The present disclosure is related generally to a respirator system including a convertible head covering member. The present disclosure is also related to headgear articles including convertible head covering members, which are suitable for use in respirator systems.
Respirator systems are often used to aid a user's breathing in an environment containing dusts, fumes, vapors, and/or gases. The respirator systems may be configured to filter the air or they may provide a supply of uncontaminated air. In a supplied air respirator system, clean air may be forced into the interior gas space from an air supply tank or from a powered air source that drives ambient air through an air filter, usually by means of a hose. A respirator system may in some cases include a helmet, hardhat or a similar head covering device for impact resistance. Respirator systems that include impact resistant head covers are frequently worn by people working in areas where there is a potential for impact from a foreign object. A visor or face shield is often included in the respirator system and may have any suitable configuration to provide appropriate amount of substantially unrestricted vision for the user of the surrounding environment. When the respirator system is in use with the face shield lowered, the system should inhibit passage of contaminants, both particulate and gaseous, into the wearer's air space. Many face shields are pivotally attached to the head covering member to allow the face shield to be lifted when it is not needed. Common respirator systems are mounted on a user's head by means of a head suspension system attached to the interior of the head covering device.
Generally, it is desired that a respirator system, and, particularly the head covering device, be comfortable to wear for extended periods of time in variable conditions.
Thus, there is a need for respirator systems including head covering members that can be modified depending on the working conditions to suit the wearer's needs.
In one implementation, the present disclosure is directed to a respirator system including a headgear article defining an interior zone. The headgear article includes a visor and a head covering member. The head covering member has a first opening formed therein that provides fluid communication between the interior zone and environment outside the headgear article. A first panel is disposed over the first opening and is removably attached to the head covering member. The respirator system further includes a clean air supply system having an inlet configured for connection to a source of clean air and an outlet disposed within the interior zone.
In another implementation, the present disclosure is directed to a respirator system including a headgear article defining an interior zone. The headgear article includes a visor and a head covering member. The head covering member has first and second openings formed therein that provide fluid communication between the interior zone and environment outside the headgear article. A first panel is disposed over the first opening and is removably attached to the head covering member, and a second panel is disposed over the second opening and is removably attached to the head covering member. The respirator system further includes an air duct disposed between the first and second openings, the duct having an inlet configured for connection to a source of clean air and an outlet disposed within the interior zone.
In yet another implementation, the present disclosure is directed to a headgear article including a head covering member having an opening formed therein. A panel having an outer surface is disposed such that a substantial portion of the outer surface is disposed over the opening. The panel includes at least one retaining member configured to removably attach to the edge of the opening.
The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:
The figures are not necessarily to scale. Like numbers used in the figures refer to like components. However, it will be understood that the use of a number to refer to a component in a given figure is not intended to limit the component in another figure labeled with the same number.
In the following description, reference is made to the accompanying drawings that form a part hereof, and in which are shown by way of illustration several specific embodiments. It is to be understood that other embodiments are contemplated and may be made without departing from the scope or spirit of the present invention. The following detailed description, therefore, is not to be taken in a limiting sense.
All scientific and technical terms used herein have meanings commonly used in the art unless otherwise specified. The definitions provided herein are to facilitate understanding of certain terms used frequently herein and are not meant to limit the scope of the present disclosure.
Unless otherwise indicated, all numbers expressing feature sizes, amounts, and physical properties used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the foregoing specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by those skilled in the art utilizing the teachings disclosed herein.
The recitation of numerical ranges by endpoints includes all numbers subsumed within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5) and any range within that range.
As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” encompass embodiments having plural referents, unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
Exemplary embodiments of the present disclosure provide one or more openings in the headgear article, which may be useful for ventilation. According to the present disclosure, the one or more openings can be covered by one or more panels, which removably attach to the headgear article. The removability of the one or more panels allows the user of the headgear article the flexibility to remove or install them when desired. By adding impact-resistant material to the panels, the impact resistance of the headgear article may be enhanced. The removable panels may be provided with colored layers, patterns, images and/or reflective materials.
An exemplary embodiment of a respirator system 100 according to the present disclosure is illustrated in
The visor 122 includes a transparent member, which may be made of any suitable transparent material, such as a plastic material. In an exemplary embodiment, the visor 122 includes a generally curved lens 122a and a lens frame 122b. Lens frame 122b supports lens 122a and facilitates pivoting of the visor 122 via pivot mechanism 123. The curved lens 122a may be characterized by a cylindrical curvature with a spherical or an elliptical cross-section. The visor 122 includes a seal 125 attached to the lens 122a, the lens frame 122b or both. Seal 125 typically engages frontal area of the head covering member 124, when visor 122 is in its lowered or closed position (
The head covering member 124 typically includes an outer shell that has sufficient structural integrity to retain its desired shape (and the shape of other layers that are supported by it) under normal handling. Preferably, the head covering member 124 includes a shape-retaining outer shell, which substantially retains its shape after any deforming forces have ceased. In exemplary embodiments providing at least some impact protection to a user of the headgear article 120, the head covering member 124 is configured to resist impact. For the purposes of the present disclosure, impact resistance exists where the head covering member absorbs at least a certain amount of mechanical energy from impact that would otherwise reach a user's head. Exemplary materials suitable for use in a head covering member include, without limitation, high density polyethylene, polypropylene, nylon, polycarbonate, ABS, styrene. Aluminum, fiber reinforced plastics, laminated paper products could also be used.
