Speech enhancement apparatus and respirator masks including speech enhancement apparatus, as well as methods of enhancing speech transmission for the wearer of a respirator mask are described herein.
Respirator masks are used in a wide variety of environments, such as, e.g., paint booths, grain storage facilities, laboratories with hazardous biological materials, environments containing certain chemical fumes, etc. Respirator masks are typically adapted to receive a variety of filter units and other attachments that are designed specifically for the hazardous environment in which the mask is to be used. As such, the same mask body can be used in a variety of different hazardous environments simply by changing the filter. This ease of changing filters makes the masks very cost effective by permitting the manufacture of a single mask for multiple environments.
Respirator masks define a clean air envelope with the face of the wearer. The clean air envelope includes the clean air source and is bounded by the mask, the mask's seal with the face of the wearer, and the exhalation valve of the mask.
There are two general designs of respirator face masks: the partial facepiece respirator mask and the full facepiece respirator mask. A partial facepiece respirator mask typically encloses the wearer's mouth and nose and forms a seal with the portion of the wearer's face that is contiguous to the nose and mouth. The eyes are left unprotected when using the partial facepiece respirator mask. The full facepiece respirator mask is a much larger unit and encloses the wearer's eyes in addition to the wearer's nose and mouth.
Respirator masks can additionally be distinguished by being either a positive pressure or negative pressure device. A positive pressure device typically includes an external pump or pressurized vessel, with or without a filter, that is the clean air source and that forces air into the mask. A negative pressure respirator mask functions on the negative pressure generated by the wearer inhaling. The inhalation generates a negative pressure inside the clean air envelope and draws air into the respirator mask. Generally, ambient air is drawn through a filter or filters by the negative pressure. The filters clean the air and the air is then drawn into the clean air envelope of the mask for inhalation by the wearer.
Attempts have been made to enhance the intelligibility of speech in connection with respirator masks because the masks cover the wearer's mouth. Passive devices are purely mechanical and active devices involve some form of enhancement by powered amplification. The most common passive communication device is the voice diaphragm. Although voice diaphragms are useful, the level of enhanced intelligibility they provide is limited.
Active speech transmission devices can provide better enhancement of speech, but may be limited by the power required to operate the units. Examples of some active speech amplification units are described in U.S. Pat. Nos. 4,352,353; 4,508,936; 4,989,596; 4,980,926; 5,138,666; 5,224,473; 5,224,474; 6,382,206; etc.
Speech enhancement apparatus and respirator masks including speech enhancement apparatus, as well as methods of enhancing speech transmission for the wearer of a respirator mask are described herein.
In one or more embodiments, the speech enhancement apparatus and methods described herein detect acoustic energy within a first frequency range in the clean air envelope of a respirator mask and deliver compensating acoustic energy outside of the clean air envelope using a speaker. The compensating acoustic energy is, in one or more embodiments, delivered in one or more predetermined attenuated frequency ranges that cover less than all of the detected first frequency range. In one or more embodiments, the compensating acoustic energy may be delivered with an attenuated amplitude profile that uniform or that is non-uniform over the one or more attenuated frequency ranges.
In one or more embodiments, the one or more predetermined attenuated frequency ranges may be selected based on the attenuation characteristics of respirator masks generally or the specific type of respirator mask with which the speech enhancement apparatus is being used. The attenuation characteristics of a respirator mask may be described as the portion or portions of the frequency range of speech that are not passed through the mask or are passed with a reduced amplitude. The speech enhancement apparatus and methods described herein may compensate for the attenuation caused by respirator masks by delivering compensating acoustic energy within the one or more attenuated frequency ranges outside of the clean air envelope. In doing so, the speech enhancement apparatus and methods described herein may increase intelligibility of speech by a person near the wearer of a respirator mask. In one or more embodiments, the compensating acoustic energy may be delivered with an attenuated amplitude profile that uniform or that is non-uniform over the one or more attenuated frequency ranges.
