This invention relates in general to the field of electronics and more specifically to a resource efficient content management and delivery system.
In prior art radio communication devices, such as cellular telephones, some software features found in the devices such as the user interface (U1), the signaling software stack, the hardware interface, etc. may be customized after the product is in use. The available set of customizations is typically “hard-coded” into the radio's software at compile time, which presents two main problems: (1) time to market for additional customizations is increased (e.g., the software for the entire product must be re-built, re-tested and re-released); and (2) memory space in the radio must still be utilized for unused customization options, potentially restricting the number of additional features a single radio communication device may contain.
One potential solution to the above problem is to use a file system such as a Flash Data Integrator (FDI) file system. For example, fonts that require updating can be stored as part of an FDI file system. This approach however requires the added overhead of storing and running the FDI file system, which takes away much needed computational resources from the communication device using such a system. Performance of an FDI file system is slow since every data fetch from the FDI file system requires a file related operation. It also suffers in that it cannot be executed in place (XIP); therefore it requires more Random Access Memory (RAM) to implement. Many prior art application downloads (e.g., Musical Instrument Digital Interface (MIDI)/Java) are usually file system based and experience the problems mentioned above.
Another approach in the prior art is to use a database system which is typically used to store static data. Database systems however require additional components such as Structured Query Language (SQL) to access the database which is typically not suitable with portable communication devices that do not have the computing horsepower or memory resources required to support both the radio functions as well as the database software. As shown, a need exists in the art for a resource efficient content management and delivery system that can help improve some of the drawbacks found in the prior art.
The features of the present invention, which are believed to be novel, are set forth with particularity in the appended claims. The invention may best be understood by reference to the following description, taken in conjunction with the accompanying drawings, in the several figures of which like reference numerals identify like elements, and in which:
While the specification concludes with claims defining the features of the invention that are regarded as novel, it is believed that the invention will be better understood from a consideration of the following description in conjunction with the drawing figures.
In accordance with an embodiment of the invention, a resource efficient content management system is employed, whereby the content is stored in memory such as flash memory as a pack having a predefined header structure. The content management system of the present invention does not use a file system so it does not suffer from the problems previously mentioned regarding the use of a file system.
Referring to
The flash packs 114 are located starting at a fixed location in flash memory, in this example starting address 116; however this location can vary from product to product. Its position will be defined by the memory map of the radio 100. Having a fixed starting location for the first flash pack (pack 1) 114 affords the advantage of making the flash packs easy to find during the power-up sequence of radio 100. During the power up initialization of the Data Resource Manager (DRM) located in the radio communication device, a pointer to this starting location will be retrieved through a function call in accordance with an embodiment of the invention.
The DRM is responsible at runtime for reading the flash pack memory region and determining what flash packs have been loaded. Memory pointers are set up so that the data contained in the packs may be accessed. After this step, the use of the resources should be transparent to the clients using the data, since there should be no difference between a flash pack and a non-flash pack configuration as far as accessing the data.
A flash pack 114 in accordance with an embodiment of the present invention can be loosely defined as an image file that may be flashed into a radio such as radio 100. A flash pack is intended to be a “package” that can be “plugged” into the radio 100. This provides an opportunity for configuring the radio 100 with custom combination of resources, such as multiple fonts, allowing the introduction of new bit maps, software features, etc. The data that comprises any of these fonts, software features, and the like are located in a C language source code file that is generated using an editor tool. At build time, this file is compiled into an object file and is then linked into the image which carries the data for supporting the particular font, software feature, etc. By using the flash pack system, it is possible to add features and/or data without having to rebuild the radio's subscriber software code. If new features such as a new font are required, using the flash system, the new font is simply “flashed” into the radio 100.
The flash pack system of the present invention contains both runtime and non-runtime components. The non-runtime components of the flash pack system are responsible for taking input data, for example, taking DRM string data, and creating image files (flash packs 114) that may be flashed into radio 100. The flash packs 114 may then be flashed into the radio's flash memory 112. Once this occurs, the data flashed into the memory 112 is simply hex data, and has no linkage to the compiled radio's “subscriber” code. The runtime components of the system are responsible for searching the designated flash pack memory region in the radio and loading any packs that it finds. The runtime software's job is to find the flash packs and decode the data in them. A pack (flash pack) runtime architecture 600 for radio 100 is shown in
In
The information or info portion 204 is unique for each different type of pack (e.g., font pack, bit map pack, etc.) that is loaded. This portion includes information regarding the sizes of the data located in the data portion 206. The contents of the information section are specific to the type of flash pack (e.g., a bit map pack, a font pack, etc.). Additionally, a checksum is located in this section for ensuring the integrity of the data section. Finally the data portion 206, like the info portion 204, is unique to the type of flash pack being used; it can for example be arrays of any type of data, depending on the data being carried. A break down of a font pack data section is shown in
Referring now to
In
In step 410, the pack manager registers all of the packs and increments the counts for the total number of packs currently stored in the device. This is followed by updating the pack manager's master pointer table 304, so that the pack manager 120 knows the starting address for each pack 114 and also knows where different information is located in each pack 114. The master pointer table 304 also has a pointer to the next pack 114 in the radio 100. Finally, in step 414, the pack manager 120 flags the pack(s) as ready for runtime access by the radio's software.
When a new pack 114 is loaded into radio 100, the pack manager 120 is reinitialized in order to update the master pointer table 304. Once the master pointer table 304 is updated, the radio software in radio 100 can access a particular pack for its contents (e.g., a font pack provides new fonts for use by radio 100). The method described above has the advantage of not requiring a powering down of the radio 100 after a new pack is loaded. It also makes the radio 100 memory efficient since the radio only has to have downloaded those packs it will need since adding or removing packs is easily accomplished. The method also reduces the test time for the radio software during manufacturing since the underlying radio software/operating system (OS) does not change when a new pack is loaded.
The present invention provides a way for an electronic device such as radio 100 to have a data driven architecture to handle any format of binary data. The radio 100 using the present invention is hardware agnostic and does not require a file system as compared to some prior art approaches. The use of loadable packs also potentially reduces the amount of memory required by radio 100 since it does not have to have loaded all potential fonts or other type of data it may need until it needs it. The packs can also be loaded in numerous ways. In a radio communication application, packs may be transmitted over the air to a radio. Other applications, may allow for a tethered download, such as by using a computer to download a pack to the radio 100.
The present invention also provides flexibility to radio manufacturers since they can postpone the introduction of some packs until after the radio has been released and do not feel the pressure to introduce all of the software support at product launch. The pack technique of the present invention allows for XIP and therefore requires less memory (e.g., RAM) to operate. The pack technique can also support numerous different applications including but not limited to downloading software patches, downloading display configuration information in order to support different display types, download state machines that can be used by the core layer of the radio software, etc. Although the preferred embodiment has been discussed in relation to a radio communication device, other electronic devices that can benefit from the present invention can use the content management system.
While the preferred embodiments of the invention have been illustrated and described, it will be clear that the invention is not so limited. Numerous modifications, changes, variations, substitutions and equivalents will occur to those skilled in the art without departing from the spirit and scope of the present invention as defined by the appended claims.
This application is a Divisional of application Ser. No. 10/615,110, filed Jul. 8, 2003. Applicant claims priority thereof.
Number | Date | Country | |
---|---|---|---|
Parent | 10615110 | Jul 2003 | US |
Child | 11614562 | Dec 2006 | US |