The present invention pertains to a respiratory mask that has a nose clip that comprises a thermoplastic semi-crystalline polymeric material that has an integrated diffraction intensity ratio of at least about 2.0. The inventive nose clip is manually pliable while also exhibiting good shape retention.
Respirators (sometimes referred to as “filtering face masks” or “filtering face pieces”) are generally worn over the breathing passages of a person for two common purposes: (1) to prevent impurities or contaminants from entering the wearer's respiratory system; and (2) to protect other persons or things from being exposed to pathogens and other contaminants exhaled by the wearer. In the first situation, the respirator is worn in an environment where the air contains particles that are harmful to the wearer, for example, in an auto body shop. In the second situation, the respirator is worn in an environment where there is risk of contamination to other persons or things, for example, in an operating room or clean room.
To meet these purposes, the respirator must be able to maintain a snug fit to the wearer's face. Known respirators can, for the most part, match the contour of a person's face over the cheeks and chin. In the nose region, however, there is a radical change in contour, which makes a snug fit difficult to achieve. The failure to obtain a snug fit can be problematic in that air can enter or exit the respirator interior without passing through the filter media. When this happens, contaminants may enter the wearer's breathing track, and other persons or things may become exposed to contaminants exhaled by the wearer. In addition, a wearer's eyeglasses can fog when the exhalate escapes from the respirator interior over the nose region. Fogged eyewear, of course, makes visibility more troublesome to the wearer and creates unsafe conditions for the user and others.
Nose clips are commonly used on respirators to achieve a snug fit over the wearer's nose. Conventional nose clips are in the form of malleable, linear, strips of aluminum—see, for example, U.S. Pat. Nos. 5,307,796, 4,600,002, and 3,603,315 and U.K. Patent Application GB 2,103,491 A. A more recent product has uses an “M” shaped band of aluminum to improve fit over the wearer's nose—see U.S. Pat. Nos. 5,558,089 and Des. 412,573 to Castiglione. The “M” shaped nose clip is available on 3M 8211™, 8511™, 8271™, 8516™, 8576™, and 8577™ particulate respirators.
Although metal nose clips are able to provide a snug fit over the wearer's nose, they can pose drawbacks from disposal and environmental safety standpoints. Unlike plastic components, metal nose clips cannot be easily burned in an incinerator. Additionally, there is a potential risk that the nose clip could come loose from the mask body and be deposited in the surrounding environment. In some industries, there is a need to minimize opportunities for metal to become accidentally deposited in a manufacturing operation. Food processors, for example, have expressed a desire for workers to wear respirators that have no metal parts (such as nose clips or staples) to prevent those parts from getting into foodstuffs. Although plastic nose clips have been used on respiratory masks, these known nose clips have not achieved widespread acceptance because they do not exhibit particularly good shape retention characteristics after being conformed to their desired shape.
The present invention provides a respirator that comprises a mask body and a nose clip. The nose clip is secured to the mask body and comprises a malleable thermoplastic semi-crystalline polymeric material that has an integrated diffraction intensity ratio of at least about 2.0.
As indicated above, known respirators have predominantly used metal nose clips to achieve a snug fit over a person's nose. Although attempts have been made to replace the metal device with a plastic nose clip, the success has been limited because the plastic that has been used, albeit malleable, has had a tendency to exhibit memory, which precludes the clip from retaining its adapted shape. The inventive nose clip represents an advance in the respirator art in that it provides a plastic nose clip that demonstrates good malleability and good shape retention characteristics. To achieve both of these performance characteristics, the nose clip includes a thermoplastic semi-crystalline polymeric material that has an integrated diffraction intensity ratio of at least about 2.0. Known respirator nose clips have not used such plastic materials.
The inventive polymeric nose clip can maintain a snug fit over the wearer's nose without substantially restricting flow through the nasal passages of the wearer and without causing uncomfortable pressure points. The inventive nose clip helps prevent inhaled and exhaled air from passing from the respirator interior to the exterior or vice versa without passing through the filter media. Because the inventive nose clip does not need to contain metal to achieve its purpose, its use is less hazardous in food processing and surgical procedures. The respirator also can be easily incinerated when the mask has met the end of its service life. The inventive nose clip thus is beneficial in that it can provide shape retention characteristics similar to a metal nose clip but without the need for—and drawbacks of—using metal.
These and other features and advantages of the invention are more fully shown and described in the drawings and detailed description of this invention, where like reference numerals are used to represent similar parts. The drawings and description are for illustration purposes only, however, and should not be read in a manner that would unduly limit the scope of this invention.
