The invention relates to a respirator hood assembly, for emergency escape comprising a hood, half mask and filter arrangement, and more particularly to a respirator hood assembly that is impermeable to chemical and biological agents and includes positioning means that allow a user to easily and quickly place the assembly in position.
Respirator hoods are known in the art and take many shapes and forms. The hoods generally contain an air impermeable enclosure that surrounds the user's head and neck and a filter system that clears the incoming air of any toxic contaminants.
Some hood designs provide an air impermeable enclosure that forms a tent-like structure around the head of the user and the filter system is enclosed within the enclosure. Other hoods known in the art have externally located filter systems.
Respirator hoods generally include a filter canister, for filtering the ambient air, that is in the shape of a can. U.S. Pat. No. 6,041,778 includes such a canister that is used in combination with a hood. These types of units can be awkward for a user and provide a bulky device that may be unevenly weighted by the canister, causing the hood to slip or move which may allow non-filtered air to enter the hood.
Many prior art hoods include several pieces that require precise placement when a user is donning the hood. Such devices may not be appropriate for emergency use since a user will be required to quickly and precisely place the hood over their head with the minimum amount of adjustment and rearrangement possible.
The present invention provides a respirator hood assembly that comprises a bag, a half mask and an air filtration unit that defines a rigid external structure around at least a portion of the bag that supports the hood and allows the user to quickly don the hood.
Thus the present invention provides a respirator hood assembly comprising a half mask adapted to cover the nose and the mouth of a user, at least one adjustable strap coupled to the assembly for releasably securing and placing the assembly on a user's head and at least one filtration unit rigidly secured to the half mask and in fluid communication with the half mask. The filtration unit has at least one inlet valve to allow the passage of ambient air therethrough, and at least one exhaust valve to allow the passage of expelled air therethrough. The inlet pipe has a flexible end that is removably secured to the inlet valve of the filtration unit and an opposing rigid end having a filter contained within it. The at least one inlet pipe is in fluid connection with the at least one inlet valve and is operable to receive ambient air through it.
The assembly also includes a bag adapted to enclose the head of the user, the half mask being disposed within the bag, the bag has an elastomeric neck seal that is capable of expansion to allow passage over the head and also of contraction to releasably secure and seal the bag to the neck of the user. The at least one filtration unit and the at least one inlet pipe are attached to a lower region of the bag above the neck seal to provide a rigid gripping portion for placing the hood on the user.
Preferably, the respirator hood assembly includes an adjustable strap which is secured at either side of the filtration unit, external of the hood which operates with the rigid gripping portion to place the hood assembly on the user and to secure the half mask in place over the mouth and nose.
The respirator assembly of the invention preferably comprises an embodiment wherein the at least one inlet pipe is flexible to facilitate bending, compression, packaging and storage of the assembly. A preferred form of a flexible inlet pipe comprises a corrugated inlet pipe.
The filtration unit and the inlet pipes (usually two) comprise a rigid structure that is secured to at least a portion of the bag (hood), just above the neck seal. This allows the user to grab the assembly and quickly pull it over the head, adjusting it around the neck and securely positioning the half mask in the right position. The adjustable strap may be held by one hand and tightened with the other hand to secure the mask in place.
In the respirator hood assembly of the invention, the filtration unit may comprise a combination of filters. Preferably the inlet pipe in the unit comprises an activated carbon filter and a particulate filter located between the flexible end and the rigid end of the inlet pipe. More preferably the unit also comprises a filter housing containing a catalytic converter.
In a preferred form of the respirator hood assembly of the present invention, the bag has a viewing window located in the region of the bag adjacent the eyes of the user. This viewing window may be provided by means well known in the art, examples of which include but are not limited to adhesion and welding. The adhesion may be accomplished by lamination, heat sealing, gluing and similar methods.
The preferences set out herein may be combined in any suitable manner to achieve the solution of the invention. As such these combinations form part of the present invention.
