design parameters of the power transmitter. Therefore, we can assign k to whatever value during the calibration. The calibration result is stored and applied to practical applications where these parameters may have different values.
The analysis of the series-loaded RMC WPT system using the lumped model shown in
Then, define
For the loose coupling cases,
and HdvL2<0. Therefore,
If the calibration range of C2 does not cover C22, i.e. the initial value of C2 is less than C22, Equation (35) is obtained
Equation (35) is similar to Equation (18). The same calibration procedure can be used to calibrate the second resonant capacitor C2 of the series-loaded RMC system. The calibration result is C21. In fact, the only requirement for successfully calibrating C2 to C21 is to assign the initial value C2 of the calibration procedure to be less than C22 which is an easy task.
In order to achieve
C1 needs to be set to Equation (36):
and RL is needed to be set to a value that fulfills following equation:
However, it is hard to precisely set the required C1 and RL in practice.
A simpler calibration setup for calibrating C2 of the series-loaded RMC system is to set RL=0 by turning on the switch SR in
By setting a k satisfying
during the calibration of C2, the calibration error becomes negligible.
Similar to the calibration of the shunt-loaded RMC system, the calibration error of C2 can be further reduced via decreasing QS to a smaller value QSS. The normalized calibration error with the QSS becomes
Another convenient setup for calibrating C2 of the series-loaded RMC system is to set RL=0 and set C1 to the calibrated C1 under ZL=∞. The calibration setup also leads to C22=∞, which means there is no limit for the initial value of C2. The normalized calibration error of the calibrated C2 with respect to C2,opt is expressed by
It is learned from Equation (40): by setting a small enough k that satisfying k2QS<<1 during the calibration of C2, the calibration error also becomes negligible.
The calibration error shown in Equation (40) can be further reduced by reducing QS to a smaller value QSS during the calibration of C2. Thereby, the normalized calibration error is
which is always smaller than Equation (40).
Therefore, the present invention can automatically calibrate the resonant capacitors of the power transmitter and the power receiver in an appropriate environmental setting to achieve the maximal peak voltages of the PSO voltage and the SSO voltage so as to achieve the optimal MTP and the sub-optimal PTE, respectively. By further setting the equivalent load resistor to its optimal value listed in Table. 3, the present invention can also achieve the optimal PTE.
Further, the technical characteristics of the present invention can also be applied to the WPT systems using a capacitor/inductor matching network. As long as the circuit architecture is equivalent to the resonant load circuit and the LC resonator, the present invention can be used to tune the capacitances of the equivalent resonant capacitors and calibrate the resonant frequencies of the power transmitter and receiver.
The embodiments described above are only to demonstrate the technical thoughts and characteristics of the present invention to enable the persons skilled in the art to understand, make, and use the present invention but not to limit the scope of the present invention. Any equivalent modification or variation according to the spirit of the present invention is to be also included by the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
106128204 A | Aug 2017 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
7940140 | Zeng et al. | May 2011 | B2 |
8508308 | Dong et al. | Aug 2013 | B2 |
8766712 | Shanan | Jul 2014 | B2 |
8902009 | De Bernardinis et al. | Dec 2014 | B1 |
8918070 | Shanan | Dec 2014 | B2 |
20060071632 | Ghabra | Apr 2006 | A1 |
20110080051 | Lee | Apr 2011 | A1 |
20110259953 | Baarman | Oct 2011 | A1 |
20120063505 | Okamura | Mar 2012 | A1 |
20140080409 | Frankland | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
2448316 | Jul 2004 | CA |
Entry |
---|
Mehdi Kiani, Byunghun Lee, Pyungwoo Yeon, Maysam Ghovanloo; A Q-Modulation Technique for Efficient Inductive Power Transmission; IEEE Journal of Solid-State Circuits; vol. 50, Issue 12; Dec. 2015; pp. 2839-2848; First Publication: Jul. 28, 2015. |
Number | Date | Country | |
---|---|---|---|
20190058458 A1 | Feb 2019 | US |