Resource effective incremental updating of a remote client with events which occurred via a cloud-enabled platform

Information

  • Patent Grant
  • 8990307
  • Patent Number
    8,990,307
  • Date Filed
    Friday, June 15, 2012
    12 years ago
  • Date Issued
    Tuesday, March 24, 2015
    9 years ago
Abstract
System and method for incrementally notifying a remote client of updates in a cloud-enabled platform for each remote client associated with a collaborator are disclosed. In one aspect, embodiments of the present disclosure include a method, which may be implemented on a system, for detecting an action in the cloud-enabled platform and effectuating a data change as a result of the action in a first database, creating an action log entry from the action, identifying the collaborator of the user's in the cloud-enabled platform, whose remote client is to be synchronized with the data change as an update, and/or writing the action represented by the action log entry to a second database into a queue to by read by the remote client of the collaborator.
Description
BACKGROUND

With the increase of electronic and digital content being used in enterprise settings or other organizations as the preferred mechanism for project, task, and work flow management, as has the need for streamlined collaboration and sharing of digital content and documents. In such an environment, multiple users are sharing, accessing and otherwise performing actions or tasks on content and files in a shared work space, where any number of users may have access to a given file or may want to or need to perform an action on the file at any given time.


The cloud-based nature of such an environment enables users/collaborators to access, view, edit content anytime, from any device, or using any number of and/or types of clients, simultaneously while other collaborators in the same group, enterprise, or other types of formal/informal organizations may also be accessing, viewing, or editing the same file or content or content in the same work group. The different types of clients and number devices which can be used to access a single account or work item or work group the cloud content and environment introduces the problem of maintaining consistency and correct ordering in how changes are reflected at the clients used by users to access the cloud-based platform and content.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an example diagram of a system having a host server of a cloud-enabled platform able to incrementally update remote clients at devices with events that occurred via the platform hosted by server.



FIG. 2 depicts an example diagram of a web-based or online collaboration environment hosted by a cloud-based platform deployed or accessed by an enterprise or other organizational setting for organizing work items and workspaces.



FIG. 3 depicts an example diagram of a workspace in a cloud-based platform such as an online, web-based or desktop collaboration environment accessible by multiple collaborators through various devices via a web interface, mobile client, or desktop client.



FIG. 4A depicts an example system block diagram showing the interaction between server-side components for incrementally updating a remote client with events or actions that occurred via a cloud-based platform.



FIG. 4B depicts an example block diagram showing the interaction of remote clients and with a distributed database cluster for incremental updates of events/actions which occurred at a cloud-based environment.



FIG. 5A depicts an example system block diagram showing action log entries recorded from actions/interactions on or with files/content stored in a database of a cloud-based environment.



FIG. 5B depicts one example system block diagram showing action log entries in the action log table being batched processed in series by a dispatcher.



FIG. 5C depicts a second example system block diagram showing action log entries in the action log table being sorted by user (e.g., under actor 1 or actor 2) in the dispatcher and then processed in series across users prior to being batched to be sent to the processor.



FIG. 5D depicts an example system block diagram showing how action log entries are written to queues in a distributed database cluster based on client and collaborator.



FIG. 6 depicts a block diagram illustrating an example system showing the aggregate of the components described in FIGS. 5A-5D on the server-side of the cloud-based platform for incrementally updating a remote client with occurred events or actions.



FIG. 7 depicts a flow chart illustrating an example process for notifying a remote client of updates in a cloud-enabled platform for each remote client associated with a collaborator in an incremental fashion.



FIG. 8 depicts a flow chart illustrating an example process for creating an action log entry with a revision identifier for a client to be updated in time sequential order based on when events occurred via the cloud-enabled platform to prevent conflicts in files or data.



FIG. 9 depicts a flow chart illustrating an example process for managing queues based on action type and client type.



FIG. 10 depicts a flow chart illustrating an example process for updating multiple clients at one or more devices for a given user with events occurring in a collaboration platform.



FIG. 11 shows a diagrammatic representation of a machine in the example form of a computer system within which a set of instructions, for causing the machine to perform any one or more of the methodologies discussed herein, may be executed.





DETAILED DESCRIPTION

The following description and drawings are illustrative and are not to be construed as limiting. Numerous specific details are described to provide a thorough understanding of the disclosure. However, in certain instances, well-known or conventional details are not described in order to avoid obscuring the description. References to one or an embodiment in the present disclosure can be, but not necessarily are, references to the same embodiment; and, such references mean at least one of the embodiments.


Reference in this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the disclosure. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Moreover, various features are described which may be exhibited by some embodiments and not by others. Similarly, various requirements are described which may be requirements for some embodiments but not other embodiments.


The terms used in this specification generally have their ordinary meanings in the art, within the context of the disclosure, and in the specific context where each term is used. Certain terms that are used to describe the disclosure are discussed below, or elsewhere in the specification, to provide additional guidance to the practitioner regarding the description of the disclosure. For convenience, certain terms may be highlighted, for example using italics and/or quotation marks. The use of highlighting has no influence on the scope and meaning of a term; the scope and meaning of a term is the same, in the same context, whether or not it is highlighted. It will be appreciated that same thing can be said in more than one way.


Consequently, alternative language and synonyms may be used for any one or more of the terms discussed herein, nor is any special significance to be placed upon whether or not a term is elaborated or discussed herein. Synonyms for certain terms are provided. A recital of one or more synonyms does not exclude the use of other synonyms. The use of examples anywhere in this specification including examples of any terms discussed herein is illustrative only, and is not intended to further limit the scope and meaning of the disclosure or of any exemplified term. Likewise, the disclosure is not limited to various embodiments given in this specification.


Without intent to limit the scope of the disclosure, examples of instruments, apparatus, methods and their related results according to the embodiments of the present disclosure are given below. Note that titles or subtitles may be used in the examples for convenience of a reader, which in no way should limit the scope of the disclosure. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. In the case of conflict, the present document, including definitions will control.


Embodiments of the present disclosure include systems and methods for resource effective incremental updating of a remote client with events which occurred via a cloud-enabled platform.



FIG. 1 illustrates an example diagram of a system having a host server 100 of a cloud-enabled platform able to incrementally update remote clients (clients 110, 120, 130, 140, 160) at devices 102 with events that occurred via the platform hosted by server 100.


The client devices 102 can be any system and/or device, and/or any combination of devices/systems that is able to establish a connection, including wired, wireless, cellular connections with another device, a server and/or other systems such as host server 100 and/or notification server 150. Client devices 102 will typically include a display and/or other output functionalities to present information and data exchanged between among the devices 102 and/or the host server 100 and/or notification server 150.


For example, the client devices 102 can include mobile, hand held or portable devices or non-portable devices and can be any of, but not limited to, a server desktop, a desktop computer, a computer cluster, or portable devices including, a notebook, a laptop computer, a handheld computer, a palmtop computer, a mobile phone, a cell phone, a smart phone, a PDA, a Blackberry device, a Treo, a handheld tablet (e.g. an iPad, a Galaxy, Xoom Tablet, etc.), a tablet PC, a thin-client, a hand held console, a hand held gaming device or console, an iPhone, and/or any other portable, mobile, hand held devices, etc. running on any platform or any operating system (e.g., Mac-based OS (OS X, iOS, etc.), Windows-based OS (Windows Mobile, Windows 7, etc.), Android, Blackberry OS, Embedded Linux platforms, Palm OS, Symbian platform. In one embodiment, the client devices 102, host server 100, and notification server 150 are coupled via a network 106 and/or a network 108. In some embodiments, the devices 102 and host server 100 may be directly connected to one another.


The input mechanism on client devices 102 can include touch screen keypad (including single touch, multi-touch, gesture sensing in 2D or 3D, etc.), a physical keypad, a mouse, a pointer, a track pad, motion detector (e.g., including 1-axis, 2-axis, 3-axis accelerometer, etc.), a light sensor, capacitance sensor, resistance sensor, temperature sensor, proximity sensor, a piezoelectric device, device orientation detector (e.g., electronic compass, tilt sensor, rotation sensor, gyroscope, accelerometer), or a combination of the above.


Signals received or detected indicating user activity at client devices 102 through one or more of the above input mechanism, or others, can be used in the disclosed technology by various users or collaborators (e.g., collaborators 108) for accessing, through network 106, a web-based collaboration environment or online collaboration platform (e.g., hosted by the host server 100), any remote environment, or other types of services including any type of cloud-based service or storage environment.


The collaboration platform or environment hosts workspaces with work items that one or more users can access (e.g., view, edit, update, revise, comment, download, preview, tag, or otherwise manipulate, etc.). A work item can generally include any type of digital or electronic content that can be viewed or accessed via an electronic device (e.g., device 102). The digital content can include .pdf files, .doc, slides (e.g., Powerpoint slides), images, audio files, multimedia content, web pages, blogs, etc. A workspace can generally refer to any grouping of a set of digital content in the collaboration platform. The grouping can be created, identified, or specified by a user or through other means. This user may be a creator user or administrative user, for example.


In general, a workspace can be associated with a set of users or collaborators (e.g., collaborators 108) which have access to the content included therein. The levels of access (e.g., based on permissions or rules) of each user or collaborator to access the content in a given workspace may be the same or may vary among the users. Each user may have their own set of access rights to every piece of content in the workspace, or each user may be different access rights to different pieces of content. Access rights may be specified by a user associated with a work space and/or a user who created/uploaded a particular piece of content to the workspace, or any other designated user or collaborator.


In general, the collaboration platform allows multiple users or collaborators to access or collaborate efforts on work items such each user can see, remotely, edits, revisions, comments, or annotations being made to specific work items through their own user devices. For example, a user can upload a document to a work space for other users to access (e.g., for viewing, editing, commenting, signing-off, or otherwise manipulating). The user can login to the online platform and upload the document (or any other type of work item) to an existing work space or to a new work space. The document can be shared with existing users or collaborators in a work space.


A diagrammatic illustration of the cloud-based environment (e.g., collaboration environment) and the relationships between workspaces and users/collaborators are illustrated with further reference to the example of FIG. 2. A diagrammatic illustration of a workspace having multiple work items with which collaborators can access through multiple devices is illustrated with further reference to the example of FIG. 3.