Because the speech enhancement apparatus and methods described herein deliver acoustic energy over only a portion of the entire speech frequency range and/or with one or more selected attenuated amplitude profiles, the power required to enhance speech using the apparatus and methods described herein may be reduced as compared to, e.g., a system designed to deliver acoustic energy over a broader frequency range, e.g., all of the frequency range as detected in the clean air envelope using the apparatus and methods described herein.
In one aspect, one or more embodiments of a respirator mask as described herein may include: a mask body configured to define a clean air envelope between the mask and the mouth and nose of wearer and speech enhancement apparatus. The speech enhancement apparatus comprises a microphone configured for attachment to the mask body, the microphone further configured to detect acoustic energy within the clean air envelope when attached to the mask body; a speaker configured to produce acoustic energy outside of the clean air envelope; and a controller operably connected to the speaker and the microphone.
In one or more embodiments, the controller may be configured to: receive a speech signal from the microphone, wherein the speech signal is indicative of acoustic energy detected by the microphone within a first frequency range; and deliver an output signal to the speaker, wherein the output signal is configured to cause the speaker to emit compensating acoustic energy, wherein the compensating acoustic energy is emitted in one or more predetermined attenuated frequency ranges that cover less than all of the first frequency range, and wherein the compensating acoustic energy comprises a predetermined attenuated amplitude profile over each predetermined attenuated frequency range of the one or more predetermined attenuated frequency ranges.
In one or more embodiments of the respirator masks described herein, the predetermined attenuated amplitude profile is uniform over at least one predetermined attenuated frequency range of the one or more predetermined attenuated frequency ranges.
In one or more embodiments of the respirator masks described herein, the predetermined attenuated amplitude profile is non-uniform over at least one predetermined attenuated frequency range of the one or more predetermined attenuated frequency ranges.
In one or more embodiments of the respirator masks described herein, the speech enhancement apparatus comprises a selector, the selector being operably connected to the controller and configured to select the one or more predetermined attenuated frequency ranges from two or more different predetermined attenuated frequency ranges.
In one or more embodiments of the respirator masks described herein, the speech enhancement apparatus comprises a selector, the selector being operably connected to the controller and configured to select the one or more predetermined attenuated amplitude profile from two or more different predetermined attenuated amplitude profiles.
In one or more embodiments of the respirator masks described herein, the microphone, the speaker and the controller are located in a housing along with a power source that is operably connected to the controller, and wherein the housing is configured for attachment to the mask body. In one or more embodiments, the respirator mask comprises a port, and wherein the housing of the speech enhancement apparatus comprises a fitting configured for selective attachment to the port.
In one or more embodiments of the respirator masks described herein, the microphone is attached to a housing that is configured for attachment to the mask body; and wherein the speaker and the controller are located in an auxiliary housing.
In one or more embodiments of the respirator masks described herein, the one or more predetermined attenuated frequency ranges comprise only one predetermined attenuated frequency range.
In one or more embodiments of the respirator masks described herein, the one or more predetermined attenuated frequency ranges comprise an upper limit of about 10,000 Hz or less.
In one or more embodiments of the respirator masks described herein, the one or more predetermined attenuated frequency ranges comprise a lower limit of about 300 Hz or more.
In another aspect, one or more embodiments of the speech enhancement apparatus configured for attachment to a respirator mask as described herein may include: a microphone configured to detect acoustic energy within a clean air envelope of a respirator mask; a speaker configured to produce acoustic energy outside of the clean air envelope within which the microphone is configured to detect acoustic energy; and a controller operably connected to the microphone and the speaker. In one or more embodiments, the controller may be configured to: receive a speech signal from the microphone, wherein the speech signal is indicative of acoustic energy detected by the microphone within a first frequency range; and deliver an output signal to the speaker, wherein the output signal is configured to cause the speaker to emit compensating acoustic energy, wherein the compensating acoustic energy is emitted in one or more predetermined attenuated frequency ranges that cover less than all of the first frequency range, and wherein the compensating acoustic energy comprises a predetermined attenuated amplitude profile over each predetermined attenuated frequency range of the one or more predetermined attenuated frequency ranges.
In one or more embodiments of the speech enhancement apparatus described herein, the predetermined attenuated amplitude profile is uniform over at least one predetermined attenuated frequency range of the one or more predetermined attenuated frequency ranges.
