1. Field of the Invention
The present invention relates to a respiration sensor, particularly to sensor used to detect abnormal respiration.
2. Description of the Related Art
People spend about one third to one fourth of their lifetime on sleep. However, some persons have respiration disturbance or apnea during sleeping, which may bring about suffocation, death or brain anoxia. Respiration disturbance or apnea may result from a respiratory tract clogging, a deficient cardiopulmonary function, or a poor sleeping environment.
There have been some products or patents for monitoring respiration or heartbeat of infants, babies, elders, or patients of respiration disturbance and cardiopulmonary function deficiency. As shown in
A Taiwan patent of application No. 090120282 disclosed a “Sleep Apnea Detection System and Method”. The device includes a microphone and a controller coupled to the microphone. The microphone detects the sounds of respiration and transmits signals to the controller. The controller can recognize at least one respiration mode of sleep apnea. The microphone and controller are attached to a detachable collar, and then the detachable collar is worn the neck of a testee. Naturally, wearing the collar on the neck will make the testee uncomfortable.
Accordingly, the present invention proposes a novel respiration sensor to solve the conventional problems.
One objective of the present invention is to provide a respiration sensor, which uses a triaxial acceleration sensing unit (g-sensor) to detect the respiration-related movements, identifies whether respiration is normal, and then outputs an alarm when respiration is abnormal.
Another objective of the present invention is to provide a wireless respiration sensor, whereby a caregiver can learn the respiration state of a testee anytime via a far-end receiver device although the caregiver is not beside the testee.
The present invention proposes a respiration sensor, which is attached to a testee and comprises a triaxial acceleration sensing unit, an alarm unit, a microprocessor and a power supply unit. The triaxial acceleration sensing unit detects the respiration-related movements of a testee and outputs detection signals. The microprocessor receives the detection signals and transforms the detection signals into a respiration signal to determine the respiration state of the testee. When the respiration signal is lower than a standard, the microprocessor triggers the alarm unit to give out an alarm to alert the persons nearby.
The present invention also proposes a respiration sensor, which is attached to a testee and comprises a triaxial acceleration sensing unit, an alarm unit, a microprocessor, a power supply unit and a wireless transmitter. The microprocessor is connected with the triaxial acceleration sensing unit, alarm unit and wireless transmitter. The triaxial acceleration sensing unit detects the respiration-related movements of a testee and outputs detection signals. The microprocessor receives the detection signals and transforms the detection signals into a respiration signal to determine the respiration state of the testee. When the respiration signal is lower than a standard, the microprocessor triggers the alarm unit to give out an alarm to alert the persons nearby. The wireless transmitter also constantly transmits the respiration signal to a far-end receiver device, whereby a far-end monitor can learn the respiration state of the testee anytime. When the respiration signal is lower than a standard, the receiver device also gives out an alarm to alert the far-end monitor.
The embodiments will be described in detail to enable the person skilled in the art to easily understand the present invention.
The foregoing schematic description and following detailed description are to demonstrate the present invention and support the claims of the present invention.
Refer to
When detecting the respiration of a testee, the respiration sensor 20 is placed on the chest or abdomen of the testee. Below, the present invention is exemplified with the case that the respiration sensor 20 is placed on the chest. Refer to
With the adhesive tape or the clip element, the respiration sensor 20 can also be fixed to the abdomen of the testee to detect the movements of the abdomen during respiration and determine the respiration state of the testee. The case that the respiration sensor 20 is placed on the abdomen is similar to the case on the chest and will not repeat in detail herein.
Refer to
After the body 36 of the respiration sensor 34 is fixed to the chest of a testee with an adhesive tape or a clip element (not shown in the drawing), the triaxial acceleration sensing unit 38 begins to detect the movements of the chest of the testee and outputs a detection signal to the microprocessor 44. The detection signal is a voltage signal. The microprocessor 44 receives the detection signal and transforms the detection signal into a respiration signal to determine the respiration state of the testee. When the respiration signal is lower than a standard, the microprocessor 44 triggers the alarm unit 40 to give out an alarm, such as lights or sounds, to alert the persons nearby. At the same time, the microprocessor 44 controls the wireless transmitter 42 to transmit the respiration signal to the far-end receiver device 50. The wireless receiver unit 52 of the far-end receiver device 50 receives the respiration signal and transmits the respiration signal to the microprocessor 56. When the respiration signal is lower than a standard, the microprocessor 56 triggers the alarm unit 54 to give out an alarm, such as lights, sounds, or vibrations, to alert the far-end monitor. Therefore, the cooperation of the wireless respiration sensor 34 and the wireless far-end receiver device 50 can reduce the burden of the family or caregivers. Although the family or caregivers are not beside the testee, they can still learn the respiration state of the testee.
With the adhesive tape or the clip element, the respiration sensor 34 can also be fixed to the abdomen of the testee to detect the movements of the abdomen during respiration and determine the respiration state of the testee. The case that the respiration sensor 34 is placed on the abdomen is similar to the case on the chest and will not repeat in detail herein.
In conclusion, the present invention proposes a respiration sensor, which detects the movements of the testee's body to determine whether the respiration state of the testee is normal. The present invention is easy-to-operate and has a small size. Therefore, the present invention will not discomfort the testee. Further, the present invention is inexpensive and unlikely to output a false result.
The embodiments described above are to exemplify the present invention to enable the persons skilled in the art to understand, make, and use the present invention. However, it is not intended to limit the scope of the present invention. Therefore, any equivalent modification or variation according to the spirit of the present invention is to be also included within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
96143835 | Nov 2007 | TW | national |