Embodiments of the present disclosure relate to efficient updating of remote clients (110-170) on user devices 102 based on updates, changes that occur in the cloud environment at the host server 100 from user edits, updates, comments, etc. Since multiple users collaborate in the cloud-based environment hosted by server 100, user devices 102 need to be appropriately updated such that the most current versions of data/content are synchronized with the relevant user devices and that notification of events are sent to the relevant devices/users in a timely and orderly fashion. Any given user can utilize any number of clients and any number of types of clients (e.g., sync client, real time web client, mobile sync client, mobile application, email client, server sync client, etc.) at any given time. Thus, the host server 100 components further shown and described in FIGS. 4A-4B, FIGS. 5A-5D, and FIG. 6 facilitate the ordered syncing or updating of the remote clients which a given user/collaborator may use to access the cloud platform via any number of user devices 102.


In one embodiment, client devices 102 communicate with the host server 100 and/or notification server 150 over network 106. In general, network 106, over which the client devices 102, the host server 100, and/or notification server 150 communicate, may be a cellular network, a telephonic network, an open network, such as the Internet, or a private network, such as an intranet and/or the extranet, or any combination thereof. For example, the Internet can provide file transfer, remote log in, email, news, RSS, cloud-based services, instant messaging, visual voicemail, push mail, VoIP, and other services through any known or convenient protocol, such as, but is not limited to the TCP/IP protocol, Open System Interconnections (OSI), FTP, UPnP, iSCSI, NSF, ISDN, PDH, RS-232, SDH, SONET, etc.


The network 106 can be any collection of distinct networks operating wholly or partially in conjunction to provide connectivity to the client devices 102 and the host server 100 and may appear as one or more networks to the serviced systems and devices. In one embodiment, communications to and from the client devices 102 can be achieved by, an open network, such as the Internet, or a private network, such as an intranet and/or the extranet. In one embodiment, communications can be achieved by a secure communications protocol, such as secure sockets layer (SSL), or transport layer security (TLS).


In addition, communications can be achieved via one or more networks, such as, but are not limited to, one or more of WiMax, a Local Area Network (LAN), Wireless Local Area Network (WLAN), a Personal area network (PAN), a Campus area network (CAN), a Metropolitan area network (MAN), a Wide area network (WAN), private WAN, a Wireless wide area network (WWAN), enabled with technologies such as, by way of example, Global System for Mobile Communications (GSM), Personal Communications Service (PCS), Digital Advanced Mobile Phone Service (D-Amps), Bluetooth, Wi-Fi, Fixed Wireless Data, 2G, 2.5G, 3G, 4G, IMT-Advanced, pre-4G, 3G LTE, 3GPP LTE, LTE Advanced, mobile WiMax, WiMax 2, WirelessMAN-Advanced networks, enhanced data rates for GSM evolution (EDGE), General packet radio service (GPRS), enhanced GPRS, iBurst, UMTS, HSPDA, HSUPA, HSPA, UMTS-TDD, 1xRTT, EV-DO, messaging protocols such as, TCP/IP, SMS, MMS, extensible messaging and presence protocol (XMPP), real time messaging protocol (RTMP), instant messaging and presence protocol (IMPP), instant messaging, USSD, IRC, or any other wireless data networks or messaging protocols.



FIG. 2 depicts an example diagram of a web-based or online collaboration environment hosted by a cloud-based platform deployed or accessed by an enterprise or other organizational setting 250 for organizing work items 215, 235, 255 and workspaces 205, 225, 245.


The web-based platform for collaborating on projects or jointly working on documents can be used by individual users and shared among collaborators. In addition, the collaboration platform can be deployed in an organized setting including but not limited to, a company (e.g., an enterprise setting), a department in a company, an academic institution, a department in an academic institution, a class or course setting, or any other types of organizations or organized setting.


When deployed in a organizational setting, multiple workspaces (e.g., workspace A, B C) can be created to support different projects or a variety of work flows. Each workspace can have its own associate work items. For example, work space A 205 may be associated with work items 215, work space B 225 can be associated with work items 235, and work space N can be associated with work items 255. The work items 215, 235, and 255 may be unique to each work space but need not be. For example, a particular word document can be associated with only one work space (e.g., work space A 205) or it may be associated with multiple work spaces (e.g., Work space A 205 and work space B 225, etc.).


In general, each work space has a set of users or collaborators associated with it. For example, work space A 205 is associated with multiple users or collaborators 206. In some instances, work spaces deployed in an enterprise may be department specific. For example, work space B may be associated with department 210 and some users shown as example user A 208 and workspace N 245 can be associated with departments 212 and 216 and users shown as example user B 214.


Each user associated with a work space can generally access the work items associated with the work space. The level of access will depend on permissions associated with the specific work space, and/or with a specific work item. Permissions can be set for the work space or set individually on a per work item basis. For example, the creator of a work space (e.g., one of user A 208 who creates work space B) can set a permission setting applicable to all work items 235 for other associated users and/or users associated with the affiliate department 210, for example. Creator user A 208 may also set different permission settings for each work item, which may be the same for different users, or varying for different users.


In each work space A, B . . . N, when an action is performed on a work item by a given user or any other activity is detected in the work space, other users in the same work space may be notified (e.g., in real time or in near real time, or not in real time). Activities which trigger real time notifications can include, by way of example but not limitation, adding, deleting, or modifying collaborators in the work space, uploading, downloading, adding, deleting a work item in the work space, creating a discussion topic in the work space.


Specifically, items or content downloaded or edited in accordance with the techniques described in the present disclosure can be cause notifications to be generated. Such notifications can be sent to relevant users to notify them of actions surrounding a download, an edit, a change, a modification, a new file, a conflicting version, an upload of an edited or modified file.


In one embodiment, in a user interface to the web-based collaboration platform where notifications are presented, users can, via the same interface, create action items (e.g., tasks) and delegate the action items to other users including collaborators pertaining to a work item 215, for example. The collaborators 206 may be in the same workspace A 205 or the user may include a newly invited collaborator. Similarly, in the same user interface where discussion topics can be created in a work space (e.g., work space A, B or N, etc.), actionable events on work items can be created and/or delegated/assigned to other users such as collaborators of a given work space 206 or other users. Through the same user interface, task status and updates from multiple users or collaborators can be indicated and reflected. In some instances, the users can perform the tasks (e.g., review or approve or reject, etc.) via the same user interface.



FIG. 3 depicts an example diagram of a workspace 302 in a cloud-based platform such as an online, web-based or desktop collaboration environment accessible by multiple collaborators 322 through various devices via a web interface, mobile client, or desktop client.


Each of users 316, 318, and 320 can individually use multiple different devices to access and/or manipulate work items 324 in the work space 302 with which they are associated with. For example users 316, 318, 320 can be collaborators on a project to which work items 324 are relevant. Since the work items 324 are hosted by the collaboration environment (e.g., a cloud-based environment), each user can access the work items 324 anytime, and from any physical location using any device (e.g., including devices they own or any shared/public/loaner device).


Work items to be edited or viewed can be accessed from the workspace 302 in accordance with the platform and/or application independent mechanisms disclosed herein. Users can also be notified of access, edit, modification, and/or upload related-actions performed on work items 324 by other users or any other types of activities detected in the work space 302. For example, if user 316 modifies a document, one or both of the other collaborators 318 and 320 can be notified of the modification in real time, or near real-time, or not in real time. The notifications can be sent through any of all of the devices associated with a given user, in various formats including, one or more of, email, SMS, or via a pop-up window in a user interface in which the user uses to access the collaboration platform. In the event of multiple notifications, each notification can be depicted preferentially (e.g., ordering in the user interface) based on user preferences and/or relevance to the user (e.g., implicit or explicit).


For example, a notification of a download, access, read, write, edit, or uploaded related activities can be presented in a feed stream among other notifications through a user interface on the user device according to relevancy to the user determined based on current or recent activity of the user in the web-based collaboration environment.


In one embodiment, the notification feed stream further enables users to create or generate actionable events (e.g., as task) which are or can be performed by other users 316 or collaborators 322 (e.g., including admin users or other users not in the same work space), either in the same work space 302 or in some other work space. The actionable events such as tasks can also be assigned or delegated to other users via the same user interface.


For example, a given notification regarding a work item 324 can be associated with user interface features allowing a user 316 to assign a task related to the work item 324 (e.g., to another user 316, admin user 318, creator user 320 or another user). In one embodiment, a commenting user interface or a comment action associated with a notification can be used in conjunction with user interface features to enable task assignment, delegation, and/or management of the relevant work item or work items in the relevant work spaces, in the same user interface.



FIG. 4A depicts an example system block diagram showing the interaction between server-side components for incrementally updating a remote client with events or actions that occurred via a cloud-based platform.


The server-side includes front end components 402A-N, a database 410, a dispatcher 430, one or more processors 440A-N, and a second database (e.g., Hbase 460). The front end components 402A-N can interface with client devices/end user devices to detect/identify transactions or events. The data or file change that occur as a result of the event is effectuated in the database 410 of the cloud-enabled platform (e.g., the relevant changes are made in the file table 411 of the database).


Depending on the type of action or event, an action log entry can be created and stored in the action log 416. In general, the front end 402 determines whether an action log entry is created from a given action or transaction. In general, an action log entry can be created for an action or event if certain durability requirements are to be met. The dispatcher 430 reads the action log entries from the action log 416 and sends them to the processors 440A-N where the fan-out, or collaborators to be notified of the event or to receive the file/data change as a result of the event is determined. Based on the computed fan-out or identified collaborators, the processors 440A-N writes the events/transactions to the relevant queues in the second database 460, from which remote clients can read.



FIG. 4B depicts an example block diagram showing the interaction of remote clients 470A-N and 480A-N with a distributed database cluster 460 for incremental updates of events/actions which occurred at a cloud-based environment. The remote clients can include, for example real time clients 470A-N (e.g., real-time web clients launched via a web browser, mobile application), and synchronization clients 480A-N (e.g., desktop sync, mobile sync, server sync, etc.) that users or collaborators use to interface/access the cloud-based platform including but not limited to a collaboration environment. Other types of clients may also read from the database cluster 460.


The queues in the database 460 (e.g., the distributed database cluster) are usually client type specific. For example, each queue is for a given client type for one given user. So, a user ‘A’ may have a sync client queue that all of the sync clients that user “A” uses reads from since user “A” may have multiple devices on which sync clients are installed. In general, the queues for clients in the database 460 are read only queues such that multiple clients can read from the same queue without making modifications. In this manner, if a user utilizes multiple sync clients, each client can still receive and detect the respective updates such that multiple devices can be synchronized. The remote clients also typically individually track the location in the queue from which they last read such that only the most recent events are updated at the client, and that the events read from a queue is specific to a given client, dependent on what has previously been synchronized or read.


