This invention relates generally to communication systems, and particularly (though not exclusively) to ‘3GPP Standard’ communication systems when uplink shared channels are employed.
In the field of this invention it is known that the ‘3GPP Standard’ (the evolving standard for UMTS--Universal Mobile Telecommunication System) allows user equipment--UE--(e.g., a mobile cellular telephone) to autonomously select the transport format combination (TFC). The transport format combinations available to the UE will typically represent different throughputs. Generally, the TFCs which are associated with higher throughputs require larger amounts of physical resources (i.e., more codes with lower spreading factors). The UE will be signalled with the transport format combination set (TFCS) which defines a number of TFCs. The ‘layer 1’ 410 (
Layer 1410 (
When a dedicated channel (DCH) is allocated to a user, it is clearly not possible to reallocate physical resources that have been allocated to this user but are not used because of the selected TFC.
However, when shared channels are employed in the uplink it is beneficial to allocate only the necessary amount of physical resource (number and spreading factor of channelisation codes) that a UE can utilize. This is because the resources that could not be used can be reallocated to other users. In addition, when the UE can exploit more physical resources (use a higher TFC) it is advantageous to know this in order to provide the highest user throughputs.
Unfortunately, prior art systems do not allow these two techniques to be used.
A need therefore exists for the abovementioned disadvantage(s) to be alleviated.
In accordance with a first aspect of the present invention there is provided a wireless communication system employing channel transport format allocation between a radio unit and a base station of the system, and wherein the radio unit can determine a transport format combination which it can support, the system comprising: TFC change detection means for detecting in a radio unit a change in transport format combination that the radio unit can support; and indication means responsive to the TFC change detection means for sending to the base station an indication of transport format combination that the radio unit can support, whereby efficiency of channel transport format allocation in the system may be improved.
In accordance with a second aspect of the present invention there is provided a method in a wireless communication system for channel transport format allocation between a radio unit and a base station of the system, in which the radio unit can determine a transport format combination which it can support, the system comprising: detecting in a radio unit a change in transport format combination that the radio unit can support; and sending, responsive to detecting, to the base station an indication of transport format combination that the radio unit can support, whereby efficiency of channel transport format allocation in the system may be improved.
In accordance with a third aspect of the present invention there is provided a radio unit for use in a wireless communication system employing channel transport format allocation between the radio unit and a base station of the system, wherein the radio unit can determine a transport format combination which it can support, the radio unit comprising: TFC change detection means for detecting a change in transport format combination that the radio unit can support; and indication means responsive to the TFC change detection means for sending to the base station an indication of transport format combination that the radio unit can support, whereby efficiency of channel transport format allocation in the system may be improved.
One UMTS communication system supporting signalling of change of available TFCs in uplink shared channels incorporating the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
Referring firstly to
In the mobile equipment domain (130), user equipment UE (130A) receives data from a user SIM (120A) in the USIM domain 120 via the wired Cu interface. The UE (130A) communicates data with a Node B (150A) in the network access domain (150) via the wireless Uu interface. Within the network access domain(150), the Node B (150A) communicates with an RNC (150B) via the Iub interface. The RNC (150B) communicates with other RNC's (not shown) via the Iur interface. The RNC (150B) communicates with a SGSN (170A) in the serving network domain (170) via the Iu interface. Within the serving network domain (170), the SGSN (170A) communicates with a GGSN (170B) via the Gn interface, and the SGSN (170A) communicates with a VLR server (170C) via the Gs interface. The SGSN (170A) communicates with an HLR server (190A) in the home network domain (190) via the Zu interface. The GGSN (170B) communicates with public data network (180A) in the transit network domain (180) via the Yu interface.
Thus, the elements RNC (150B), SGSN (170A) and GGSN (170B) are conventionally provided as discrete and separate units (on their own respective software/hardware platforms) divided across the access network domain (150) and the serving network domain (170), as shown the
The RNC (150B) is the UTRAN (UMTS Terrestrial Radio Access Network) element responsible for the control and allocation of resources for numerous Node B's (150A); typically 50 to 100 Node B's may be controlled by one RNC. The RNC also provides reliable delivery of user traffic over the air interfaces. RNC's communicate with each other (via the interface Iur) to support handover and macrodiversity.
The SGSN (170A) is the UMTS Core Network element responsible for Session Control and interface to the Location Registers (HLR and VLR). The SGSN is a large centralised controller for many RNCs.
The GGSN (170B) is the UMTS Core Network element responsible for concentrating and tunnelling user data within the core packet network to the ultimate destination (e.g., internet service provider—ISP).
Consider the following signalling and channel allocation procedure that may take place in use of the system. A transport format combination set (TFCS) is signalled to the UE 130A, containing 3 TFCs. The TFCs are mapped to a single channelisation code with spreading factors (SF) 16, 8, and 4. A PHYSICAL SHARED CHANNEL ALLOCATION message allocates the UE a single channelisation code at SF4, but layer 1410 (
Not only is it necessary to know that only an SF8 is selected (and therefore there are spare physical resources), it is additionally necessary to know if, at a later date, the UE can exploit an SF4 (higher throughput).