In one or more embodiments of the speech enhancement apparatus described herein, the predetermined attenuated amplitude profile is non-uniform over at least one predetermined attenuated frequency range of the one or more predetermined attenuated frequency ranges.
In one or more embodiments of the speech enhancement apparatus described herein, the speech enhancement apparatus comprises a selector, the selector being operably connected to the controller and configured to select the one or more predetermined attenuated frequency ranges from two or more different predetermined attenuated frequency ranges.
In one or more embodiments of the speech enhancement apparatus described herein, the speech enhancement apparatus comprises a selector, the selector being operably connected to the controller and configured to select the one or more predetermined attenuated amplitude profiles from two or more different predetermined attenuated amplitude profiles.
In one or more embodiments of the speech enhancement apparatus described herein, the microphone is located in a housing configured for attachment to a port of the respirator mask defining the clean air envelope in which the microphone is configured to detect acoustic energy. In one or more embodiments, the speaker and the controller are located in the housing. In one or more embodiments, the speaker and the controller are located in an auxiliary housing.
In one or more embodiments of the speech enhancement apparatus described herein, the one or more predetermined attenuated frequency ranges comprise only one predetermined attenuated frequency range.
In one or more embodiments of the speech enhancement apparatus described herein, the one or more predetermined attenuated frequency ranges comprise an upper limit of about 10,000 Hz or less.
In one or more embodiments of the speech enhancement apparatus described herein, the one or more predetermined attenuated frequency ranges comprise a lower limit of about 300 Hz or more.
In one or more embodiments of the methods of enhancing speech as described herein, the method may include: detecting acoustic energy in a clean air envelope of a respirator mask using a microphone; delivering a speech signal to a controller from the microphone, wherein the speech signal is indicative of the detected acoustic energy within a first frequency range; and delivering an output signal to a speaker, wherein the output signal causes the speaker to emit compensating acoustic energy outside of the clean air envelope in one or more predetermined attenuated frequency ranges that cover less than all of the first frequency range, and wherein the compensating acoustic energy comprises a predetermined attenuated amplitude profile over each predetermined attenuated frequency range of the one or more predetermined attenuated frequency ranges.
In one or more embodiments of the methods described herein, the predetermined attenuated amplitude profile is uniform over at least one predetermined attenuated frequency range of the one or more predetermined attenuated frequency ranges.
In one or more embodiments of the methods described herein, the predetermined attenuated amplitude profile is non-uniform over at least one predetermined attenuated frequency range of the one or more predetermined attenuated frequency ranges.
In one or more embodiments of the methods described herein, the method comprises selecting the one or more predetermined attenuated frequency ranges from two or more different predetermined attenuated frequency ranges.
In one or more embodiments of the methods described herein, the method comprises selecting the one or more predetermined attenuated amplitude profiles from two or more different predetermined attenuated amplitude profiles.
In one or more embodiments of the methods described herein, the microphone is attached to a housing, and the method comprises attaching the housing to a port on the respirator mask.
In one or more embodiments of the methods described herein, the one or more predetermined attenuated frequency ranges comprise only one predetermined attenuated frequency range.
In one or more embodiments of the methods described herein, the one or more predetermined attenuated frequency ranges comprise an upper limit of about 10,000 Hz or less.
In one or more embodiments of the methods described herein, the one or more predetermined attenuated frequency ranges comprise a lower limit of about 300 Hz or more.
The words “preferred” and “preferably” refer to embodiments described herein that may afford certain benefits, under certain circumstances. However, other embodiments may also be preferred, under the same or other circumstances. Furthermore, the recitation of one or more preferred embodiments does not imply that other embodiments are not useful, and is not intended to exclude other embodiments from the scope of the invention.
As used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a” or “the” component may include one or more of the components and equivalents thereof known to those skilled in the art. Further, the term “and/or” means one or all of the listed elements or a combination of any two or more of the listed elements.
