Resorptive intramedullary implant between two bones or two bone fragments

Abstract
The invention relates to an intramedullary implant for use between two bones or two bone fragments. The implant includes a single-piece body having a generally elongate shape and having, at each end, areas for anchoring to the bone portions in question, characterized in that one of said areas has a generally cylindrical shape while the other area has a flat cross-section.
Description

The invention relates to the technical field of orthopedic implants, particularly for arthrodesis and osteosynthesis.


More particularly, the invention relates to an intramedullary implant for arthrodesis between two bone parts or osteosynthesis between two bone fragments, particularly in the case of the hand or foot.


Different solutions have been proposed to achieve these functions.


For example, a solution comes from the teaching of patent application FR 2,884,406, of which the applicant of the present application is also the applicant. This patent describes an intramedullary osteosynthesis device made up of an elongated body whose ends constitute anchor zones cooperating with the bone parts to be immobilized. The anchor zones are shaped and made of a material selected to enable insertion into the bone parts, then to ensure an anchor in the bone parts by preventing any rotational movement by resisting traction and maintaining a compression force.


Another solution also comes from patent application FR 07.02003, also from the same applicant. This document describes an implant in the form of two anchor zones connected by a central zone and whose general shape is substantially inscribed in a very elongated rectangle while being substantially X-shaped, so as to form two legs in the anchor zones that are adapted to move apart by elastic or shape-memory effect.


From this design, different criteria have been established to make the implant easy to place and efficient in order to create a primary and secondary stability for the osteosynthesis or arthrodesis site.


However, these solutions are not adapted for the case of an implant made of resorptive material.


From this state of the art, the object that the invention proposes to attain is further improving the anchoring and the stability of the implant as well as its adaptation to the morphology of the implantation site when the implant is made of resorptive material.


To solve such a problem, a resorptive intramedullary implant between two bones or two bone fragments has been designed and developed; it is made up, in a known manner, of a single-piece body having a general elongated shape with, at each end, zones for anchoring to the bone parts being considered. According to the invention, one of the zones has a cylindrical shape, whereas the other zone is flat.


Advantageously, the implant is made of a resorptive material whose mechanical properties are determined to last the time necessary for the consolidation, so that the implant is resorbed after six months. For example, the implant is composed of lactic acid polymer or copolymer (PLA, PGA, etc.).


Considering the specific mechanical characteristics of resorptive materials, and to solve the given problem of improving anchoring and stability, the cylindrical cross-section is threaded and tapers in the direction of its free end.


To solve the given problem of enabling a deformation by elasticity, thus causing an expansion adapted to the geometry of the site and to the properties of the material, the flat cross-section zone has, substantially in its median portion, an opening adapted to enable elastic deformation of the zone. The opening defines at least two anchor arms.


It therefore appears that the combination of a cylindrical and threaded anchor zone and a flat-sectioned anchor zone is particularly advantageous with respect to the problem to be solved.


To solve the given problem of withstanding the shear and flexion forces that may occur in the area of the bone site, between the two anchor zones, the body has a central transition zone adapted to withstand the shear and flexion forces occurring in the area of the bone site and adapted to serve as an abutment.


From this basic design of the implant, the anchor zones are either coaxial or angularly offset by between about 1° and 30° and, advantageously, by 10°. The bend between the anchor zones is located so as to substantially correspond to an arthrodesis line of the bones being considered.





The invention is explained in more detail hereinafter with reference to the attached drawings, in which:



FIG. 1 is a perspective view of the implant;



FIG. 2 is a front view of the implant before insertion into the bone part in question;



FIG. 3 is a side view corresponding to FIG. 2;



FIG. 4 is a view like FIG. 2 showing the position of the anchor arms of the flat section after insertion;



FIG. 5 is a perspective view of another advantageous embodiment of the implant;



FIGS. 6 and 7 show the installation of the implant into two bone parts.