In accordance with the present invention, a new RRC measurement, which is conveniently added to the UE internal measurements set defined in 3GPP, is used. This measurement is triggered when there is a change to the available TFCs that are indicated to MAC 415 (
The triggering of this report is illustrated in
The measurement can be filtered by use of a time-to-trigger parameter so as not to generate excessive measurement reports when the available TFCs change rapidly. That is to say, the available TFCs must change for Tt seconds (the value of the time-to-trigger parameter) continuously before the measurement report is sent.
The measurement report generated when this measurement is triggered contains the calculated transport format combinations (CTFC) of the available TFCs in the TFCS. The UTRAN can map these CTFC to physical resource and can then allocate physical resource appropriately.
The measurement is only used when the UE is in cell_DCH state.
Example of operation:
Assuming the following
TFCSid=1 contains 3 TFCs.
The following steps describe briefly the operation of the new measurement report:
It will be appreciated that the system and methods described above will typically be performed by computer software program(s), in the user equipment and/or else where in the system, which may be transferred on computer readable data carriers such as magnetic or optical disks (not shown).
It will be understood that the method of signalling change of available TFCs in uplink shared channels described above provides the following advantages: The invention allows uplink shared channels to be efficiently used by providing a means by which UTRAN is informed of the TFCs within the TFCS which can be used in the uplink by the UE.
This enables:
Number | Date | Country | Kind |
---|---|---|---|
0116555.4 | Jul 2001 | GB | national |
Notice: More than one reissue application has been filed for the reissue of U.S. Pat. No. 7,366,094. The reissue application numbers are Ser. No. 12/770,172 and the present application. This application claims the benefit of UK application GB 0116555.4 filed Jul. 6, 2001, titled “Channel transport format allocation in a wireless communication system” by Timothy James Speigth of IPWireless, Inc., the contents of which are incorporated herein by reference.This application is a continuation reissue of U.S. patent application Ser. No. 12/770,172 filed Apr. 29, 2010, which is a reissue application of U.S. patent application Ser. No. 10/190,458 filed Jul. 5, 2002, which issued as U.S. Pat. No. 7,366,094 on Apr. 29, 2008, which claims the benefit of UK application GB 0116555.4 filed Jul. 6, 2001, the contents of which are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
6661777 | Blanc et al. | Dec 2003 | B1 |
6813284 | Vayanos et al. | Nov 2004 | B2 |
6826193 | Peisa | Nov 2004 | B1 |
6828193 | Chen et al. | Dec 2004 | B2 |
6845100 | Rinne | Jan 2005 | B1 |
6850540 | Peisa et al. | Feb 2005 | B1 |
6904290 | Palenius | Jun 2005 | B1 |
6928268 | Kroner | Aug 2005 | B1 |
6944453 | Faerber et al. | Sep 2005 | B2 |
6999432 | Zhang et al. | Feb 2006 | B2 |
7043244 | Fauconnier | May 2006 | B1 |
7076005 | Willenegger | Jul 2006 | B2 |
7106694 | Salonen et al. | Sep 2006 | B1 |
7206332 | Kwan et al. | Apr 2007 | B2 |
7227851 | Gopalakrishnan et al. | Jun 2007 | B1 |
20050152398 | Shin | Jul 2005 | A1 |
Number | Date | Country |
---|---|---|
0863682 | Sep 1998 | EP |
0054444 | Sep 2000 | WO |
WO-0103446 | Jan 2001 | WO |
WO-0103448 | Jan 2001 | WO |
Entry |
---|
3GPP Organisational Partners. (2005). “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Medium Access Control (MAC) Protocol Specification (Release 6),” 3GPP TS 25.321 v6.7.0 (Dec. 2005), 3GPP Organisational Partners' Publications Office: Valbonne, France. |
Final Rejection, U.S. Appl. No. 10/190,458 (issued as U.S. Pat. No. 7,366,094), mailed on Apr. 20, 2007. |
Non-Final Rejection, U.S. Appl. No. 10/190,458 (issued as U.S. Pat. No. 7,366,094), mailed on Aug. 8, 2006. |
Notice of Allowance, U.S. Appl. No. 10/190,458 (issued as U.S. Pat. No. 7,366,094), mailed on Dec. 14, 2007. |
3GPP Organisational Partners. (2005). “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; MAC protocol specification (Release 4),” 3GPP TS 25.321 v4.0.0 (Mar. 2001), 3GPP Organisational Partners' Publications Office: Valbonne, France. |
Non-Final Rejection, U.S. Appl. No. 12/770,172 (issued as U.S. Pat. No. Re. 44,576), mailed on Oct. 7, 2011. |
Final Rejection, U.S. Appl. No. 12/770,172 (issued as U.S. Pat. No. Re. 44,576), mailed on Sep. 21, 2012. |
Ex-Parte Quayle Action, U.S. Appl. No. 12/770,172 (issued as U.S. Pat. No. Re. 44,576), mailed on Mar. 7, 2013. |
Notice of Allowance, U.S. Appl. No. 12/770,172 (issued as U.S. Pat. No. Re. 44,576), mailed on Jun. 25, 2013. |
GB Examination Report mailed on Jan. 26, 2005 for GB patent application No. 0116555.4, 2 pages. |
Number | Date | Country | |
---|---|---|---|
Parent | 12770172 | Apr 2010 | US |
Child | 10190458 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10190458 | Jul 2002 | US |
Child | 14069025 | US | |
Parent | 10190458 | Jul 2002 | US |
Child | 12770172 | US |