It is noted that the terms “comprises” and variations thereof do not have a limiting meaning where these terms appear in the accompanying description. Moreover, “a,” “an,” “the,” “at least one,” and “one or more” are used interchangeably herein.
Relative terms such as left, right, forward, rearward, top, bottom, side, upper, lower, horizontal, vertical, and the like may be used herein and, if so, are from the perspective observed in the particular figure. These terms are used only to simplify the description, however, and not to limit the scope of the invention in any way.
The above summary is not intended to describe each embodiment or every implementation of the speech enhancement apparatus, respirator masks including speech enhancement apparatus, and methods of enhancing speech transmission as described herein. Rather, a more complete understanding of the invention will become apparent and appreciated by reference to the following Description of Illustrative Embodiments and claims in view of the accompanying figures of the drawing.
In the following description of illustrative embodiments, reference is made to the accompanying figures of the drawing which form a part hereof, and in which are shown, by way of illustration, specific embodiments. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention.
One illustrative embodiment of a partial facepiece respirator mask 10 is depicted in
The illustrative embodiment of respirator mask 10 depicted in
Although the speech enhancement apparatus and methods may, as described herein, be used with a negative pressure respirator mask (one illustrative embodiment of which is mask 10 depicted in
Respirator masks define a clean air envelope around at least the wearer's nose and mouth within the body 12 of the illustrative respirator mask 10 depicted in
The illustrative embodiment of respirator mask 10 also includes a speech enhancement apparatus port 18 two which speech enhancement apparatus 20 may be attached. The speech enhancement apparatus 20 is depicted as being selectively attached to the speech enhancement apparatus port 18. In one or more alternative embodiments, the speech enhancement apparatus described herein may be fixedly attached to the respirator mask. As used herein, “fixedly attached” (and variations thereof) means that separation of the speech enhancement apparatus from the respirator mask would require destruction or deformation of a portion of the mask and/or the speech enhancement apparatus.
In one or more embodiments, the speech enhancement apparatus port 18 opens directly into the clean air envelope defined within the respirator mask 10 so that any speech energy emitted within the clean air envelope can reach the speech enhancement apparatus directly. Referring to
With reference to both
The illustrative embodiment of speech enhancement apparatus 20 includes a controller 30, power supply 32, microphone 34, speaker 36, and selector switch 38. The controllers 30 used in the speech enhancement apparatus described herein may be provided in any suitable form and may, for example, include memory and a controller. The controller may, for example, be in the form of one or more microprocessors, Field-Programmable Gate Arrays (FPGA), Digital Signal Processors (DSP), microcontrollers, Application Specific Integrated Circuit (ASIC) state machines, etc.
In the illustrative embodiment described herein, the controller 30 and power supply 32 of the speech enhancement apparatus 20 may be provided in a control module 31 (see, e.g.,
Because the microphone 34 provided in the speech enhancement apparatus 20 is located on the back side of the housing 22 of the speech enhancement apparatus 20 that includes the flange 24, the microphone 34 will be located within the clean air envelope formed by the respirator mask 10 when the speech enhancement apparatus 20 is attached to the port 18 on the respirator mask 10. As a result, the microphone 34 is positioned to detect acoustic energy within the clean air envelope of the respirator mask 10. Detection of acoustic energy within the clean air envelope allows the microphone 34 to detect speech of the wearer of the respirator mask 10.
As seen in
The illustrative embodiment of speech enhancement apparatus 20 also includes a switch 38 that may be used to turn the speech enhancement apparatus 20 on and off. In one or more alternative embodiments, the selector switch 38 may provide other functions such as, for example, selecting frequency ranges and/or amplitude profiles for the compensating acoustic energy as described below in more detail.
Referring to
In still other embodiments, the microphone of a speech enhancement apparatus as described herein may be selectively or fixedly attached to a respirator mask in a manner that positions the microphone to detect acoustic energy in the clean air envelope defined by the respirator mask when it is worn by a person whether or not the microphone is located in or attached to a housing that is selectively or fixedly attached to the respirator mask. In such an embodiment, one or both of the controller and speaker may be located in a housing that, itself, may or may not be selectively or fixedly attached to the respirator mask (further, the housing may also contain a power source for the speech enhancement apparatus).