In one embodiment, sync clients 480 connect to both real-time 470 and API front end 490 machines. The real time machines 470 can notify a sync client 480 when there has been an update in a user's account. The sync client 480 can then connect to API front end machine 490 to obtain the actual change/content. Alternatively, in some instances, the sync clients 480 can also obtain the changes/content/updates from the real time machines 470 simultaneous with the notification, or after being notified.



FIG. 5A depicts an example system block diagram showing action log entries 516 recorded from actions/interactions on or with files/content 511 stored in a database 510 of a cloud-based environment.


The front ends 502A-N detect, identify, or receive the various actions or events on data or content performed by users or collaborators in a cloud-based environment. For example, events/actions can include by way of example but not limitation, file renames, file uploads/downloads, file edits, comments, etc. Based on the type of event, the front end 502 determines whether the action/event is to be created into a log entry to be stored in the action log 516. In creating a log entry, each action/event is recorded as a transaction with the file system change for asynchronous processing. In recording the transaction, the relevant file/folder row in the file 511 of the database 510 is inserted, updated, deleted, or otherwise modified according to the action. In one embodiment, the row is inserted in to the action log table 516 simultaneously with the write to the file 511 and also with the performance of action itself. Note that each entry includes an owner ID 514 in the file 511 and in the action log 516 to represent the owner of the item upon which an action occurred.


In one embodiment, action log entries are created in the same database 510 as the file table 511 such that file/content rollback can be performed if the file/data/content change results in an error or failure. As such, the action log entry creation in the action log table 516 can be created, in part, to meet durability (e.g., longevity) requirements of a given event/transaction (e.g., write events, or other edit events typically have higher durability requirements than a comment event, or a share event, etc.).


Action log entries can be created for select types of events or all events. For example, events/transactions such as file renames, file uploads may have higher durability requirements than a comment event, or a share event, in a sense that the changes from a file rename/file upload need to be maintained and updated at various respective clients for the relevant collaborators and the implication for missing a file rename or file upload is potentially more severe than missing a comment event or a share event, etc.


In general, action log entries are generally created for actions/events with higher durability requirements. Such a determination can be made by the front ends 502 as to whether a given event type is to be writing into the action log table 516. Action log entries may also be created for all events with durability requirements carried out down stream at event queues stored in the second database (e.g., the database 560 of FIG. 5D). Table 516 shows the action log entries created from the events stored in the file table 511.


The action log entries can be identified by the action ID 517. In addition, each action log entry can be associated with a user (e.g., owner) identifier 518, a data entry 519, and/or a revision identifier 520. The user identifier 518 can identify a user who is to a recipient as a result of an event (e.g., upload file to User 1). The owner identifier 518 represents the owner of the item upon which an action (e.g., represented by action ID 517) occurred and in general, each work item has no more than one owner. The data field 519 can identify the type of action/event (e.g., rename, upload, edit, comment, share, send, download, etc.).


The revision identifier 520 can indicate the version of any change made to a given file (e.g., edit, rename, upload, etc.). In one embodiment, the revision identifier 520 is derived from version tracking mechanisms (e.g., via revision ID 515) inherent to the database 510. The revision identifier 520 can used by remote clients to resolve conflicts in view of potentially conflicting events/transactions. For example, if a file is re-named twice and both events are synchronized/updated at a remote client, the client can use the rename event associated with the latest revision ID to make the necessary updates. This can ensure that the client is updated with the most current change regardless of when the events are read from the queue. Thus, even if the two rename events are writing to the queue for the client out of order, the client can still make the ‘correct’ update using the revision ID in case of conflicting changes.



FIG. 5B depicts one example system block diagram showing action log entries in the action log table 516 being processed by a dispatcher 530. In one embodiment, the dispatcher 530 sends out the action log entries to the processor 540 in parallel. In this embodiment, the action log entries in the action log table 516 are batch written in order by the dispatcher 530 to processors 540. The batch 536 includes log entries for multiple recently occurred to be written to queues for multiple collaborators after processing by the processor 540, which determines the relevant collaborators, for each log entry. The number of actions in the batch can be dynamically determined based on system load and/or to optimize performance.



FIG. 5C depicts a second example system block diagram showing action log entries in the action log table 516 being sorted by owner (e.g., under actor 1 or actor 2) in the dispatcher 530 and then processed in series across users prior to being batched to be sent to the processor 540. In this embodiment, the action log entries are sorted by user in the dispatcher 530 before being batched 536 to be sent to the processor 540. In other words, the events can be grouped by the owner. In some cases, this additional step can be implemented to ensure the correct ordering of events received at a remote client to prevent conflicting changes from being made to a file or content and/or applying the wrong ordering of these changes. After the events are sorted by owner, the events are batch written to the processor 540. The batching is performed by selecting the oldest event across all users and batch writing them to the processor 540.



FIG. 5D depicts an example system block diagram showing how action log entries in the action log table 516 batched from the dispatcher 530 are written, by the processor(s) 540 to queues in a distributed database cluster 560 based on client and collaborator.


The processor 540 analyzes each action/transaction logged in the action log table 516, by for example, processing each row in the table 516 and determining the collaborators to whom each action/transaction is relevant. This determination can be based on user groups, user affiliation with enterprises, user rights/rules, etc. in the cloud-enabled platform such as a collaboration environment. In addition, the processor 540 analyzes each action/transaction and determines the client type category to which each action/transaction is relevant. For example, a re-name event may be relevant to both synchronization clients and real-time web clients, whereas, a comment event may only be relevant to a real-time web client. Once the relevant collaborator to whom to notify, or whose account is to be updated, and the relevant client(s) have been determined, the processor 540 writes the event to the relevant queues.


In general, each queue is specific to one client category type of a given user. For example, all sync clients of user ‘John’ will read from one queue. Each of John's sync clients, which may be installed on different devices maintains its own location in the queue from which to read such that the synchronization or update that is applicable to a specific device/specific sync client is read from the queue in the second repository (e.g., a distribute database cluster, or Hbase 560). Since the queues in the second repository 560 are read only queues, the sync clients or other remote clients cannot modify the queue such that they can be read by other sync clients of the same user so that the necessary changes/updates are applied. In some embodiments, the system can implement one queue per client, or one client per user. In general, any number of other types of mappings can be made to HBase queues.


Since different client type categories are updated with different types of events, user John can have a separate queue for his real-time web clients, and another queue for other types of clients. Maintaining different queues for different client type categories of a user has a further advantage in cleaning up or purging data from the second database 560. Since events/actions written to queues are specific to the category type, during clean-up, the queues can be maintained with different life time durations. For example, queues for the real time web clients can be removed sooner or stored for lesser amount of time than queues for sync clients, due to the nature of events/actions written to the queues. For example, queues for real time web clients can be stored for on the order of a few days, or a few hours, whereas the queues for sync clients can be stored for days, weeks, or months, if needed.



FIG. 6 depicts a block diagram illustrating an example system 600 showing the aggregate of the components described in FIGS. 5A-5D on the server-side of the cloud-based platform for incrementally updating a remote client with occurred events or actions.


The host server 600 can include a host of a collaboration environment can generally be a cloud-based service.


The host server 600 can include, for example, a network interface 602, a front end component 605 having an event type identification engine 606 and a consistency and durability manager, a dispatch engine 615 having a sorting engine 617, a serialization engine 618, a batching engine 619, and a user queue manager 635 having a collaborator identification engine 636, a client selection engine 637, a time sequence manager 638, and a queue writing module 639. The host server 600 is coupled to or includes a database 655 and a database cluster 625. Additional or less components/modules/engines can be included in the host server 600 and each illustrated component.


The network interface 602 can be a networking module that enables the host server 500 to mediate data in a network with an entity that is external to the host server 400, through any known and/or convenient communications protocol supported by the host and the external entity. The network interface 502 can include one or more of a network adaptor card, a wireless network interface card (e.g., SMS interface, WiFi interface, interfaces for various generations of mobile communication standards including but not limited to 1G, 2G, 3G, 3.5G, 4G, LTE, etc.), Bluetooth, a router, an access point, a wireless router, a switch, a multilayer switch, a protocol converter, a gateway, a bridge, bridge router, a hub, a digital media receiver, and/or a repeater.


As used herein, a “module,” “a manager,” a “handler,” a “detector,” an “interface,” a “processor,” a “tracker,” a “detector,” a “generator,” a “launcher,” a “selector,” an “updator,” or an “engine” includes a general purpose, dedicated or shared processor and, typically, firmware or software modules that are executed by the processor. Depending upon implementation-specific or other considerations, the module, manager, hander, or engine can be centralized or its functionality distributed. The module, manager, hander, or engine can include general or special purpose hardware, firmware, or software embodied in a computer-readable (storage) medium for execution by the processor. As used herein, a computer-readable medium or computer-readable storage medium is intended to include all mediums that are statutory (e.g., in the United States, under 35 U.S.C. §101), and to specifically exclude all mediums that are non-statutory in nature to the extent that the exclusion is necessary for a claim that includes the computer-readable (storage) medium to be valid. Known statutory computer-readable mediums include hardware (e.g., registers, random access memory (RAM), non-volatile (NV) storage, to name a few), but may or may not be limited to hardware.


The front end component 605 is able to detect actions in a cloud-based environment (e.g., a collaboration environment hosted by server 600) an identify the event type (e.g., by the event type identification engine 606). Based on the event type, an action log entry can be created in the database 655 in the action log table 658. The action log entry can be created from a file/folder entry 656. The front end component 605 can also determine or estimate the consistency and durability requirements of a given event (e.g., by the consistency and durability manager 607). These requirements can be effectuated through the creation of an action log entry for the associated action/event in the database 655.


The front end component 605 is coupled to multiple users and multiple devices and processes events/actions generated across multiple users, platforms, devices, or enterprises. The action log table 658 generated therefrom is read by the dispatch engine 615 which is able to serialize the events represented by the action log entries stored in the action log table 658. The dispatch engine 615 batches log entries (e.g., by the batching engine 619) from the table 658 and passes the events on to the user queue manager 635 for further processing. One embodiment of the dispatch engine 615 can further include a sorting engine 617 which optionally sorts the action log entries by recipient user or a user whose account is to be updated before being batched for processing by the user queue manager 635.