The implant according to the invention has a one-piece body 1 of elongated shape and having a first proximal zone A1 and a second distal zone A2. The entire implant body is made of a resorptive material whose mechanical properties are determined for the implant to be resorbed in no less than about 6 months. In one embodiment, the implant is composed of lactic acid polymer or copolymer (PLA, PGA, etc.).


As will be described later in the description, the zones A1 and A2 have anchor formations for the respective bone parts. Taking into account the specific characteristics of the resorptive material and to attain the given object of anchoring and stability, the zone A1 has a cylindrical section, whereas the other zone A2 is flat.


The zone A1 has a generally cylindrical outer surface 1a with a limited taper toward its free end. The surface 1a has a helical rib forming a screw thread 1a1.


The zone A2 is flat and has, substantially in its center, an opening 1b adapted to enable elastic deformation of the zone A2. More particularly, the opening 1b defines at least two anchor arms 1c and 1d, each having at least one outwardly projecting tooth 1c1, 1d1.


Advantageously, between the two zones A1 and A2, the body 1 has a central transition zone C adapted to withstand shear and flexion forces that can occur at the end of a bone. By way of non-limiting example, this median zone C can have a length of about 3.5 mm and a thickness of about 2 mm, for an overall implant length comprised between about 15 and 25 mm and a diameter of about 2 or 3 mm at the zone A1.


In the embodiment shown in FIG. 1, the two zones A1 and A2 are coaxial.


To solve the problem of adaptation to the shape of the implantation site, the anchor zones A1 and A2 can be offset by an angle α adapted to the geometry of the bone site. This angle α is comprised between about 1° and 30° and, advantageously, on the order of 10° when the implant is for foot arthrodesis (FIG. 5).


In this embodiment in which the two anchor zones are angularly offset, the bend is located so as to correspond substantially to the arthrodesis line of the bone parts being fused.



FIGS. 6 and 7 schematically show the positioning of the implant according to the invention between two bone parts O1 and O2. After suitable holes have been made in the bone by a rasp-type tool, the operator screws the thread 1a into the bone part O1 substantially up to the median zone C that serves as an abutment preventing the implant from sinking too deeply into the bone (FIG. 6). The operator then fits the second bone part O2 back onto the anchor arms 1d and 1c of the zone A2, and the anchor arms then spread and tighten by elasticity (FIG. 7).


The operative technique can be the following:

    • Drilling of the two holes with a conventional drill;
    • Preparation of the holes with a rasp for the flat side and a bone tap to form the inner screw thread on the cylindrical side;
    • Use of a screwdriver with a gripper end;
    • Screwing in the cylindrical side P1 for a PIP arthrodesis of the foot;
    • Fitting of the bone back onto the flat side of the implant.


The advantages are readily apparent from the description; in particular, it is to be emphasized and understood that the combination of the two anchor zones A1 and A2 of cylindrical and flat shape, respectively, significantly enhances anchoring and stability of the implant adapted to the geometry of the bone site and the material properties, namely, a resorptive material.

