This application claims the benefit of Korean Patent Application No. 10-2019-0155141, filed on Nov. 28, 2019, and Korean Patent Application No. 10-2020-0162527, filed on Nov. 27, 2020, in the Korean Intellectual Property Office, the disclosures of which are incorporated herein by reference.
One or more example embodiments relate to a resonator, and more particularly, to a conical resonator and a dipole resonator that are manufactured in structures for expanding a transfer distance.
A conical resonator has a resonant frequency that changes according to the diameter, the height, and the number of turns of a cone.
However, the conventional conical resonators have been manufactured by winding metal around a conical dielectric to maintain the conical shape. The shapes of the conventional conical resonators are determined according to the shape of the dielectric, and the shape of the dielectric cannot be changed. Thus, it is impossible to change the resonant frequency through a change of the shape such as the height of the cone after manufactured.
Further, the conventional conical resonators are manufactured by winding metal with predetermined intervals to prevent an overlap between previously wound metal and currently wound metal for short prevention. Thus, there were restrictions on miniaturization due to the spontaneous occurrence of intervals between the metals in the Z-direction.
Accordingly, there is a need for a conical resonator that has a variable resonant frequency and may be manufactured in a small size.
An aspect provides a conical resonator that may easily adjust a resonant frequency through a structure in which metal layers overlap each other in the Z direction.
Another aspect also provides a conical resonator that has an adjustable height and thus, may easily adjust a resonant frequency and be miniaturized.
Another aspect also provides a conical resonator that may be miniaturized by adding a spiral resonator to an open face or input face thereof.
Another aspect also provides a dipole resonator that is miniaturized by coupling conical resonators whose input faces have different diameters.
According to an aspect, there is provided a conical resonator including a metal layer configured to operate according to a resonant frequency, and a dielectric layer coupled to the top or bottom of the metal layer to space the metal layer apart from another metal layer without overlap, wherein the metal layer and the dielectric layer may have a Swiss-roll structure, and include an input face to which power is supplied on the bottom and an open face on the top.
The dielectric layer may have the same area as or a larger area than the metal layer to which the dielectric layer is coupled.
The area of overlap between the dielectric layer and the other metal layer may increase when pressure is applied upward and downward, such that the height of the conical resonator may decrease.
The area of overlap between the dielectric layer and the other metal layer may decrease when force to pull upward or downward is applied, such that the height of the conical resonator may increase.
The conical resonator may further include a spiral resonator to be coupled to the input face to lower the resonant frequency of the metal layer.
The conical resonator may further include a spiral resonator to be coupled to the open face to lower the resonant frequency of the metal layer.
The conical resonator may further include a spiral resonator to be coupled to the inside of the conical resonator to lower the resonant frequency of the metal layer.
The conical resonator may further include a first low-loss dielectric plate coupled to the open face, a second low-loss dielectric plate coupled to the input face, and a low-loss dielectric pillar configured to connect the center of the first low-loss dielectric plate and the center of the second low-loss dielectric plate.
According to another aspect, there is provided a dipole resonator including a first conical resonator including a metal layer and a dielectric layer that are coupled in a Swiss-roll structure, an input face to which power is supplied on the bottom, and an open face on the top, a second conical resonator including a metal layer and a dielectric layer that are coupled in a Swiss-roll structure, an input face to which power is supplied on the top, and an open face on the bottom, and a power supply connected to the input face of the first conical resonator and the input face of the second conical resonator to supply power to the input face of the first conical resonator and the input face of the second conical resonator.
The second conical resonator may be coupled to the first conical resonator by inserting the input face of the second conical resonator, which has a smaller diameter than the input face of the first conical resonator, into the first conical resonator.
The first conical resonator may be coupled to the second conical resonator by inserting the input face of the first conical resonator, which has a smaller diameter than the input face of the second conical resonator, into the second conical resonator.
The second conical resonator and the first conical resonator may be formed in a symmetric structure about the power supply and have the same impedance.
Additional aspects of example embodiments will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the disclosure.