The user queue manager 635, retrieves each action log entry and is able to analyze the action/event and identify the collaborators (e.g., by the collaborator identification engine 636) who are to be notified of the action/event or whose accounts/contents are to be updated as a result of the action/event. Further, based on the action/event type the client category type (e.g., whether the client is a sync client, real-time web client, mobile client, mobile sync client, email client, etc.) which is to be notified or synchronized is determined by the client selection engine 637. Certain events/actions are only relevant to sync clients, while some may be relevant to both sync clients and web clients.


The time sequence manager 638 is able to associate events with a time stamp or a key. The time stamp or key (which may be a reference to a location in memory or storage) can be used by remote clients to keep track of the events/actions that have been synchronized or read for updating.



FIG. 7 depicts a flow chart illustrating an example process for notifying a remote client of updates in a cloud-enabled platform for each remote client associated with a collaborator in an incremental fashion.


In process 702, an action is detected in the cloud-enabled platform. The action can be performed by any user or collaborator of a user group, organization, or enterprise and can include any action (e.g., upload, comment, share, email, send, download, edit, delete, rename, name, etc.) performed on files, folders, or any content shared, stored, and/or accessed via the cloud-enabled platform, such as an online or web-based collaboration environment.


In process 704, a data change is effectuated as a result of the action in a first database, in the cloud environment, based on the action. In process 706, an action log entry is created from the action. In one embodiment, the action log entry is created in the first database, same as the data change, to enable rollback to previous versions before the data change was effectuated.


In process 708, the collaborator of the user's in the cloud-enabled platform is identified. The collaborator(s) can be identified based on user group information, enterprise affiliation or other group/rules based definition of work groups which determine which users are collaborators to be notified of a given event, or which user accounts are to be updated. In process 710, the remote client of the collaborator which is to be synchronized with the data change as an update is identified.


In process 712, a decision is made as to whether to write the action to the second database in the queue for the remote client based on action type, prior to writing the action to the queue. In addition a decision can be made as to whether to write the action to the second database for the remote client based on client type, prior to writing the action to the queue.


In process 714, the action represented by the action log entry is written to a second database into a queue to be read by the remote client of the collaborator. In general, the queue is specific to a client type of the remote client. The client type can be a synchronization client, a mobile client, or a web-based interface client to access the cloud-enabled platform. A synchronization client can be any client installed on a device, which automatically synchronizes locally stored content with content in the cloud (e.g., in the cloud-enabled platform) such that the changes made by other users or the user of the device from other devices/clients/interfaces can be synced locally at the device. The web-based interface client can be any web interface used by the user to access his/her account with the cloud-enabled platform.


In instances where the collaborator or user utilizes multiple synchronization clients, each of the multiple synchronization clients can read from the queue at locations relevant to the individual remote client. For example, each of the multiple remote clients individually tracks a location in the queue from which each previously read. In general, the queue is a read-only queue such that clients can read from it without making changes such that other clients can still read from the queue and update the client/device as needed and as relevant.


The action can be written to a second queue for a web-application interface to the cloud-enabled platform. The action can also be to a third queue for an audit log. The queue may be associated with a lifetime to be stored in the second database to ensure durability requirements associated with the client type. For example, the lifetime for a queue for a desktop synchronization client can be longer than the life time for a queue for a web-based browser client.


In one embodiment, the action is written to the second queue as a part of a batch of recently occurred actions to be written to queues for multiple collaborators. The number of actions in the batch can be dynamically determined.


In process 716, the remote client of the collaborator reads from the queue in the second database for synchronization. The remote client can read from the queue such that the remote client is updated to reflect the action. For example, the remote client sends a query to the second database for synchronization of the updates specific to the collaborator.


The query can be associated with a timing parameter specified by the remote client such that the updates that are synchronized to the remote client include actions which are more recent than a time referenced by the timing parameter. Similarly, the query can be associated with a parameter specified by the remote client such that the updates that are synchronized to the remote client include actions which are written to the queue after a location referenced b the parameter.


In one embodiment, the remote client updates only the action without updating other actions which have previously been updated at the remote client. In process 718, the remote client is synchronized with updates in a cloud-enabled platform in an incremental fashion. This allows the remote client, such as a synchronization client to efficiently update the local device without the need to perform additional analysis or comparison as to which changes made on the server side have been or have yet to be made on the local device.



FIG. 8 depicts a flow chart illustrating an example process for creating an action log entry with a revision identifier for a client to be updated in time sequential order based on when events occurred via the cloud-enabled platform to prevent conflicts in files or data.


In process 802, an action log having log entries is created in a data repository for events that occurred in the cloud-enabled collaboration platform. Each log entry can be associated with a unique identifier, and where, each log entry can be entered in the action log in an order in which an associated action occurred in the cloud-enabled collaboration platform. In one embodiment, each log entry is created from a file entry stored in the data repository. The data repository can include a relational database such as a SQL database.


In process 804, a log entry in the action log is associated with an event type identifier and a revision identifier. The revision identifier of a given event can be used by the client for conflict resolution. The revision identifier can be derived from version trackers used by the SQL database.


The log entry can be further associated with a user identifier. In some instances, the log entries are sorted based on the user identifiers. In one embodiment, the user identifier is associated with a recipient user whose account is to be updated as a result of the event. In one embodiment, the user identifier can be associated with a user who performed the event or action.


In process 806, an event is represented with the log entry identified by the event type identifier performed, in the cloud-enabled collaboration platform. In process 808, a collaborator to be notified of the event represented by the log entry is identified, for each entry. In process 810, the event is written into a queue for the collaborator in a distributed database cluster to be read by one or more of multiple clients. The distributed database cluster can include non-relational databases. For example, the distributed database cluster is a write-optimized or optimized for sequential reads. In on embodiment, the distributed database cluster is an HBase cluster. In one embodiment, the queue for the collaborator is specific to a client or a client category type used by the collaborator for accessing the cloud-enabled collaboration platform.


In general, different portions of the ordered sequence of events can be sent to different client types or different clients of the collaborator. The client type can include, a web-based client, a desktop synchronization client, a mobile synchronization client, a mobile application, an email notification client, or an enterprise action log of the cloud-enabled collaboration platform. In one embodiment, the event is written to the distributed database cluster as a part of a batch of recently occurred events to be written to queues for multiple collaborators


In process 812, the client reads from the queue of the collaborator in the distributed database cluster to obtain incremental updates in the cloud-enabled collaboration platform from the events logged in the action log. In process 814, Incremental updates in the cloud-enabled collaboration platform are obtained from the events logged in the action log. In process 816, the revision ID of a given event for conflict resolution



FIG. 9 depicts a flow chart illustrating an example process for managing queues based on action type and client type.


In process 902, an action type of an action performed by a collaborator of the user in the cloud-based collaboration service is determined. In process 904, a queue which is uniquely associated with a client category of the clients associated with the user is identified. The client can include cloud-based collaboration service and/or an instance of a desktop synchronization client to synchronize content with the cloud-based collaboration service.


In process 906, the clients of the user, to receive a notification as a result of the action or to perform synchronization with changes that occurred as a result of the action are selected based on the client category and the action type of the action. In process 908, a representation of the action is stored to queues of clients associated with the user in a distributed database cluster. Each of the queues is typically uniquely associated with a client category of the clients associated with the user and the clients of the user are selected based on the client category and the action type of the action, to receive a notification as a result of the action or to perform a synchronization with changes that occurred as a result of the action.


In process 910, subsequently occurring actions are written to the queues of the clients associated with the user in a time ordered fashion. In process 912, additional representations of actions to additional queues of other clients associated with other users of the cloud-based collaboration service are stored in the distributed database cluster.



FIG. 10 depicts a flow chart illustrating an example process for updating multiple clients at one or more devices for a given user with events occurring in a collaboration platform.


In process 1002, a queue stored in a distributed database queried and a location in the queue from which to read is specified. The queue includes entries representing each of a sequence of events which occurred in the collaboration platform that is relevant to the user. In one embodiment, the queue that is queried is specific to client type of the client and is also specific to a user. Each entry can be associated with an action type identifier of a given event; entry can further be associated with a revision identifier, the client uses the revision identifier for conflict resolution at the client device.


In process 1004, the queue is read starting from the location. In process 1006, the client device is updated based on the events that occurred in the collaboration platform upon reading the queue. This is performed in such a manner that previously occurred events which have been updated at the client need not be accessed prior to reading the portions of the queue with those events which have yet to be updated at the client.


In process 1008, the client device is updated based on the events that occurred in the collaboration platform upon reading the queue. The collaboration platform can include a cloud-based service and/or storage platform. In process 1010, another location in the queue from which to begin a subsequent read is stored by the client. In process 1012, multiple clients associated with the client device or different client devices of the user read from the same queue. In process 1014, each of the multiple clients individually track a location in the queue from which to read to reflect updates relevant to the client device on which the client resides.



FIG. 11 shows a diagrammatic representation of a machine in the example form of a computer system within which a set of instructions, for causing the machine to perform any one or more of the methodologies discussed herein, may be executed.


In alternative embodiments, the machine operates as a standalone device or may be connected (e.g., networked) to other machines. In a networked deployment, the machine may operate in the capacity of a server or a client machine in a client-server network environment, or as a peer machine in a peer-to-peer (or distributed) network environment.


The machine may be a server computer, a client computer, a personal computer (PC), a user device, a tablet PC, a laptop computer, a set-top box (STB), a personal digital assistant (PDA), a cellular telephone, an iPhone, an iPad, a Blackberry, a processor, a telephone, a web appliance, a network router, switch or bridge, a console, a hand-held console, a (hand-held) gaming device, a music player, any portable, mobile, hand-held device, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine.


While the machine-readable medium or machine-readable storage medium is shown in an exemplary embodiment to be a single medium, the term “machine-readable medium” and “machine-readable storage medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “machine-readable medium” and “machine-readable storage medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the presently disclosed technique and innovation.


In general, the routines executed to implement the embodiments of the disclosure, may be implemented as part of an operating system or a specific application, component, program, object, module or sequence of instructions referred to as “computer programs.” The computer programs typically comprise one or more instructions set at various times in various memory and storage devices in a computer, and that, when read and executed by one or more processing units or processors in a computer, cause the computer to perform operations to execute elements involving the various aspects of the disclosure.