The present invention will be better understood with reference to the attached description and to the accompanying drawings which are used to illustrate the present invention only and should not be used to limit the scope of the accompanying claims. The drawings are as follows:
Reference is first made to
The assembly 10 further includes at least one filtration unit 14 that is rigidly secured to and preferably integrally formed with half mask 12. In the preferred embodiment of the invention illustrated, the filtration unit 14 has a filter housing 34 with two inlet pipes 16 provided at either side of the housing 34. These inlet pipes 16 comprise a rigid end 24 and a flexible end 22, preferably of accordion or corrugated configuration. The outer ends of the rigid end 24 comprise external inlet ports 18 by which ambient air is taken into the filtration unit 14. The filtration unit 14 also includes two exhaust valves 20, shown more clearly in
In the preferred embodiment of the present invention the inlet ports 18 are positioned to extend downwards from the inlet pipe 16, away from the head of the user, when in use. This position ensures that no liquid, for example rain or water in a shower, will enter the inlet port 18. The flexible end 22 of the inlet pipes 16 allows for the hood assembly 10 to collapse into a small size. This is achieved by bending the inlet pipes 16 at the flexible end 22 in on themselves towards each other so that they lie side by side along the side of the filtration unit 14 where the half mask 12 is located. The inlet pipes 16 fold in a manner that is similar to the folding action of the arms of a pair of glasses.
When assembled, the filter housing 34 along with the inlet pipes 16 comprise a rigid element of the assembly which a user can hold onto when positioning the respirator hood assembly 10 on the head, allowing for quick donning of the hood assembly 10. The inlet pipes 16 are preferably attached to the bag 28 along the sides located adjacent the side of a user's head when in use. The attachment may be accomplished by any means that will secure the bag 28 to the inlet pipes 16 without causing any damage to the bag 28, such damage may result in the passage of ambient air directly into the bag. Examples of suitable attachment means are known in the art and include but are not limited to adhesion, spot welding, heat sealing and the like. It will also be understood that the bag 28 does not need to be secured to the inlet pipes 16.
An adjustable strap 32 is secured to either side of the half mask 12 and around the rear portion of the hood assembly 10 where the back of the user's head is located when the hood assembly 10 is in use. Adjustment of the strap is provided for at the front of the assembly by means of a strap handle 33 (not shown in
Referring now to
At the rigid end 24 of the inlet pipes 16, which can be said to act as the external housing for the filters that are contained in the filtration unit 14 and also acting as a donning yolk for the assembly, there is preferably included an activated carbon bed filter 38 which filters by adsorbing or converting chemical agents. The activated carbon bed filter 38 is preferably made from activated and impregnated charcoal, a commercial embodiment of which is an “ASZM TEDA” charcoal, in which the carbon has been coated with metals and organic substances to adsorb and react with chemical and biological agents. This type of filter is known to one of skill in the art and may be coated with different substances for adapting its use to different chemical and/or biological materials or agents.
In addition to the carbon filter 38 there is a high efficiency particulate arrester (HEPA) filter 26. The HEPA filter 26 is typically made from a non-woven structure and may comprise pleated media, unpleated media or a combination of both. The preferred embodiment of the HEPA filter will inhibit particulates including biological agents, aerosolized chemical droplets and radioactive particulates. However, the HEPA filter is not limited to the above description and may be designed to inhibit particulates of varying sizes that will be understood by a person skilled in the art. Both filters 38 and 26 are preferably housed within inlet pipes 16. As can be seen from the alternative embodiments illustrated in
The bag 28 of the respirator hood assembly 10 is preferably made from material having low permeability to chemical and biological agents. The bag 28 may also be made from materials that are fire resistant. Examples of suitable materials include, but are not limited to, polyimides such as Kapton™, polyfluorinated materials such as Teflon™, and polyvinyl chlorides. However, the bag may be made from any material that has a low permeability to chemical and biological agents, for example a cloth or fabric coated with a substance that will lower its permeability to such agents.
A viewing window 44 is preferably provided in the bag 28 around where the eye area of a user is positioned when in use, illustrated in
As indicated in
In a preferred form of the respirator hood assembly 10, the filter housing 34 and the inlet pipes 16 are made from a polymer impermeable to at least one of chemical agents and biological agents, and preferably both. Typical examples of materials include but are not limited to polycarbonates and thermoplastic polymers of high chemical resistance. Examples of commercial materials are Lexan®, Noryl® and Zytel®.
