Resonant-Photonic-Device-Enhanced SERS Substrate with Pinpointed Plasmonic-Active

Information

  • Research Project
  • 8518836
  • ApplicationId
    8518836
  • Core Project Number
    R42ES024023
  • Full Project Number
    9R42ES024023-02
  • Serial Number
    024023
  • FOA Number
    PA-12-089
  • Sub Project Id
  • Project Start Date
    9/27/2010 - 14 years ago
  • Project End Date
    8/31/2015 - 9 years ago
  • Program Officer Name
    BALSHAW, DAVID M
  • Budget Start Date
    9/15/2013 - 11 years ago
  • Budget End Date
    8/31/2014 - 10 years ago
  • Fiscal Year
    2013
  • Support Year
    02
  • Suffix
  • Award Notice Date
    9/15/2013 - 11 years ago
Organizations

Resonant-Photonic-Device-Enhanced SERS Substrate with Pinpointed Plasmonic-Active

DESCRIPTION (provided by applicant): The use of Surface Enhanced Raman Scattering (SERS) for biomolecule detection has been restricted due to the great difficulty of fabricating ultrasensitive and reproducible surface-plasmonic-resonance (SPR) substrates. Therefore, detecting extremely small amount of biomolecules for clinical application is significantly limited. In this STTR Phase II research, we propose to develop ultrasensitive (1012~1014 enhancement factors) SERS substrates with universally available Raman hot spots for well-reproducible biomolecule detection by combining optical field enhancements from both resonant photonic devices and metallic nanoentities. Compared with existing SPR substrates made by spin-coating colloidal nanoparticles or nanowire solutions, we engineer the SERS substrate using silica nanotubes coated with universally distributed silver nanoparticles, which can dramatically increase the density of the Raman scattering hot spots. We also employ highly robust Si3N4 guided-mode-resonance (GMR) gratings and resonant microcavity array to achieve even higher local electric field for SERS sensing. To link these two innovations, we will apply a highly exquisite tool---electric tweezers, to assemble the SPR-active nanotubes into the resonant photonic devices with unbeatable spatial precision of at least 150 nm. In our Phase I program, we have theoretically simulated and experimentally demonstrated SPR-active silica nanotubes with nanometer-size gaps, and detected Rhodamine 6G down to 100 fM (single-molecule level) with enhancement factors of 1.1x1010. Moreover, we fabricated Si3N4 GMR gratings using state-of-the-art nanofabrication processes and experimentally achieved ~10? enhancement factors in addition to the existing SERS effect from the SPR-active silica nanotubes. In the Phase II program, we will continue to optimize the SERS substrates for ultrahigh sensitivity up to 1012~1014 enhancement factors, improve the detection probability of ultralow concentration biomolecules in real biological samples, and apply the SERS substrates in various biomedical applications. Most of all, we will resolve potential technical challenges for product commercialization, including lowering the fabrication cost, increasing the throughput, packaging the SERS substrate with fiber-optic systems and evaluating the device reliability.

IC Name
NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES
  • Activity
    R42
  • Administering IC
    ES
  • Application Type
    9
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    500000
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    113
  • Ed Inst. Type
  • Funding ICs
    NIEHS:500000\
  • Funding Mechanism
    SBIR-STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    OMEGA OPTICS, INC.
  • Organization Department
  • Organization DUNS
    102861262
  • Organization City
    AUSTIN
  • Organization State
    TX
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    787596113
  • Organization District
    UNITED STATES