Moreover, while embodiments have been described in the context of fully functioning computers and computer systems, those skilled in the art will appreciate that the various embodiments are capable of being distributed as a program product in a variety of forms, and that the disclosure applies equally regardless of the particular type of machine or computer-readable media used to actually effect the distribution.


Further examples of machine-readable storage media, machine-readable media, or computer-readable (storage) media include, but are not limited to, recordable type media such as volatile and non-volatile memory devices, floppy and other removable disks, hard disk drives, optical disks (e.g., Compact Disk Read-Only Memory (CD ROMS), Digital Versatile Disks, (DVDs), etc.), among others, and transmission type media such as digital and analog communication links.


The network interface device enables the machine 2800 to mediate data in a network with an entity that is external to the host server, through any known and/or convenient communications protocol supported by the host and the external entity. The network interface device can include one or more of a network adaptor card, a wireless network interface card, a router, an access point, a wireless router, a switch, a multilayer switch, a protocol converter, a gateway, a bridge, bridge router, a hub, a digital media receiver, and/or a repeater.


The network interface device can include a firewall which can, in some embodiments, govern and/or manage permission to access/proxy data in a computer network, and track varying levels of trust between different machines and/or applications. The firewall can be any number of modules having any combination of hardware and/or software components able to enforce a predetermined set of access rights between a particular set of machines and applications, machines and machines, and/or applications and applications, for example, to regulate the flow of traffic and resource sharing between these varying entities. The firewall may additionally manage and/or have access to an access control list which details permissions including for example, the access and operation rights of an object by an individual, a machine, and/or an application, and the circumstances under which the permission rights stand.


Other network security functions can be performed or included in the functions of the firewall, can be, for example, but are not limited to, intrusion-prevention, intrusion detection, next-generation firewall, personal firewall, etc. without deviating from the novel art of this disclosure.


Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” As used herein, the terms “connected,” “coupled,” or any variant thereof, means any connection or coupling, either direct or indirect, between two or more elements; the coupling of connection between the elements can be physical, logical, or a combination thereof. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above Detailed Description using the singular or plural number may also include the plural or singular number respectively. The word “or,” in reference to a list of two or more items, covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.


The above detailed description of embodiments of the disclosure is not intended to be exhaustive or to limit the teachings to the precise form disclosed above. While specific embodiments of, and examples for, the disclosure are described above for illustrative purposes, various equivalent modifications are possible within the scope of the disclosure, as those skilled in the relevant art will recognize. For example, while processes or blocks are presented in a given order, alternative embodiments may perform routines having steps, or employ systems having blocks, in a different order, and some processes or blocks may be deleted, moved, added, subdivided, combined, and/or modified to provide alternative or subcombinations. Each of these processes or blocks may be implemented in a variety of different ways. Also, while processes or blocks are at times shown as being performed in series, these processes or blocks may instead be performed in parallel, or may be performed at different times. Further, any specific numbers noted herein are only examples: alternative implementations may employ differing values or ranges.


The teachings of the disclosure provided herein can be applied to other systems, not necessarily the system described above. The elements and acts of the various embodiments described above can be combined to provide further embodiments.


Any patents and applications and other references noted above, including any that may be listed in accompanying filing papers, are incorporated herein by reference. Aspects of the disclosure can be modified, if necessary, to employ the systems, functions, and concepts of the various references described above to provide yet further embodiments of the disclosure.


These and other changes can be made to the disclosure in light of the above Detailed Description. While the above description describes certain embodiments of the disclosure, and describes the best mode contemplated, no matter how detailed the above appears in text, the teachings can be practiced in many ways. Details of the system may vary considerably in its implementation details, while still being encompassed by the subject matter disclosed herein. As noted above, particular terminology used when describing certain features or aspects of the disclosure should not be taken to imply that the terminology is being redefined herein to be restricted to any specific characteristics, features, or aspects of the disclosure with which that terminology is associated. In general, the terms used in the following claims should not be construed to limit the disclosure to the specific embodiments disclosed in the specification, unless the above Detailed Description section explicitly defines such terms. Accordingly, the actual scope of the disclosure encompasses not only the disclosed embodiments, but also all equivalent ways of practicing or implementing the disclosure under the claims.


While certain aspects of the disclosure are presented below in certain claim forms, the inventors contemplate the various aspects of the disclosure in any number of claim forms. For example, while only one aspect of the disclosure is recited as a means-plus-function claim under 35 U.S.C. §112, ¶6, other aspects may likewise be embodied as a means-plus-function claim, or in other forms, such as being embodied in a computer-readable medium. (Any claims intended to be treated under 35 U.S.C. §112, ¶6 will begin with the words “means for”.) Accordingly, the applicant reserves the right to add additional claims after filing the application to pursue such additional claim forms for other aspects of the disclosure.

Claims
  • 1. A method for incrementally notifying remote clients of updates in a cloud-enabled platform, wherein each of the remote clients is associated with a collaborator, the method, comprising: detecting an action in the cloud-enabled platform and effectuating a data change as a result of the action in a first database;from the action, creating an action log entry in an action log; wherein, the action log entry is associated with an event type identifier and a revision identifier;wherein, the action log entry represents the action identified by the event type identifier;identifying a first collaborator in the cloud-enabled platform associated with a remote client to be synchronized with the data change as an update;determining whether to write the action to a second database for the remote client based on an action type or a client type;when the determination is made to write the action, writing the action represented by the action log entry to a queue in the second database to be read by the remote client associated with the first collaborator.
  • 2. The method of claim 1, wherein, the action is written to the queue of the second database as a part of a batch of recently occurred actions to be written to queues for multiple collaborators.
  • 3. The method of claim 2, wherein, number of actions in the batch is dynamically determined.
  • 4. The method of claim 2, wherein, the client type indicates a synchronization client, a mobile client, or a web-based interface client to access the cloud-enabled platform.
  • 5. The method of claim 2, wherein, the client type associated with the queue is a synchronization client; wherein, the first collaborator utilizes multiple remote clients, each of the synchronization client type; wherein, each of the multiple remote clients read from the queue at locations relevant to the individual remote client.
  • 6. The method of claim 5, wherein, each of the multiple remote clients individually tracks a location in the queue from which each previously read.
  • 7. The method of claim 1, wherein, the queue is specific to a client type of the remote client.
  • 8. The method of claim 7, wherein, the remote client updates only the action without updating other actions which have previously been updated at the remote client.
  • 9. The method of claim 1, wherein, the remote client associated with the client type is able to read from the queue such that the remote client is updated to reflect the action.
  • 10. The method of claim 9, wherein, the query is associated with a timing parameter specified by the remote client such that the updates that are synchronized to the remote client include actions which are more recent than a time referenced by the timing parameter.
  • 11. The method of claim 9, wherein, the query is associated with a parameter specified by the remote client such that the updates that are synchronized to the remote client include actions which are written to the queue after a location referenced by the parameter.
  • 12. The method of claim 1, wherein, the remote client sends a query to the second database for synchronization of the updates specific to the first collaborator.
  • 13. The method of claim 1, wherein, the remote client associated with the first collaborator reads from the queue in the second database for synchronization.
  • 14. The method of claim 1, wherein, the action log entry is created in the action log in the first database, same as the data change, to enable rollback to previous versions before the data change was effectuated.
  • 15. The method of claim 14, wherein, the storage lifetime associated with a queue for a desktop synchronization client is longer than the storage lifetime for a queue associated with a web-based browser client.
  • 16. The method of claim 1, wherein, the second database is a distributed database cluster.
  • 17. The method of claim 1, wherein, the queue in the second database is associated with a storage lifetime to ensure durability requirements associated with the client type.
  • 18. The method of claim 1, further comprising, writing the action to a second queue for a web-application interface to the cloud-enabled platform.
  • 19. The method of claim 1, further comprising, writing the action to a third queue for an audit log.
  • 20. A method for delivering an ordered sequence of events in a cloud-enabled collaboration platform, the method, comprising: creating an action log having log entries in a data repository for events that occurred in the cloud-enabled collaboration platform, wherein, each log entry in the action log is associated with an event type identifier and a revision identifier, and represents an event identified by the event type identifier in the cloud-enabled collaboration platform;for each log entry in the action log, identifying a collaborator to be notified of the event represented by the log entry;determining whether to write the event to a distributed database for the collaborator based on action type or a client type;when the determination is made to write the action, writing the event into a queue in a distributed database cluster to be read by one or more clients associated with the collaborator.
  • 21. The method of claim 20, wherein, the queue in a distributed database cluster is specific to a client or a client category type used by the collaborator for accessing the cloud-enabled collaboration platform.
  • 22. The method of claim 20, wherein, each log entry is further associated with a user identifier, wherein, the log entries are sorted based on the user identifiers.
  • 23. The method of claim 22, wherein, the user identifier is associated with a user who owns an item on which an action performed by the event acts on.
  • 24. The method of claim 22, wherein, the user identifier is associated with a user who owns an item with which the event relates.
  • 25. The method of claim 20, wherein, the client reads from the queue in the distributed database cluster to obtain incremental updates in the cloud-enabled collaboration platform from the events logged in the action log.
  • 26. The method of claim 20, wherein the revision identifier of a given event is used by the client for conflict resolution.
  • 27. The method of claim 20, wherein, each log entry is associated with a unique identifier, and wherein, each log entry is entered in the action log in an order in which an associated action occurred in the cloud-enabled collaboration platform; wherein, each log entry is created from a file entry stored in the data repository.
  • 28. A system for incrementally notifying remote clients of updates in a cloud-based service, wherein each of the remote clients is associated with a collaborator, the system, comprising: a processor;a memory unit having instructions stored thereon that when executed by the processor, cause the system to: detect an action in the cloud-based service;effectuate a data change as a result of the action in a first database;create an action log entry from the action in an action log; wherein, the action log entry is associated with an event type identifier and a revision identifier;wherein, the action log entry represents the action identified by the event type identifier;identify a first means for, identifying the collaborator of the user's in the cloud-enabled platform, whose associated with a remote client to be synchronized with the data change as an update;determine whether to write the action to a second database for the remote client based on an action type or a client type;when the determination is made to write the action, write the action represented by the action log entry to a second database into a queue to be read by the remote client associated with the first collaborator.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application No. 61/560,685 entitled “TEMPORAL AND SPATIAL PROCESSING AND TRACKING OF EVENTS IN A WEB-BASED COLLABORATION ENVIRONMENT FOR ASYNCHRONOUS DELIVERY IN AN ORDERED FASHION”, which was filed on Nov. 16, 2011, the contents of which are all incorporated by reference herein.