Claims
  • 1. An intramedullary implant for use between first and second bone parts, the implant comprising: a first threaded end for anchoring to the first bone part;a second end extending from the first end for anchoring to the second bone part, the second end having a longitudinal axis, a body portion, and a plurality of teeth projecting from the body portion, wherein at least a first tooth of the plurality of teeth is spaced from a second tooth of the plurality of teeth in a direction along the longitudinal axis of the second end, the first and second teeth extending from the body portion in a same direction, and at least the first tooth extending from the body portion in a different direction than a direction a third tooth of the plurality of teeth extends from the body portion.
  • 2. The intramedullary implant of claim 1, wherein the first threaded end tapers in a direction away from the second end.
  • 3. The intramedullary implant of claim 1, wherein the second end has an opening in a median portion therein, the opening allowing for elastic deformation of the second end.
  • 4. The intramedullary implant of claim 3, wherein the opening defines at least two spreadable arms.
  • 5. The intramedullary implant of claim 1, further comprising a central transition zone between the first and second ends, the central transition zone defined at the second end by an abutment at an edge of the second end, the abutment being transverse to a longitudinal axis of the first end adapted to prevent overinsertion of the implant into the second bone part.
  • 6. The intramedullary implant of claim 5, wherein a face of the abutment defines a plane perpendicular to the longitudinal axis of the first end.
  • 7. The intramedullary implant of claim 1, wherein a longitudinal axis through the first end is offset from the longitudinal axis of the second end by an angle less than 30 degrees.
  • 8. The intramedullary implant of claim 7, wherein the offset is located at a position corresponding substantially to an arthrodesis line defined at the intersection of the first and second bone parts.
  • 9. The intramedullary implant of claim 1, wherein the implant is made of resorptive material.
  • 10. The intramedullary implant of claim 1, wherein the first and third teeth are positioned at the same axial location along the longitudinal axis of the second end.
  • 11. The intramedullary implant of claim 1, wherein the body portion has opposing flat surfaces parallel to the longitudinal axis.
  • 12. The intramedullary implant of claim 1, wherein a flat surface of the first tooth is coplanar with a flat surface of the second tooth.
  • 13. The intramedullary implant of claim 1, wherein a cross-section of the body portion is non-circular.
  • 14. The intramedullary implant of claim 1, wherein the first tooth, the second tooth, and the third tooth each include flat surfaces, the flat surfaces of the first tooth, the second tooth, and the third tooth defining planes parallel to each other.
  • 15. An intramedullary implant for use between first and second bone parts, the implant comprising: a first threaded end for anchoring to the first bone part;a second end extending from the first end for anchoring to the second bone part and having a plurality of outwardly projecting teeth, at least a first tooth of the plurality of teeth spaced from a second tooth of the plurality of teeth in a direction along the longitudinal axis of the second end, and at least the first tooth extending in a different direction than a third tooth of the plurality of teeth, the second end having an opening in a median portion thereof.