The flow of the ambient air through the filtration unit 14 will now be more clearly discussed with reference to
The device of the present invention may be packaged and stored in a specialized package illustrated in
An alternative embodiment will now be discussed with reference to
As described above, the respirator hood assembly 110 includes a half mask 112 that is adapted to cover the nose and the mouth of a user 111, and a bag 128 operable to enclose a user's head. The assembly 110 further includes at least one filtration unit 114 that is rigidly secured to and preferably integrally formed with half mask 112. In the embodiment of the invention illustrated, the filtration unit 114 has a filter housing 134 with two inlet pipes 116 provided at either side of the housing 134. These inlet pipes 116 comprise a rigid end 124 and a flexible end 122, preferably of accordion or corrugated configuration. The outer ends of the rigid end 124 comprise external inlet ports 118, shown in
The hood assembly 110 also includes an adjustable strap 132, with stops 135, secured to either side of the half mask 112 and around the rear portion of the hood assembly 110 where the back of the user's head is located when the hood assembly 110 is in use. The hood assembly also includes an elastomeric neck seal 130, as described above.
As can be seen in
Turning to
It will be understood by a person skilled in the art that several configurations of the filters 126, 138 can exist and form part of the present invention. For example, the filters 126, 138 may lie adjacent each other within the rigid end 124 of inlet pipes 116 with the inlet ports 118 feeding air into the HEPA filter 126.
The use of the hood assembly 10 will now be discussed.
In operation, the assembly 10 is removed from its storage package 50 and the inlet pipes 16 are unfolded in a manner similar to unfolding the arms of a pair of glasses, to open up the hood assembly 10. The assembly 10 is shaken out to put air into the bag 28 and to allow access to the adjustable strap 32 and rigid gripping portion provided by the filtration unit 14 and the inlet pipes 16 for quick and secure donning of the assembly by a user. The user holds the sides of the rigid gripping portion defined by the inlet pipes 16 and places the head of the user into the bag 28 to position the half mask 12 over the nose and mouth of the user and then the strap 32 is adjusted, as described above, to secure the half mask 12 in the required position. Once the half mask 12 is positioned about the head and the strap 32 is secured, then the user adjusts the neck portion 30 so that it is lying flat around the neck of the user. All of this operation is meant to occur in very rapid time, since it is anticipated that the respirator hood assembly 10 of the invention would be used by individuals who wish to quickly evacuate from a building, such as a high rise building, where air quality would provide a risk to the user. Typically, the filtration unit 10 is designed for the amount of time required to exit a typical high rise building, and thus an average time of 20 minutes is envisaged for operation of the filtration unit when the respirator hood assembly is in place on a user. Obviously, the time and hence filter capacity can be varied appropriately to allow for longer or shorter usage times, including, but not limited to, standard escape times 15, 30 and 60 minutes.
The preferred embodiment of the present invention is designed to be disposable and for one time use only, however, the assembly may be made to include filters that can be replaced or a whole filtration unit that can be removed from the half mask and bag and replaced with a new filtration unit. In order to allow for the replacement of parts connections may be provided within the assembly that allow for easy removal of parts. For example, the filter housing may be connected to the half mask and the inlet pipes by a fitting such as a snap fit or a screw fit, both of which would allow for the removal and replacement of the housing.
The above described embodiments of the invention are intended to be examples of the present invention and alterations and modifications may be effected thereto, by those of skill in the art, without departing from the scope of the invention. For example, the hood assembly may comprise any combination of filters disclosed above, that can be located within the filtration unit in any order. Each filter may be adapted to provide specific capabilities depending on the intended end use. For example, the filtration unit may comprise more then one particulate filter, where each filter is operable to inhibit the passage of varying particulate sizes. The carbon filter may be adapted to contain agents that will only respond to specific chemical or biological agents, depending on the situation envisaged for the use of the hood assembly.