US Referenced Citations (346)
Number Name Date Kind
5799320 Klug Aug 1998 A
5848415 Guck Dec 1998 A
5999908 Abelow Dec 1999 A
6034621 Kaufman Mar 2000 A
6073161 DeBoskey et al. Jun 2000 A
6233600 Salas et al. May 2001 B1
6289345 Yasue Sep 2001 B1
6292803 Richardson et al. Sep 2001 B1
6336124 Alam et al. Jan 2002 B1
6342906 Kumar et al. Jan 2002 B1
6345386 Delo et al. Feb 2002 B1
6370543 Hoffert et al. Apr 2002 B2
6374260 Hoffert et al. Apr 2002 B1
6385606 Inohara et al. May 2002 B2
6396593 Laverty et al. May 2002 B1
6515681 Knight Feb 2003 B1
6584466 Serbinis et al. Jun 2003 B1
6636872 Heath et al. Oct 2003 B1
6654737 Nunez Nov 2003 B1
6662186 Esquibel et al. Dec 2003 B1
6687878 Eintracht et al. Feb 2004 B1
6714968 Prust Mar 2004 B1
6735623 Prust May 2004 B1
6742181 Koike et al. May 2004 B1
6760721 Chasen et al. Jul 2004 B1
6947162 Rosenberg et al. Sep 2005 B2
6952724 Prust Oct 2005 B2
6996768 Elo et al. Feb 2006 B1
7010752 Ly Mar 2006 B2
7039806 Friedman et al. May 2006 B1
7069393 Miyata et al. Jun 2006 B2
7133834 Abelow Nov 2006 B1
7149787 Mutalik et al. Dec 2006 B1
7152182 Ji et al. Dec 2006 B2
7155483 Friend et al. Dec 2006 B1
7222078 Abelow May 2007 B2
7275244 Charles Bell et al. Sep 2007 B1
7296025 Kung et al. Nov 2007 B2
7346778 Guiter et al. Mar 2008 B1
7353252 Yang et al. Apr 2008 B1
7370269 Prabhu et al. May 2008 B1
7401117 Dan et al. Jul 2008 B2
7543000 Castro et al. Jun 2009 B2
7581221 Lai et al. Aug 2009 B2
7620565 Abelow Nov 2009 B2
7647559 Yozell-Epstein et al. Jan 2010 B2
7650367 Arruza Jan 2010 B2
7661088 Burke Feb 2010 B2
7665093 Maybee et al. Feb 2010 B2
7676542 Moser et al. Mar 2010 B2
7698363 Dan et al. Apr 2010 B2
7734600 Wise et al. Jun 2010 B1
7756843 Palmer Jul 2010 B1
7774412 Schnepel Aug 2010 B1
7814426 Huesken et al. Oct 2010 B2
7886287 Davda Feb 2011 B1
7937663 Parker et al. May 2011 B2
7958453 Taing Jun 2011 B1
7979296 Kruse et al. Jul 2011 B2
7996374 Jones et al. Aug 2011 B1
8027976 Ding et al. Sep 2011 B1
RE42904 Stephens, Jr. Nov 2011 E
8065739 Bruening et al. Nov 2011 B1
8090361 Hagan Jan 2012 B2
8117261 Briere et al. Feb 2012 B2
8140513 Ghods et al. Mar 2012 B2
8151183 Chen et al. Apr 2012 B2
8185830 Saha et al. May 2012 B2
8214747 Yankovich et al. Jul 2012 B1
8230348 Peters et al. Jul 2012 B2
8347276 Schadow Jan 2013 B2
8358701 Chou et al. Jan 2013 B2
8429540 Yankovich et al. Apr 2013 B1
8464161 Giles et al. Jun 2013 B2
8549511 Seki et al. Oct 2013 B2
8607306 Bridge et al. Dec 2013 B1
20010027492 Gupta Oct 2001 A1
20020091738 Rohrabaugh et al. Jul 2002 A1
20020099772 Deshpande et al. Jul 2002 A1
20020133509 Johnston et al. Sep 2002 A1
20020147770 Tang Oct 2002 A1
20020194177 Sherman et al. Dec 2002 A1
20030041095 Konda et al. Feb 2003 A1
20030093404 Bader et al. May 2003 A1
20030108052 Inoue et al. Jun 2003 A1
20030110264 Whidby et al. Jun 2003 A1
20030135536 Lyons Jul 2003 A1
20030135565 Estrada Jul 2003 A1
20030154306 Perry Aug 2003 A1
20030204490 Kasriel Oct 2003 A1
20030217171 Von Stuermer et al. Nov 2003 A1
20040021686 Barberis Feb 2004 A1
20040088647 Miller et al. May 2004 A1
20040103147 Flesher et al. May 2004 A1
20040111415 Scardino et al. Jun 2004 A1
20040117438 Considine et al. Jun 2004 A1
20040122949 Zmudzinski et al. Jun 2004 A1
20040128359 Horvitz et al. Jul 2004 A1
20040181579 Huck et al. Sep 2004 A1
20040230624 Frolund et al. Nov 2004 A1
20040246532 Inada Dec 2004 A1
20050005276 Morgan Jan 2005 A1
20050010860 Weiss et al. Jan 2005 A1
20050022229 Gabriel et al. Jan 2005 A1
20050050228 Perham et al. Mar 2005 A1
20050063083 Dart et al. Mar 2005 A1
20050097225 Glatt et al. May 2005 A1
20050114305 Haynes et al. May 2005 A1
20050114378 Elien et al. May 2005 A1
20050198299 Beck et al. Sep 2005 A1
20050198452 Watanabe Sep 2005 A1
20050234864 Shapiro Oct 2005 A1
20050234943 Clarke Oct 2005 A1
20050261933 Magnuson Nov 2005 A1
20060026502 Dutta Feb 2006 A1
20060036568 Moore et al. Feb 2006 A1
20060041603 Paterson et al. Feb 2006 A1
20060047804 Fredricksen et al. Mar 2006 A1
20060053088 Ali et al. Mar 2006 A1
20060053380 Spataro et al. Mar 2006 A1
20060070083 Brunswig et al. Mar 2006 A1
20060075071 Gillette Apr 2006 A1
20060123062 Bobbitt et al. Jun 2006 A1
20060133340 Rybak et al. Jun 2006 A1
20060168550 Muller et al. Jul 2006 A1
20060174051 Lordi et al. Aug 2006 A1
20060174054 Matsuki Aug 2006 A1
20060179070 George et al. Aug 2006 A1
20060259524 Horton Nov 2006 A1
20060265719 Astl et al. Nov 2006 A1
20060271510 Harward et al. Nov 2006 A1
20070016680 Burd et al. Jan 2007 A1
20070100830 Beedubail et al. May 2007 A1
20070115845 Hochwarth et al. May 2007 A1
20070118598 Bedi et al. May 2007 A1
20070124460 McMullen et al. May 2007 A1
20070124737 Wensley et al. May 2007 A1
20070124781 Casey et al. May 2007 A1
20070126635 Houri Jun 2007 A1
20070130163 Perez et al. Jun 2007 A1
20070198609 Black et al. Aug 2007 A1
20070208878 Barnes-Leon et al. Sep 2007 A1
20070214180 Crawford Sep 2007 A1
20070220016 Estrada et al. Sep 2007 A1
20070220590 Rasmussen et al. Sep 2007 A1
20070256065 Heishi et al. Nov 2007 A1
20070282848 Kiilerich et al. Dec 2007 A1
20070283443 McPherson et al. Dec 2007 A1
20070288290 Motoyama et al. Dec 2007 A1
20080005195 Li Jan 2008 A1
20080016146 Gan et al. Jan 2008 A1
20080021959 Naghi et al. Jan 2008 A1
20080028323 Rosen et al. Jan 2008 A1
20080040173 Aleong et al. Feb 2008 A1
20080046828 Bibliowicz et al. Feb 2008 A1
20080059656 Saliba et al. Mar 2008 A1
20080077631 Petri Mar 2008 A1
20080091763 Devonshire et al. Apr 2008 A1
20080104277 Tian May 2008 A1
20080114720 Smith et al. May 2008 A1
20080133674 Knauerhase et al. Jun 2008 A1
20080147790 Malaney et al. Jun 2008 A1
20080151817 Fitchett et al. Jun 2008 A1
20080154873 Redlich et al. Jun 2008 A1
20080182628 Lee et al. Jul 2008 A1
20080183467 Yuan et al. Jul 2008 A1
20080194239 Hagan Aug 2008 A1
20080215883 Fok et al. Sep 2008 A1
20080222654 Xu et al. Sep 2008 A1
20080243855 Prahlad et al. Oct 2008 A1
20080250333 Reeves et al. Oct 2008 A1
20080263099 Brady-Kalnay et al. Oct 2008 A1
20080271095 Shafton Oct 2008 A1
20080276158 Lim et al. Nov 2008 A1
20090015864 Hasegawa Jan 2009 A1
20090019093 Brodersen et al. Jan 2009 A1
20090019426 Baeumer et al. Jan 2009 A1
20090030710 Levine Jan 2009 A1
20090049131 Lyle et al. Feb 2009 A1
20090125469 McDonald et al. May 2009 A1
20090132651 Roger et al. May 2009 A1
20090138808 Moromisato et al. May 2009 A1
20090150417 Ghods et al. Jun 2009 A1
20090150627 Benhase et al. Jun 2009 A1
20090158142 Arthursson et al. Jun 2009 A1
20090164438 Delacruz Jun 2009 A1
20090193107 Srinivasan et al. Jul 2009 A1
20090198772 Kim et al. Aug 2009 A1
20090210459 Nair et al. Aug 2009 A1
20090214115 Kimura et al. Aug 2009 A1
20090235167 Boyer et al. Sep 2009 A1
20090235181 Saliba et al. Sep 2009 A1
20090249224 Davis et al. Oct 2009 A1
20090254589 Nair et al. Oct 2009 A1
20090260060 Smith et al. Oct 2009 A1
20090271708 Peters et al. Oct 2009 A1
20090276771 Nickolov et al. Nov 2009 A1
20090300527 Malcolm et al. Dec 2009 A1
20090327358 Lukiyanov et al. Dec 2009 A1
20090327961 De Vorchik et al. Dec 2009 A1
20100011292 Marinkovich et al. Jan 2010 A1
20100011447 Jothimani Jan 2010 A1
20100017262 Iyer et al. Jan 2010 A1
20100036929 Scherpa et al. Feb 2010 A1
20100042720 Stienhans et al. Feb 2010 A1
20100057785 Khosravy et al. Mar 2010 A1
20100076946 Barker et al. Mar 2010 A1
20100082634 Leban Apr 2010 A1
20100083136 Komine et al. Apr 2010 A1
20100088150 Mazhar et al. Apr 2010 A1
20100092126 Kaliszek et al. Apr 2010 A1
20100093310 Gbadegesin et al. Apr 2010 A1
20100131868 Chawla et al. May 2010 A1
20100151431 Miller Jun 2010 A1