As discussed above in connection with the embodiment depicted in
In the depicted embodiment, the remainder of the components of the speech enhancement apparatus 120 as depicted in
Auxiliary housing 123 includes, in the depicted embodiment, the controller 130 a power supply 132 a speaker 136 and a selector switch 138. A connection 135 is provided in the speech enhancement apparatus 120 to connect the microphone 134 in first housing 122 to the controller 130 in a second housing 123. The connection 135 may, in one or more embodiments, be a wired connection. In one more alternative embodiments, the connection 135 may be in the form of a wireless connection (e.g., Bluetooth, Wi-Fi, RF, optical, etc.)
Some variation in the distribution of the various components of the speech enhancement apparatus 120 may also be possible in alternative embodiments. For example, in one or more embodiments, the speaker 136 may be located within housing 122 along with microphone 134. In another example, selector switch 138 may be located within the housing 122. In still another embodiment, the controller 130 may be located within the housing 122. In one or more embodiments, the only component located within the auxiliary housing 123 may be, for example, the power supply 132. Although the speech enhancement apparatus depicted in
The controllers of the speech enhancement apparatus described herein may, in one or more embodiments, be configured to receive a speech signal from a microphone as described herein. The speech signal received from the microphone is indicative of acoustic energy detected by the microphone. That acoustic energy will, in the embodiments described herein, typically be dominated by the acoustic energy generated by a wearer of the respirator mask when they are speaking. In one or more embodiments, the speech signal may be indicative of acoustic energy detected by the microphone within a first frequency range.
The controller is also operably connected to the speaker so that the controller may be configured to deliver an output signal to the speaker. The output signal delivered to the speaker by the controller may, in one or more embodiments, be configured to cause the speaker to emit compensating acoustic energy as described herein. In one or more embodiments, the compensating acoustic energy is based on the speech signal provided by the microphone and may be emitted in one or more predetermined attenuated frequency ranges that cover less than all of the first frequency range detected within the clean air envelope of the respirator mask. In one or more embodiments, the compensating acoustic energy may be emitted in only one predetermined attenuated frequency range that covers less than all of the first frequency range detected within the clean air envelope of the respirator mask.
Further, in one or more embodiments, the compensating acoustic energy may have one or more predetermined attenuated amplitude profiles over each of the one or more predetermined attenuated frequency ranges. In other words, one or more embodiments may involve delivery of compensating acoustic energy in a first frequency range with a first attenuated amplitude profile and in a second (different) frequency range with a second attenuated amplitude profile that is the same or different than the first attenuated amplitude profile.
Operation of the speech enhancement apparatus described herein to detect acoustic energy within the clean air envelope and deliver compensating acoustic energy outside of the clean air envelope to compensate for the attenuation of speech caused by a respirator mask as described herein can be described in connection with
Illustrative examples of acoustic energy detected within the clean air envelope and outside the clean air envelope of a respirator mask are depicted in
As described herein, the speech enhancement apparatus includes a microphone located within the clean air envelope of the respirator mask to detect such acoustic energy over a first frequency range. The first frequency range over which acoustic energy is detected may, in one or more embodiments, encompass the entire expected frequency range for the acoustic energy of speech, as well as the amplitude of that acoustic energy over that frequency range. However, in one or more alternative embodiments, the first frequency range over which acoustic energy is detected as described herein may not include all of the frequency range and/or amplitude of acoustic energy generated within a mask by a wearer of the mask.