According to example embodiments, it is possible to provide a conical resonator that may easily adjust a resonant frequency through a structure in which metal layers overlap each other in the Z direction.
According to example embodiments, it is possible to provide a conical resonator that has an adjustable height and thus, may easily adjust a resonant frequency and be miniaturized.
According to example embodiments, it is possible to provide a conical resonator that may be miniaturized by adding a spiral resonator to an open face or input face thereof.
According to example embodiments, it is possible to provide a dipole resonator that is miniaturized by coupling conical resonators whose input faces have different diameters.
These and/or other aspects, features, and advantages of the invention will become apparent and more readily appreciated from the following description of example embodiments, taken in conjunction with the accompanying drawings of which:
Hereinafter, example embodiments will be described in detail with reference to the accompanying drawings. However, various alterations and modifications may be made to the example embodiments. Here, the example embodiments are not construed as limited to the disclosure. The example embodiments should be understood to include all changes, equivalents, and replacements within the idea and the technical scope of the disclosure.
The terminology used herein is for the purpose of describing particular example embodiments only and is not to be limiting of the example embodiments. The singular forms “a”, “an”, and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises/comprising” and/or “includes/including” when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groups thereof.
When describing the example embodiments with reference to the accompanying drawings, like reference numerals refer to like constituent elements and a repeated description related thereto will be omitted. In the description of example embodiments, detailed description of well-known related structures or functions will be omitted when it is deemed that such description will cause ambiguous interpretation of the present disclosure.
Hereinafter, example embodiments will be described in detail with reference to the accompanying drawings.
A conical resonator 100 according to an example embodiment may be a resonator formed by winding a tape-shaped band in which a metal layer 110 and a dielectric layer 120 are combined, as shown on the left top of
In this example, the metal layer 110 may operate according to a resonant frequency, and the dielectric layer 120 may be coupled to the top or bottom of the metal layer 110 to space the metal layer 110 apart from another metal layer without overlap. In detail, as shown on the left bottom of
That is, the dielectric layer 120 may be coupled with the metal layer 110 to prevent the metal layer 110 from contacting other metal layers, thereby allowing the metal layers to overlap each other in the Z direction.
In addition, since the dielectric layer 120 may adjust the portions overlapping the other metal layers according to the design or the manufacturer's intention, there is no possibility of a short circuit between the metal layers. Therefore, the conical resonator 100 may have a structure in which the metal layers overlap each other in the Z direction, facilitating resonant frequency adjustment.
Further, although
The diameter of the input face of the conical resonator 100 may be smaller than that of the open face as shown in
In addition, the input face and the open face of the conical resonator 100 may be concentric as shown in
When the dielectric layer 120 producing little friction is used, the conical resonator 100 may easily extend and contract in the Z direction as shown in
In this example, when pressure is applied from the top or bottom of the conical resonator 100 toward the center thereof, the area of overlap between the dielectric layer 120 coupled to the metal layer 110 and the other metal layers may increase, such that the height of the conical resonator 100 may decrease as shown in Case 1.
Conversely, when force to pull the conical resonator 100 upward or downward is applied, the area of overlap between the dielectric layer 120 coupled to the metal layer 110 and the other metal layers may decrease, such that the height of the conical resonator 100 may increase as shown in Case 2.
By additionally coupling a spiral resonator 310 to the open face of the conical resonator 100 as shown in
In this example, the spiral resonator 310 may also be defined as an extension of the conical resonator 100 and may be formed in a wire shape. The spiral resonator 310 may not be on the same plane as the open face of the conical resonator 100. The spiral resonator 310 may be manufactured in the same structure as the conical resonator 100 so as to adjust the height thereof.
By additionally coupling a spiral resonator 410 to the input face of the conical resonator 100 as shown in
Alternatively, both the spiral resonator 310 and the spiral resonator 410 may be coupled to the conical resonator 100. In addition, the spiral resonator may be inserted and coupled to the inside of the conical resonator 100 at a predetermined height.