  • 16. The intramedullary implant of claim 15, further comprising a central transition zone between the first and second ends, the central transition zone defined at the second end by an abutment at an edge of the second end, the abutment being transverse to a longitudinal axis of the first end adapted to prevent overinsertion of the implant into the second bone part.
  • 17. The intramedullary implant of claim 15, wherein the second end has a cross-section with opposing flat first and second surfaces when viewed in a direction perpendicular to a longitudinal axis thereof.
  • 18. The intramedullary implant of claim 15, wherein a flat surface of the first tooth is coplanar with a flat surface of the second tooth.
Priority Claims (1)
Number Date Country Kind
08 56035 Sep 2008 FR national
US Referenced Citations (154)
Number Name Date Kind
3462765 Swanson Aug 1969 A
3466669 Flatt Sep 1969 A
3593342 Niebauer et al. Jul 1971 A
3681786 Lynch Aug 1972 A
3739403 Nicolle Jun 1973 A
3805302 Mathys Apr 1974 A
3824631 Burstein et al. Jul 1974 A
3875594 Swanson Apr 1975 A
D243716 Treace et al. Mar 1977 S
4158893 Swanson Jun 1979 A
4204284 Koeneman May 1980 A
4276660 Laure Jul 1981 A
4364382 Mennen Dec 1982 A
4367562 Gauthier et al. Jan 1983 A
D277509 Lawrence et al. Feb 1985 S
D277784 Sgarlato et al. Feb 1985 S
4522200 Stednitz Jun 1985 A
D284099 Laporta et al. Jun 1986 S
4634382 Kusano et al. Jan 1987 A
D291731 Aikins Sep 1987 S
4759768 Hermann et al. Jul 1988 A
4871367 Christensen et al. Oct 1989 A
4955916 Carignan et al. Sep 1990 A
4969909 Barouk Nov 1990 A
5011497 Persson et al. Apr 1991 A
5047059 Saffar Sep 1991 A
5062851 Branemark Nov 1991 A
5092896 Meuli et al. Mar 1992 A
5108443 Branemark Apr 1992 A
5133761 Krouskop Jul 1992 A
5179915 Cohen et al. Jan 1993 A
5190546 Jervis Mar 1993 A
5207712 Cohen May 1993 A
5326364 Clift, Jr. et al. Jul 1994 A
5405400 Linscheid et al. Apr 1995 A
5405401 Lippincott, III et al. Apr 1995 A
5425776 Cohen Jun 1995 A
5425777 Sarkisian et al. Jun 1995 A
5480447 Skiba Jan 1996 A
5484443 Pascarella et al. Jan 1996 A
5507822 Bouchon et al. Apr 1996 A
5522903 Sokolow et al. Jun 1996 A
5554157 Errico et al. Sep 1996 A
5634925 Urbanski Jun 1997 A
5674297 Lane et al. Oct 1997 A
5702472 Huebner Dec 1997 A
5725585 Zobel Mar 1998 A
5782927 Klawitter et al. Jul 1998 A
5824095 Di Maio, Jr. et al. Oct 1998 A
5876434 Flomenblit et al. Mar 1999 A
5882444 Flomenblit et al. Mar 1999 A
5919193 Slavitt Jul 1999 A
5951288 Sawa Sep 1999 A
5958159 Prandi Sep 1999 A
5984970 Bramlet Nov 1999 A
5984971 Faccioli et al. Nov 1999 A
6011497 Tsang et al. Jan 2000 A
6017366 Berman Jan 2000 A
6146387 Trott et al. Nov 2000 A
6197037 Hair Mar 2001 B1
6200330 Benderev et al. Mar 2001 B1
6248109 Stoffella Jun 2001 B1
6319284 Rushdy et al. Nov 2001 B1
6352560 Poeschmann et al. Mar 2002 B1
6383223 Baehler et al. May 2002 B1
6386877 Sutter May 2002 B1
6423097 Rauscher Jul 2002 B2
6428634 Besselink et al. Aug 2002 B1
6454808 Masada Sep 2002 B1
6475242 Bramlet Nov 2002 B1
6689169 Harris Feb 2004 B2
6699247 Zucherman et al. Mar 2004 B2
6699292 Ogilvie et al. Mar 2004 B2
6706045 Lin et al. Mar 2004 B2
6811568 Minamikawa Nov 2004 B2
6869449 Ball et al. Mar 2005 B2
7037342 Nilsson et al. May 2006 B2
7041106 Carver et al. May 2006 B1
7182787 Hassler et al. Feb 2007 B2
7240677 Fox Jul 2007 B2
7291175 Gordon Nov 2007 B1
7588603 Leonard Sep 2009 B2
7780737 Bonnard et al. Aug 2010 B2
7837738 Reigstad et al. Nov 2010 B2
7842091 Johnstone et al. Nov 2010 B2
7955388 Jensen et al. Jun 2011 B2