Plot 42 as seen in
To compensate for the attenuation of acoustic energy by a respirator mask, the speech enhancement apparatus and methods described herein provide compensating acoustic energy outside of the clean air envelope based on the acoustic energy detected within the clean air envelope. Referring to
In one or more embodiments, the speech enhancement apparatus and methods described herein may deliver compensating acoustic energy over one or more predetermined attenuated frequency ranges that may be selected based on the frequency range over which a respirator mask attenuates the acoustic energy of speech to a degree that can adversely affect its intelligibility by persons located near the wearer of the respirator mask. The one or more predetermined attenuated frequency ranges may, as depicted in
In one or more embodiments, the one or more predetermined attenuated frequency ranges may, for example, have a lower limit of 300 Hz or more, possibly 500 Hz or more, or even 1000 Hz or more. In other words, the compensating acoustic energy may be delivered over one or more frequency ranges starting at or above one of these selected lower limits. In one or more embodiments, the one or more predetermined attenuated frequency ranges may, for example, have no set upper limit (i.e., the upper limit may simply be the upper limit at which the speaker and/or circuitry within the controller are capable of delivering acoustic energy). In one or more alternative embodiments, however, the one or more predetermined attenuated frequency ranges may have an upper limit of, e.g., 10,000 Hz or less, possibly 9000 Hz or less, or even 8000 Hz or less. The compensating acoustic energy may be delivered over a frequency range that extends, at most, up to one of these upper limits in one or more embodiments of the speech enhancement apparatus and methods described herein.
In one or more embodiments, the speech enhancement apparatus and methods described herein may deliver the compensating acoustic energy based on the acoustic energy detected by a microphone within the clean air envelope with a flat frequency response. Plot 50 as seen in
In one or more alternative embodiments, the speech enhancement apparatus and methods described herein may deliver compensating acoustic energy based on the acoustic energy detected by a microphone within the clean air envelope that has a non-uniform attenuated amplitude profile. Plot 52 as seen in
The attenuated amplitude profile represented by plot 52 is only one example of an infinite number of potential non-uniform attenuated amplitude profiles that could be used in connection with the speech enhancement apparatus and methods described herein. For example, in one or more embodiments, the compensating acoustic energy may be delivered with an amplitude profile that is not linear, e.g., that highlights or particularly enhances one or more selected frequencies or frequency ranges within the attenuated frequency range that may be determined to particularly enhance the intelligibility of speech by persons located near the wearer of a respirator mask using the speech enhancement apparatus described herein. Plot 54 as seen in
As one example, it may be useful to accentuate higher frequencies such as, e.g., the frequencies within a range from 3000 kHz to 4000 kHz (with, e.g., a peak around 3700 kHz) to improve the intelligibility of speech. Although the compensating acoustic energy may be delivered over a wider frequency range (e.g., from 300 Hz up to, e.g., 10,000 Hz), the compensating acoustic energy delivered within a smaller frequency range and/or at selected frequencies within that wider frequency range may be used to possibly further enhance intelligibility of speech as described herein.
In one or more embodiments, the speech enhancement apparatus and methods described herein may provide a user with the ability to select the at least one of the one or more predetermined attenuated frequency ranges and/or the attenuated amplitude profiles to be applied and used to enhance intelligibility of speech. In one or more embodiments, selection from a variety of frequency ranges and/or amplitude profiles may be used to adjust the speech enhancement apparatus and methods for use with different respirator masks. For example, different respirator masks will often provide different attenuation characteristics and the speech enhancement apparatus and methods described herein may be selected to address those different attenuation characteristics when the speech enhancement apparatus and methods are used with different masks. One example of respirator masks that may provide different attenuation characteristics may, for example, be full facepiece respirator masks as opposed to partial facepiece respirator masks. Another example of respirator masks that may provide different attenuation characteristics may include two different partial facepiece respirator masks that have different constructions which attenuate speech differently.
Selection from a variety of frequency ranges and/or amplitude profiles in the speech enhancement apparatus and methods described herein may also be useful to adjust for speech differences between genders. For example, use of the speech enhancement apparatus and methods described herein to improve speech intelligibility may be best accomplished using different attenuated frequency ranges and/or attenuated amplitude profiles depending on the gender of the person wearing the respirator mask.
Selection from a variety of frequency ranges and/or amplitude profiles in the speech enhancement apparatus and methods described herein may also be useful to improve the intelligibility of speech in a noisy environment. For example, speech intelligibility in a noisy environment may be best enhanced by delivering compensating acoustic energy over frequency ranges and/or with amplitude profiles that may consume energy at a faster rate, while also providing a user with the opportunity to select attenuated frequency ranges and/or attenuated amplitude profiles that consume energy at a slower rate but which still enhance intelligibility of speech (in, for example, a quieter environment in which less aggressive compensating acoustic energy is required to improve the intelligibility of speech).