Each half mask may be made of varying sizes to allow for size variations in the facial structure of the users. Examples of suitable materials that may be used for the half mask include, but are not limited to, Alcryn®, butyl rubber and silicone rubber. The elastomeric neck seal may also be made of varying sizes to accommodate varying sizes of neck in the users. Each filter contained within the hood assembly should be made to maximize its potential use and ensure that the face velocity of each filter is suitably adequate to provide a low breathing resistance. In the case of the catalytic filter, the filter should be made having a face velocity adequate to allow for catalytic conversion of the contaminants.
The filtration unit, including the inlet pipes, should be made to provide the rigid outer structure that assists the user in placing the hood assembly securely over their head. The filtration unit may be made from any shape that provides this additional rigid structure and can contain the filters within it and allow the ambient air to flow through the inlet valves to pass through all of the filters before entering the half mask. The inlet pipes may also be made from, for example, aluminum or polymers reinforced with glass fibres, or other suitable material including those discussed above, that have a low permeability to chemical and/or biological agents and will provide a suitable housing for the filters.
This application claims the benefit of U.S. Provisional Application No. 60/383,815, filed May 29, 2002.
Number | Name | Date | Kind |
---|---|---|---|
3621841 | Austin et al. | Nov 1971 | A |
3976063 | Henneman et al. | Aug 1976 | A |
4154235 | Warncke | May 1979 | A |
4207882 | Lemere | Jun 1980 | A |
4552140 | Cowley et al. | Nov 1985 | A |
4559939 | Levine et al. | Dec 1985 | A |
4610247 | Stroup | Sep 1986 | A |
4614186 | John | Sep 1986 | A |
4625721 | Levine et al. | Dec 1986 | A |
4771771 | Walther | Sep 1988 | A |
4793342 | Haber et al. | Dec 1988 | A |
4807614 | van der Smissen et al. | Feb 1989 | A |
4811728 | Von Kopp | Mar 1989 | A |
5016625 | Hsu et al. | May 1991 | A |
5029578 | Swiatosz | Jul 1991 | A |
5056512 | Bower et al. | Oct 1991 | A |
5113854 | Dosch et al. | May 1992 | A |
5115804 | Brookman | May 1992 | A |
5140980 | Haughey et al. | Aug 1992 | A |
5186165 | Swann | Feb 1993 | A |
5315987 | Swann | May 1994 | A |
5431156 | Sundstrom | Jul 1995 | A |
5526804 | Ottestad | Jun 1996 | A |
5529058 | Crippen | Jun 1996 | A |
5714126 | Frund | Feb 1998 | A |
6041778 | Swann | Mar 2000 | A |
6062221 | Brostrom et al. | May 2000 | A |
6233748 | Gieger et al. | May 2001 | B1 |
6302103 | Resnick | Oct 2001 | B1 |
6340024 | Brookman et al. | Jan 2002 | B1 |
Number | Date | Country |
---|---|---|
1088841 | Nov 1980 | CA |
1149258 | Jul 1983 | CA |
1180629 | Jan 1985 | CA |
1239847 | Aug 1988 | CA |
1251375 | Mar 1989 | CA |
1268685 | May 1990 | CA |
1278488 | Jan 1991 | CA |
1285452 | Jul 1991 | CA |
1322969 | Oct 1993 | CA |
1326805 | Feb 1994 | CA |
2162227 | May 1996 | CA |
2084765 | Nov 1996 | CA |
2189378 | May 1998 | CA |
0470791 | Feb 1992 | EP |
0327643 | Oct 1994 | EP |
2763563 | Nov 1998 | FR |
2189152 | Oct 1987 | GB |
2189153 | Oct 1987 | GB |
2189707 | Nov 1987 | GB |
2191950 | Dec 1987 | GB |
2200288 | Aug 1988 | GB |
2201096 | Aug 1988 | GB |
2205506 | Dec 1988 | GB |
2213387 | Aug 1989 | GB |
2233905 | Jan 1991 | GB |
2247396 | Mar 1992 | GB |
2275613 | Sep 1994 | GB |
2 353 480 | Feb 2001 | GB |
Number | Date | Country | |
---|---|---|---|
20040003810 A1 | Jan 2004 | US |
Number | Date | Country | |
---|---|---|---|
60383815 | May 2002 | US |