8100983 Schulte Jan 2012 B2
8262712 Coilard-Lavirotte et al. Sep 2012 B2
8394097 Peyrot et al. Mar 2013 B2
8414583 Prandi et al. Apr 2013 B2
8475456 Augoyard et al. Jul 2013 B2
8529611 Champagne et al. Sep 2013 B2
8597337 Champagne Dec 2013 B2
8608785 Reed et al. Dec 2013 B2
8685024 Roman Apr 2014 B2
20010025199 Rauscher Sep 2001 A1
20020019636 Ogilvie et al. Feb 2002 A1
20020055785 Harris May 2002 A1
20020065561 Ogilvie et al. May 2002 A1
20020068939 Levy et al. Jun 2002 A1
20020082705 Bouman et al. Jun 2002 A1
20030040805 Minamikawa Feb 2003 A1
20030069645 Ball et al. Apr 2003 A1
20040093081 Nilsson et al. May 2004 A1
20040102853 Boumann et al. May 2004 A1
20040138756 Reeder Jul 2004 A1
20040220678 Chow et al. Nov 2004 A1
20050119757 Hassler et al. Jun 2005 A1
20050251265 Calandruccio et al. Nov 2005 A1
20050283159 Amara Dec 2005 A1
20060052725 Santilli Mar 2006 A1
20060052878 Schmieding Mar 2006 A1
20060074492 Frey Apr 2006 A1
20060084998 Levy et al. Apr 2006 A1
20060247787 Rydell et al. Nov 2006 A1
20070038303 Myerson et al. Feb 2007 A1
20070123993 Hassler et al. May 2007 A1
20070142920 Niemi Jun 2007 A1
20070185584 Kaufmann et al. Aug 2007 A1
20070213831 de Cubber Sep 2007 A1
20070239158 Trieu et al. Oct 2007 A1
20080039949 Meesenburg et al. Feb 2008 A1
20080132894 Coilard-Lavirotte et al. Jun 2008 A1
20080154385 Trail et al. Jun 2008 A1
20080177262 Augoyard et al. Jul 2008 A1
20080195219 Wiley et al. Aug 2008 A1
20080221697 Graser Sep 2008 A1
20080221698 Berger Sep 2008 A1
20080269908 Warburton Oct 2008 A1
20090254189 Scheker Oct 2009 A1
20090254190 Gannoe et al. Oct 2009 A1
20100010637 Pequignot Jan 2010 A1
20100016982 Solomons Jan 2010 A1
20100057214 Graham et al. Mar 2010 A1
20100121390 Kleinman May 2010 A1
20100131014 Peyrot et al. May 2010 A1
20100131072 Schulte May 2010 A1
20100161068 Lindner et al. Jun 2010 A1
20100185295 Emmanuel Jul 2010 A1
20100249942 Goswami et al. Sep 2010 A1
20100256770 Hakansson et al. Oct 2010 A1
20100262254 Lawrence et al. Oct 2010 A1
20110004317 Hacking et al. Jan 2011 A1
20110301652 Reed et al. Dec 2011 A1
20120065692 Champagne et al. Mar 2012 A1
20130053975 Reed et al. Feb 2013 A1
20130060295 Reed et al. Mar 2013 A1
20130066435 Averous et al. Mar 2013 A1
20130131822 Lewis et al. May 2013 A1
20130150965 Taylor et al. Jun 2013 A1
20140058462 Reed et al. Feb 2014 A1
20140142715 McCormick May 2014 A1
20140180428 McCormick Jun 2014 A1
20140188239 Cummings Jul 2014 A1
Foreign Referenced Citations (32)
Number Date Country
2836654 Jun 2014 CA
2837497 Jun 2014 CA
0420794 Apr 1991 EP
1300122 Apr 2003 EP
1923012 May 2008 EP
2725126 Apr 1996 FR
2783702 Mar 2000 FR
2787313 Jun 2000 FR
2794019 Dec 2000 FR
2801189 May 2001 FR
2846545 May 2004 FR
2846545 May 2004 FR
2884406 Oct 2006 FR
2119655 Nov 1983 GB
2430625 Apr 2007 GB
2430625 Apr 2007 GB
60145133 Jul 1985 JP
03-001854 Aug 1991 JP
7303662 Nov 1995 JP
2004535249 Nov 2004 JP
2007530194 Nov 2007 JP
2008188411 Aug 2008 JP
2008537696 Sep 2008 JP
9733537 Sep 1997 WO
2005063149 Jul 2005 WO
2005104961 Nov 2005 WO
2006109004 Oct 2006 WO
WO 2006109004 Oct 2006 WO
2008057404 May 2008 WO
WO 2008129214 Oct 2008 WO
2009103085 Aug 2009 WO
2011130229 Oct 2011 WO
Non-Patent Literature Citations (3)
Entry
International Search Report for PCT/FR2008/050453 dated Nov. 4, 2008.
International Search Report, PCT/FR2006/050345, dated Aug. 30, 2006.
Japanese Office Action for Application No. 2011-526540 dated Aug. 13, 2013.
Related Publications (1)
Number Date Country
20130190761 A1 Jul 2013 US
Continuations (1)
Number Date Country
Parent 12918105 US
Child 13795946 US