Referring to
The first conical resonator 510 may be a conical resonator including a metal layer and a dielectric layer that are coupled in a Swiss-roll structure, an input face to which power is supplied on the bottom, and an open face on the top. For example, the first conical resonator 510 may be manufactured in the same structure as the conical resonator 100 of
The power supply 520 may be connected to the input face of the first conical resonator 510 and an input face 530 of the second conical resonator. The power supply 520 may supply power to the input face of the first conical resonator 510 and the input face of the second conical resonator 530.
The second conical resonator 530 may be a conical resonator including a metal layer and a dielectric layer that are coupled in a Swiss-roll structure, the input face to which power is supplied on the top, and an open face on the bottom. For example, the second conical resonator 530 may be manufactured in a structure in which the top and the bottom of the conical resonator of
Referring to
The second conical resonator 620 may be a resonator in which the diameter of an input face is to be adjusted to be smaller than the diameter of an input face of the first resonator 610. In this example, the dipole resonator of
Further, the second conical resonator 620 and the first conical resonator 610 may be formed in a symmetric structure about the power supply, thereby increasing the transmission efficiency of the dipole resonator.
In addition, the second conical resonator 620 and the first conical resonator 610 may have the same impedance.
Alternatively, although not shown in
The conical resonator 100 may further include a first low-loss dielectric plate 710 coupled to the open face, a second low-loss dielectric plate 730 coupled to the input face, and a low-loss dielectric pillar 720 connecting the center of the first low-loss dielectric plate 710 and the center of the second low-loss dielectric plate 730.
In this example, the conical resonator 100 may easily maintain its shape by matching the center of the open face and the center of the input face by means of the low-loss dielectric plates.
In addition, the conical resonator 100 including the low-loss dielectric pillar 720 may vary in height along the low-loss dielectric pillar 720 in the process of adjusting the height, thereby preventing misalignment during the process of adjusting the height.
According to example embodiments, it is possible to provide a conical resonator that may easily adjust a resonant frequency through a structure in which metal layers overlap each other in the Z direction. According to example embodiments, it is possible to provide a conical resonator that has an adjustable height and thus, may easily adjust a resonant frequency and be miniaturized.
According to example embodiments, it is possible to provide a conical resonator that may be miniaturized by adding a spiral resonator to an open face or input face thereof. According to example embodiments, it is possible to provide a dipole resonator that is miniaturized by coupling conical resonators whose input faces have different diameters.
Although the specification includes the details of a plurality of specific implementations, it should not be understood that they are restricted with respect to the scope of any invention or claimable matter. On the contrary, they should be understood as the description about features that may be specific to the specific example embodiment of a specific invention. Specific features that are described in this specification in the context of respective embodiments may be implemented by being combined in a single embodiment. On the other hand, the various features described in the context of the single embodiment may also be implemented in a plurality of embodiments, individually or in any suitable sub-combination. Furthermore, the features operate in a specific combination and may be described as being claimed. However, one or more features from the claimed combination may be excluded from the combination in some cases. The claimed combination may be changed to sub-combinations or the modifications of sub-combinations.
Likewise, the operations in the drawings are described in a specific order. However, it should not be understood that such operations need to be performed in the specific order or sequential order illustrated to obtain desirable results or that all illustrated operations need to be performed. In specific cases, multitasking and parallel processing may be advantageous. Moreover, the separation of the various device components of the above-described embodiments should not be understood as requiring such the separation in all embodiments, and it should be understood that the described program components and devices may generally be integrated together into a single software product or may be packaged into multiple software products.
In the meantime, embodiments of the present invention disclosed in the specification and drawings are simply the presented specific example to help understand an embodiment of the present invention and not intended to limit the scopes of embodiments of the present invention. It is obvious to those skilled in the art that other modifications based on the technical idea of the present invention may be performed in addition to the embodiments disclosed herein.
100: Conical resonator
110: Metal layer
120: Dielectric layer
Number | Date | Country | Kind |
---|---|---|---|
10-2019-0155141 | Nov 2019 | KR | national |
10-2020-0162527 | Nov 2020 | KR | national |