20100162365 Del Real Jun 2010 A1
20100162374 Nair Jun 2010 A1
20100179940 Gilder et al. Jul 2010 A1
20100185463 Noland et al. Jul 2010 A1
20100191689 Cortes et al. Jul 2010 A1
20100198783 Wang et al. Aug 2010 A1
20100198871 Stiegler et al. Aug 2010 A1
20100198944 Ho et al. Aug 2010 A1
20100205537 Knighton et al. Aug 2010 A1
20100223378 Wei Sep 2010 A1
20100229085 Nelson et al. Sep 2010 A1
20100235526 Carter et al. Sep 2010 A1
20100235539 Carter et al. Sep 2010 A1
20100241611 Zuber Sep 2010 A1
20100241972 Spataro et al. Sep 2010 A1
20100250120 Waupotitsch et al. Sep 2010 A1
20100257457 De Goes Oct 2010 A1
20100262582 Garcia-Ascanio et al. Oct 2010 A1
20100267588 Nelson et al. Oct 2010 A1
20100274765 Murphy et al. Oct 2010 A1
20100274772 Samuels Oct 2010 A1
20100281118 Donahue et al. Nov 2010 A1
20100306379 Ferris Dec 2010 A1
20100322252 Suganthi et al. Dec 2010 A1
20100325155 Skinner et al. Dec 2010 A1
20100325655 Perez Dec 2010 A1
20100332401 Prahlad et al. Dec 2010 A1
20100333116 Prahlad et al. Dec 2010 A1
20110001763 Murakami Jan 2011 A1
20110016409 Grosz et al. Jan 2011 A1
20110022559 Andersen et al. Jan 2011 A1
20110022812 van Der Linden et al. Jan 2011 A1
20110029883 Lussier et al. Feb 2011 A1
20110040812 Phillips Feb 2011 A1
20110047413 McGill et al. Feb 2011 A1
20110052155 Desmarais et al. Mar 2011 A1
20110054968 Galaviz Mar 2011 A1
20110055299 Phillips Mar 2011 A1
20110055721 Jain et al. Mar 2011 A1
20110061045 Phillips Mar 2011 A1
20110061046 Phillips Mar 2011 A1
20110065082 Gal et al. Mar 2011 A1
20110066951 Ward-Karet et al. Mar 2011 A1
20110083167 Carpenter et al. Apr 2011 A1
20110093567 Jeon et al. Apr 2011 A1
20110099006 Sundararaman et al. Apr 2011 A1
20110119313 Sung et al. May 2011 A1
20110142410 Ishii Jun 2011 A1
20110145744 Haynes et al. Jun 2011 A1
20110161289 Pei et al. Jun 2011 A1
20110167125 Achlioptas Jul 2011 A1
20110167353 Grosz et al. Jul 2011 A1
20110167435 Fang Jul 2011 A1
20110185292 Chawla et al. Jul 2011 A1
20110202424 Chun et al. Aug 2011 A1
20110202599 Yuan et al. Aug 2011 A1
20110208958 Stuedi et al. Aug 2011 A1
20110209064 Jorgensen et al. Aug 2011 A1
20110213765 Cui et al. Sep 2011 A1
20110219419 Reisman Sep 2011 A1
20110238458 Purcell et al. Sep 2011 A1
20110238621 Agrawal Sep 2011 A1
20110239135 Spataro et al. Sep 2011 A1
20110246294 Robb et al. Oct 2011 A1
20110246950 Luna et al. Oct 2011 A1
20110258461 Bates Oct 2011 A1
20110258561 Ladouceur et al. Oct 2011 A1
20110282710 Akkiraju et al. Nov 2011 A1
20110296022 Ferris et al. Dec 2011 A1
20110313803 Friend et al. Dec 2011 A1
20110320197 Conejero et al. Dec 2011 A1
20120036370 Lim et al. Feb 2012 A1
20120064879 Panei Mar 2012 A1
20120072436 Pierre et al. Mar 2012 A1
20120079095 Evans et al. Mar 2012 A1
20120092055 Peschke et al. Apr 2012 A1
20120110436 Adler, III et al. May 2012 A1
20120117626 Yates et al. May 2012 A1
20120124547 Halbedel May 2012 A1
20120130900 Tang et al. May 2012 A1
20120134491 Liu May 2012 A1
20120136936 Quintuna May 2012 A1
20120150888 Hyatt et al. Jun 2012 A1
20120151551 Readshaw et al. Jun 2012 A1
20120158908 Luna et al. Jun 2012 A1
20120173625 Berger Jul 2012 A1
20120185913 Martinez et al. Jul 2012 A1
20120192055 Antebi et al. Jul 2012 A1
20120192086 Ghods et al. Jul 2012 A1
20120203908 Beaty et al. Aug 2012 A1
20120204032 Wilkins et al. Aug 2012 A1
20120214444 McBride et al. Aug 2012 A1
20120218885 Abel et al. Aug 2012 A1
20120226767 Luna et al. Sep 2012 A1
20120233155 Gallmeier et al. Sep 2012 A1
20120233205 McDermott Sep 2012 A1
20120240061 Hillenius et al. Sep 2012 A1
20120266203 Elhadad et al. Oct 2012 A1
20120284638 Cutler et al. Nov 2012 A1
20120284664 Zhao Nov 2012 A1
20120291011 Quine Nov 2012 A1
20120309540 Holme et al. Dec 2012 A1
20120317239 Mulder et al. Dec 2012 A1
20120317487 Lieb et al. Dec 2012 A1
20120328259 Seibert, Jr. et al. Dec 2012 A1
20120331177 Jensen Dec 2012 A1
20120331441 Adamson Dec 2012 A1
20130007245 Malik et al. Jan 2013 A1
20130013560 Goldberg et al. Jan 2013 A1
20130014023 Lee et al. Jan 2013 A1
20130042106 Persaud et al. Feb 2013 A1
20130055127 Saito et al. Feb 2013 A1
20130067232 Cheung et al. Mar 2013 A1
20130080919 Kiang et al. Mar 2013 A1
20130124638 Barreto et al. May 2013 A1
20130138608 Smith May 2013 A1
20130159411 Bowen Jun 2013 A1
20130163289 Kim et al. Jun 2013 A1
20130185347 Romano Jul 2013 A1
20130185558 Seibert et al. Jul 2013 A1
20130191339 Haden et al. Jul 2013 A1
20130198600 Lockhart et al. Aug 2013 A1
20130246932 Zaveri et al. Sep 2013 A1
20130262862 Hartley Oct 2013 A1
20130268480 Dorman Oct 2013 A1
20130268491 Chung et al. Oct 2013 A1
20130275398 Dorman et al. Oct 2013 A1
20130275429 York et al. Oct 2013 A1
20130275509 Micucci et al. Oct 2013 A1
20130305039 Gauda Nov 2013 A1
20140052939 Tseng et al. Feb 2014 A1
20140068589 Barak Mar 2014 A1
Foreign Referenced Citations (37)
Number Date Country
2724521 Nov 2009 CA
101997924 Mar 2011 CN
102264063 Nov 2011 CN
0921661 Jun 1999 EP
1528746 May 2005 EP
2372574 Oct 2011 EP
2610776 Jul 2013 EP
2453924 Apr 2009 GB
2471282 Dec 2010 GB
09-101937 Apr 1997 JP
11-025059 Jan 1999 JP
2003273912 Sep 2003 JP
2004310272 Nov 2004 JP
09-269925 Oct 2007 JP
2008250944 Oct 2008 JP
20020017444 Mar 2002 KR
20040028036 Apr 2004 KR
20050017674 Feb 2005 KR
20060070306 Jun 2006 KR
20060114871 Nov 2006 KR
20070043353 Apr 2007 KR
20070100477 Oct 2007 KR
20100118836 Nov 2010 KR
20110074096 Jun 2011 KR
20110076831 Jul 2011 KR
WO-0219128 Mar 2002 WO
WO-2004097681 Nov 2004 WO
WO-2006028850 Mar 2006 WO
WO-2007024438 Mar 2007 WO
WO-2007035637 Mar 2007 WO
WO-2008011142 Jan 2008 WO
WO-2008076520 Jun 2008 WO
WO-2011109416 Sep 2011 WO
WO-2012167272 Dec 2012 WO
WO-2013009328 Jan 2013 WO
WO-2013013217 Jan 2013 WO
WO-2013041763 Mar 2013 WO
Non-Patent Literature Citations (86)
Entry
International Search Report and Written Opinion for PCT/US2008/012973 dated Apr. 30, 2009, pp. 1-11.
Supplementary European Search Report European Application No. EP 08 85 8563 dated Jun. 20, 2011 pp. 1-5.
International Search Report and Written Opinion for PCT/US2011/039126 mailed on Oct. 6, 2011, pp. 1-13.
Partial International Search Report for PCT/US2011/041308 dated Feb. 27, 2012, pp. 1-2.
International Search Report and Written Opinion for PCT/US2011/056472 mailed on Jun. 22, 2012, pp. 1-12.
Langfeld L. et al., “Microsoft SharePoint 2003 Unleashed,” Chapters 11 and 15, Jun. 2004, pp. 403-404, 557-561, 578-581.
International Search Report and Written Opinion for PCT/US2011/041308 Mailed Jul. 2, 2012, pp. 1-16.
Internet Forums, http://web.archive.org/web/20100528195550/http://en.wikipedia.org/wiki/Internet—forums, Wikipedia, May 30, 2010, pp. 1-20.
Yahoo? Groups, http://web.archive.org/web/20090320101529/http://en.wikipedia.org/wiki/Yahoo!—Groups, Wikipedia, Mar. 20, 2009, pp. 1-6.
Wiki, http://web.archive.org/web/20100213004936/http://en.wikipedia.org/wiki/Wiki, Feb. 13, 2010, pp. 1-16.
Conner, “Google Apps: The Missing Manual,” published by O'Reilly Media, May 27, 2008, 24 pages.
Cisco, “FTP Load Balancing on ACE in Routed Mode Configuration Example,” DocWiki, Jun. 2011, 7 pages.
Palmer, “Load Balancing FTP Servers,” BlogNav, Oct. 2008, 2 pages.
Wayback, “Wayback machine,” Wayback, Jun. 1, 2011, 1 page.
International Search Report and Written Opinion for PCT/US2011/060875 Mailed Oct. 30, 2012, pp. 1-10.
International Search Report and Written Opinion for PCT/US2013/039782, Applicant: Box, Inc., Mailed Aug. 28, 2013, 15 pages.
International Search Report and Written Opinion for PCT/US2013/034662, Applicant: Box, Inc., Mailed May 31, 2013, 10 pages.