Referring to
Illustrative embodiments of the speech enhancement apparatus and methods and respirators used with the same as described herein are discussed and reference has been made to some possible variations. These and other variations and modifications in the invention will be apparent to those skilled in the art without departing from the scope of the invention, and it should be understood that this invention is not limited to the illustrative embodiments set forth herein. Accordingly, this invention is not limited to the above-described embodiments, but is to be controlled by the limitations set forth in the following claims and any equivalents thereof. This invention also may be suitably practiced in the absence of any element not specifically disclosed herein.
All patents and patent applications cited herein are incorporated by reference into this document in total. To the extent there is a conflict or discrepancy between this document and the disclosure in any such incorporated document, this document will control.
This application is a continuation of U.S. Ser. No. 13/757,493 filed on Feb. 1, 2013.
Number | Name | Date | Kind |
---|---|---|---|
3314424 | Berman | Apr 1967 | A |
4352353 | Bolton et al. | Oct 1982 | A |
4400591 | Jennings et al. | Aug 1983 | A |
4508936 | Ingalls | Apr 1985 | A |
4718415 | Bolnberger et al. | Jan 1988 | A |
4980926 | Noetzel | Dec 1990 | A |
4989596 | Macris | Feb 1991 | A |
5060308 | Bieback | Oct 1991 | A |
5101816 | Wilcox | Apr 1992 | A |
5138666 | Bauer et al. | Aug 1992 | A |
5224473 | Bloomfield | Jul 1993 | A |
5224474 | Bloomfield | Jul 1993 | A |
5572990 | Berlin | Nov 1996 | A |
5829429 | Hughes | Nov 1998 | A |
5860417 | Kettl | Jan 1999 | A |
5990793 | Bieback | Nov 1999 | A |
6101256 | Steelman | Aug 2000 | A |
6121881 | Bieback | Sep 2000 | A |
6382206 | Palazzotto et al. | May 2002 | B1 |
6430298 | Kettl | Aug 2002 | B1 |
7139401 | Calman et al. | Nov 2006 | B2 |
7254535 | Harton | Aug 2007 | B2 |
7394905 | Miller et al. | Jul 2008 | B2 |
7493899 | Davies | Feb 2009 | B2 |
9498658 | Kihlberg | Nov 2016 | B2 |
9517366 | Kihlberg | Dec 2016 | B2 |
20020067663 | Loeppert et al. | Jun 2002 | A1 |
20040071299 | Yoshino | Apr 2004 | A1 |
20050008183 | Skillicorn | Jan 2005 | A1 |
20050063552 | Shuttleworth | Mar 2005 | A1 |
20050063561 | Birli et al. | Mar 2005 | A1 |
20050172959 | Williams | Aug 2005 | A1 |
20070019824 | Osmanovic et al. | Jan 2007 | A1 |
20070098187 | Lee | May 2007 | A1 |
20070136050 | Tourwe | Jun 2007 | A1 |
20100108065 | Zimmerman et al. | May 2010 | A1 |
20100322442 | Namm | Dec 2010 | A1 |
20110093262 | Wittke et al. | Apr 2011 | A1 |
20140216447 | Kihlberg | Aug 2014 | A1 |
20140216448 | Kihlberg | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
3013939 | Nov 1982 | DE |
2165721 | Apr 1986 | GB |
51-123796 | Oct 1976 | JP |
200184416 | Jun 2000 | KR |
100801140 | Feb 2008 | KR |
100828001 | May 2008 | KR |
2011-0106729 | Sep 2011 | KR |
10-1118176 | Mar 2012 | KR |
83651 | Jun 2009 | RU |
WO 199107859 | May 1991 | WO |
WO 199215369 | Sep 1992 | WO |
WO 2008081226 | Jul 2008 | WO |
WO 2008095917 | Aug 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20160101301 A1 | Apr 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13757493 | Feb 2013 | US |
Child | 14972192 | US |