In accordance with the present disclosure, the head covering member 124 has at least one opening 130 formed therein. The opening 130 is configured to provide fluid communication between an interior zone 102 (shown in
Referring further to
Clean air can be provided into the breathing zone 104 from any suitable source of clean air. The wearer breathes the air and exhales it back into the breathing zone. This exhaled air, along with excess clean air that is forced into the breathing zone, may exit the breathing zone through openings or through any other suitable route. For the purposes of the present disclosure, “clean air” means atmospheric ambient air that has been filtered or air supplied from an independent source. “Clean air source” means an apparatus, such as a filtering unit, compressed air source or a tank, that is capable of providing a supply of clean, breathable air for the user of the respirator system.
Referring further to
In an exemplary embodiment, the outer periphery 126a of the face seal 126 is constructed to be disposed at least in part under the user's chin. The face seal 126 may be at least partially elastic, so that it could move with the user's jaw when the user talks and fit securely about the user's face after being stretched. In a typical embodiment, the face seal 126 has an elastic member disposed along the periphery 126a of the face seal 126 and characterized by at least a certain degree of sealing effectiveness or integrity that reduces or minimizes the leakage of air into the breathing zone. For example, the face seal 126 may include an elastic band (not shown) that can be made from any suitable material, such as Spandex™ or the like. Alternatively, the face seal 126 itself may have elastic properties.
The face seal 126 may include one or more openings in its bottom portion 126b. The openings allow the breathable air delivered to the head covering member to exit upon exhaling. In another exemplary embodiment, instead of the one or more openings, the bottom portion 126b may include relatively air permeable material that will allow air to escape. Other approaches for allowing air out of the respirator system 100 may be used with exemplary embodiments of the present disclosure.
The respirator system 100 further includes a clean air supply system 150 which includes an inlet 152 configured for connection to a source of clean air 158 and an outlet 154 (shown in
The breathing zone seal 127 may be on one end permanently or removably attached to the head covering member 124, for example, adjacent the outlet 154, and on another end it may be permanently or removably attached to the headband 128a. The breathing zone seal 127 may be made from the same type of material as the face seal 126 or from another suitable material, such as foam.
The inlet 152 can be connected to the source of clean air 170 by a hose 160. The source of clean air may be an air exchange apparatus, which is an apparatus for providing a finite breathing zone volume around the head of a user in which air can be exchanged in conjunction with the user's breathing cycle.
One example of a respirator system utilizing an air exchange apparatus is a Powered Air Purifying Respirator” (PAPR), which is a powered system having a blower to force ambient air through air-purifying elements to an inlet 152 of the clean air supply system 150. However, the present disclosure is not limited thereto and may include any other suitable air supply system, including but not limited to negative pressure systems. Other exemplary air supply systems may include, without limitation, any suitable supplied air system or a compressed air system, such as a self contained breathing apparatus (SCBA).
The inlet opening 152 may be positioned in the back of the headgear article 120. An air inlet fluid coupling arrangement (not shown) may be connectable to the hose 160, which, in turn, may be connected to the clean air supply 170. In an exemplary embodiment, air that enters through the inlet opening 152 is allowed to pass into the breathing zone through the outlet 154 and circulate between the visor 122 and a user's face.
A first panel 242 is disposed over the first opening 232 and removably attached to the head covering member 224. A second panel 244 is disposed over the second opening 234 and removably attached to the head covering member 224.
In some exemplary embodiments, one or more removable panels 242 and 244 are configured to cover at least a portion of the outer surface of the head covering member 224. For example, in some exemplary embodiments, removable panels (e.g., 242) are configured to not only cover the opening but also at least the area of the outer surface of the head covering member 224 that is adjacent to an edge of the opening. In the exemplary embodiment shown, the removable panel 242 is configured to cover at least the area 233a of the outer surface of the head covering member 224 that is adjacent to an edge of the opening 232 and surrounds the opening 232. Preferably, the removable panel 242 is also configured to cover an additional area 233b of the outer surface of the head covering member 224. Nonetheless, in typical embodiments of the present disclosure, one or more removable panels are disposed such that at least a substantial portion of the outer surface of the panel is disposed to cover the opening.
In the exemplary embodiment shown in
The latch members may be formed from a resilient material, such that they are capable of bending when a force is applied and then recovering its original shape when the force is released. One or more retaining members (e.g., 410, 420) can be formed integrally with the panel 342, such as by injection molding.
Other types and configurations of retaining members are within the scope of the present disclosure. For example, other suitable removable fastening systems include hook and loop systems, clips, screws, and adhesives, such as repositionable adhesives. In some exemplary embodiments, rotatable latches may be used as one or more retaining members. Rotatable latches typically utilize an arm rotatably mountable on the removable panel or the head covering member. The arm can be pivoted to extend across the edge of the opening and the removable panel to retain the panel to the head covering member. If the rotatable latch is mounted onto the removable panel, it may be rotated to extend under the lower surface of the head covering member and thereby retain the removable panel to the head covering member. The removable panel preferably further includes at least one locating feature to aid proper alignment of the removable panel with respect to the opening.
In an exemplary embodiment, the panel 342 includes one or more locating ridges 430, 440, which have shapes that mate with the periphery of the opening 332 to allow only one orientation in which the retaining members 410, 420 can interlock with the edges of the opening 332. Other types and configurations of locating features are also within the scope of the present disclosure, including but not limited to discrete protrusions or one or more tabs, slots, pegs and holes.
Thus, embodiments of the R
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US09/35629 | 3/2/2009 | WO | 00 | 9/24/2010 |
Number | Date | Country | |
---|---|---|---|
61042304 | Apr 2008 | US |