Exam Report for GB1306011.6, Applicant: Box, Inc. Mailed Apr. 18, 2013, 8 pages.
Exam Report for GB1300188.8, Applicant: Box, Inc. Mailed May 31, 2013, 8 pages.
“Conceptboard”, One-Step Solution for Online Collaboration, retrieved from websites http://conceptboard.com and https://www.youtube.com/user/ConceptboardApp?feature=watch, printed on Jun. 13, 2013, 9 pages.
Exam Report for EP13158415.3, Applicant: Box, Inc. Mailed Jun. 4, 2013, 8 pages.
International Search Report and Written Opinion for PCT/US2013/029520, Applicant: Box, Inc., Mailed Jun. 26, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2013/023889, Applicant Box, Inc., Mailed Jun. 24, 2013, 13 pages.
International Search Report and Written Opinion for PCT/US2013/035404, Applicant: Box, Inc., Mailed Jun. 26, 2013, 13 pages.
“Microsoft Office SharePoint 2007 User Guide,” Feb. 16, 2010, pp. 1-48.
“Understanding Metadata,” National Information Standards Organization, NISO Press, 2004, 20 pages.
International Search Report and Written Opinion for PCT/US2010/070366, Applicant: Box, Inc., Mailed Mar. 24, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2011/047530, Applicant: Box, Inc., Mailed Mar. 22, 2013, pp. 1-10.
International Search Report and Written Opinion for PCT/US2011/057938, Applicant: Box, Inc., Mailed Mar. 29, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2012/056955, Applicant: Box, Inc., Mailed Mar. 27, 2013, pp. 1-11.
International Search Report and Written Opinion for PCT/US2012/063041, Applicant: Box, Inc., Mailed Mar. 29, 2013, 12 pages.
International Search Report and Written Opinion for PCT/US2012/065617, Applicant: Box, Inc., Mailed Mar. 29, 2013, 9 pages.
International Search Report and Written Opinion for PCT/US2012/067126, Applicant: Box, Inc., Mailed Mar. 29, 2013, 10 pages.
Lars, “35 Very Useful Online Tools for Improving your project Management and Team Collaboration,” Apr. 31, 2010, tripwiremagazine.com, pp. 1-32.
Parr, “Google Docs Improves Commenting, Adds E-mail Notifications,” Apr. 16, 2011, mashable.com, pp. 1-6.
“How-to Geek, How to Sync Specific Folders With Dropbox,” downloaded from the internet http://www.howtogeek.com, Apr. 23, 2013, 5 pages.
International Search Report and Written Opinion for PCT/US2013/020267, Applicant: Box, Inc., Mailed May 7, 2013, 10 pages.
“Average Conversion Time for a D60 RAW file?” http://www.dpreview.com, Jul. 22, 2002, 4 pages.
Burns, “Developing Secure Mobile Applications for Android,” Oct. 2008, Version 1.0, 1-28 pages.
Comes, “MediaXchange User's Manual,” Version 1.15.15, Feb. 1, 2009, pp. 1-90.
Exam Report for GB1308842.2, Applicant: Box, Inc. Mailed Mar. 10, 2014, 4 pages.
Exam Report for GB1312264.3, Applicant: Box, Inc. Mailed Mar. 24, 2014, 7 pages.
Exam Report for GB1314771.5, Applicant: Box, Inc. Mailed Feb. 17, 2014, 7 pages.
Search Report for EP 11729851.3, Applicant: Box, Inc. Mailed Feb. 7, 2014, 9 pages.
Search Report for EP14153783.7, Applicant: Box, Inc. Mailed Mar. 24, 2014, 7 pages.
John et al., “Always Sync Support Forums—View topic—Allway sync funny behavior,” Allway Sync Support Forum at http://sync-center.com, Mar. 28, 2011, XP055109680, 2 pages.
Search Report for EP14151588.2, Applicant: Box, Inc. Mailed Apr. 15, 2014, 12 pages.
Search Report for EP13187217.8, Applicant: Box, Inc. Mailed Apr. 15, 2014, 12 pages.
Rao, “Box Acquires Crocodoc to Add HTML5 Document Converter and Sleek Content Viewing Experience to Cloud Storage Platform,” retrieved from the internet, http://techcrunch.com, May 9, 2013, 8 pages.
Walker, “PDF.js project meeting notes,” retrieved from the internet, http://groups.google.com, May 15, 2014, 1 page.
Sommerer, “Presentable Document Format: Improved On-demand PDF to HTML Conversion,” retrieved from the internet, http://research.microsoft.com, 8 pages.
“Tulsa TechFest 2012—Agenda,” retrieved from the website, http://web.archive.org, Oct. 2, 2012, 2 pages.
Delendik, “Evolving with Web Standards—The Story of PDF.JS,” retrieved from the internet, http://people.mozilla.org, Oct. 12, 2012, 36 pages.
Delendik, “My PDF.js talk slides from Tulsa TechFest,” retrieved from the internet, http://twitter.com, Oct. 12, 2012, 2 pages.
Cohen, “Debating the Definition of Cloud Computing Platforms,” retrieved from the internet, http:://forbes.com, Feb. 3, 2014, 7 pages.
Partial Search Report for EP131832800, Applicant: Box, Inc. Mailed May 8, 2014, 5 pages.
Search Report for EP141509422, Applicant: Box, Inc. Mailed May 8, 2014, 7 pages.
Tulloch et al., “Windows Vista Resource Kit,” Apr. 8, 2007, Microsoft Press, XP055113067, 6 pages.
“Revolving sync conflicts; frequently asked questions,” Microsoft Tech Support, Jul. 16, 2012, retrieved from the Internet: http://web.archive.org/web, 2 pages.
Pyle et al., “How to enable Event logging for Offline Files (Client Side Caching) in Windows Vista,” Feb. 18, 2009, retrieved from the internet: http://blogs.technet.com, 3 pages.
Duffy, “The Best File-Syncing Services,” pcmag.com, retrieved from the internet: http://www.pcmag.com, Sep. 28, 2012, 7 pages.
“Troubleshoot sync problems,” Microsoft Tech Support: May 2, 2012, retrieved from the internet, http://web. Archive.org/web, 3 pages.
Exam Report for GB1318792.7, Applicant: Box, Inc. Mailed May 22, 2014, 2 pages.
Exam Report for EP13177108.1, Applicant: Box, Inc. Mailed May 26, 2014, 6 pages.
“PaperPort Professional 14,” PC Mag. Com review, published Feb. 2012, Ziff Davis, Inc., 8 pages.
“PaperPort,” Wikipedia article (old revision), published May 19, 2012, Wikipedia Foundation, 2 pages.
“Quickoffice Enhances Android Mobile office Application for Improved Productivity on latest Smartphone and Table Devices,” QuickOffice Press Release, Nov. 21, 2011, QuickOffice Inc., 2 pages.
“QuickOffice,” Wikipedia Article (old revision), published May 9, 2012, Wikipedia Foundation, 2 pages.
Exam Report for EP13168784.0, Applicant: Box, Inc. Mailed Nov. 21, 2013, 7 pages.
Exam Report for GB1309209.3, Applicant: Box, Inc. Mailed Oct. 30, 2013, 11 pages.
Exam Report for GB1310666.1, Applicant: Box, Inc. Mailed Aug. 30, 2013, 10 pages.
Exam Report for GB1311417.8, Applicant: Box, Inc. Mailed Dec. 20, 2013, 5 pages.
Exam Report for GB1312095.1, Applicant: Box, Inc. Mailed Dec. 12, 2013, 7 pages.
Exam Report for GB1312874.9, Applicant: Box, Inc. Mailed Dec. 20, 2013, 11 pages.
Exam Report for GB1313559.5, Applicant: Box, Inc., Mailed Aug. 22, 2013, 19 pages.
Exam Report for GB1316532.9, Applicant: Box, Inc. Mailed Oct. 31, 2013, 10 pages.
Exam Report for GB1316533.7, Applicant: Box, Inc. Mailed Oct. 8, 2013, 9 pages.
Exam Report for GB1316971.9, Applicant: Box, Inc. Mailed Nov. 26, 2013, 10 pages.
Exam Report for GB1317600.3, Applicant: Box, Inc. Mailed Nov. 21, 2013, 8 pages.
Exam Report for GB1318373.6, Applicant: Box, Inc. Mailed Dec. 17, 2013, 4 pages.
Exam Report for GB1320902.8, Applicant: Box, Inc. Mailed Dec. 20, 2013, 4 pages.
Gedymin, “Cloud computing with an emphasis on Google App Engine,” Master Final Project, Sep. 2011, 146 pages.
Google Docs, http://web. Archive.org/web/20100413105758/http://en.wikipedia.org/wiki/Google—docs, Apr. 13, 2010, 6 pages.
Patent Court Document of Approved Judgment for GB0602349.3 and GB0623571.7; Mar. 3, 2009, 17 pages.
International Search Report and Written Opinion for PCT/US2013/034765, Applicant: Box, Inc., Mailed Jan. 20, 2014, 15 pages.
Exam Report for EP13185269.1, Applicant: Box, Inc. Mailed Jan. 28, 7 pages.
Related Publications (1)
Number Date Country
20130124458 A1 May 2013 US
Provisional Applications (1)
Number Date Country
61560685 Nov 2011 US