The terms set forth below will have the meanings as defined:
“aerosol” means a gas that contains suspended particles in solid and/or liquid form;
“aspect ratio” means the ratio of the length of an object to its effective hydraulic diameter; for a circular rod of length (L) and diameter (D), the aspect ratio is L:D (see Example section for calculation of effective hydraulic diameter);
“clean air” means a volume of atmospheric ambient air that has been filtered to remove contaminants;
“comprises (or comprising)” means its definition as is standard in patent terminology, being an open-ended term that is generally synonymous with “includes”, “having”, or “containing”. Although “comprises”, “includes”, “having”, and “containing” are commonly-used, open-ended terms, this invention also may be described using narrower terms such as “consists essentially of”, which is semi open-ended term in that it excludes only those things or elements that would have a deleterious effect on the performance of the nose clip in serving its intended function;
“contaminants” means particles (including dusts, mists, and fumes) and/or other substances that generally may not be considered to be particles (e.g., organic vapors, et cetera) but which may be suspended in air, including air in an exhale flow stream;
“crosswise dimension” is the dimension that extends across a wearer's nose when the respirator is worn; it is synonymous with the “length” dimension of the nose clip.
“crystallinity index” means the fractional crystallinity determined according to the Crystallinity Index Method described below;
“exhalation valve” means a valve that has been designed for use on a respirator to open unidirectionally in response to pressure or force from exhaled air;
“exhaled air” is air that is exhaled by a respirator wearer;
“exterior gas space” means the ambient atmospheric gas space into which exhaled gas enters after passing through and beyond the mask body and/or exhalation valve;
“filter media” means an air-permeable structure that is capable of removing contaminants from air that passes through it;
“harness” means a structure or combination of parts that assists in supporting the mask body on a wearer's face;
“integrated diffraction intensity ratio” means a unitless parameter determined according to the X-ray Diffraction Pole Figure Analysis described below;
“interior gas space” means the space between a mask body and a person's face;
“lengthwise dimension” means the direction of the length (long axis) of the nose clip (which extends across the bridge of the wearer's nose when the mask is worn);
“malleable” means deformable in response to mere finger pressure;
“mask body” means an air-permeable structure that can fit at least over the nose and mouth of a person and that helps define an interior gas space separated from an exterior gas space;
“memory” means that the deformed part has a tendency to return to its preexisting shape after deforming forces have ceased;
“midsection” is the central part of the nose clip that extends over the bridge or top of a wearer's nose;
“nose clip” means a mechanical device (other than a nose foam), which device is adapted for use on a filtering face mask to improve the seal at least around a wearer's nose;
“nose foam” means a compressible porous material that is adapted for placement on the interior of a mask body to improve the fit and/or comfort over the nose;
“particles” means any liquid and/or solid substances that is capable of being suspended in air, for example, dusts, mists, fumes, pathogens, bacteria, viruses, mucous, saliva, blood, etc.;
“pole figure” is a two-dimensional representation of a three-dimensional intensity distribution produced by a given diffraction plane;
“polymer” means a material that contains repeating chemical units, regularly or irregularly arranged;
“polymeric and plastic” means that the material mainly includes one or more polymers and may contain other ingredients as well;
“porous structure” means a mixture of a volume of solid material and a volume of voids, which mixture defines a three-dimensional system of interstitial, tortuous channels through which a gas can pass;
“portion” means part of a larger thing;
“shape-retainable” means that the shape is substantially retained after any deforming forces have ceased;
“semi-crystalline” means having crystalline domains;
“snug fit” or “fit snugly” means that an essentially air-tight (or substantially leak-free) fit is provided (between the mask body and the wearer's face);
“strand or stranded” means a filament that has an aspect ratio of at least about 10;
“thermoplastic” means a polymer that may be softened by heat and hardened by cooling in a reversible physical process; and
“transverse dimension” means the dimension that extends at a right angle to the lengthwise dimension (and along the length of the wearer's nose when worn).
In describing preferred embodiments of the invention, specific terminology is used for the sake of clarity. The invention, however, is not intended to be limited to the specific terms so selected; each term so selected includes all technical equivalents that operate similarly.
In the practice of the present invention, a new nose clip is provided for use on a respiratory mask. The new nose clip includes a malleable, thermoplastic, semi-crystalline polymeric material that has an integrated diffraction intensity ratio of at least about 2.0. In order to provide the necessary combination of ease of deformation (to achieve fit) and resistance to relaxation (to maintain fit), the inventors have found that the nose clip should carry both desired intrinsic deformation and recovery strain. The inventors discovered that the deformation properties of the nose clip may be achieved through use of semi-crystalline, malleable, thermoplastic polymeric material that preferably has controlled crystallite orientation within the crystalline domains such that the molecular chain is aligned in the lengthwise-dimension of the article. The crystallite orientation is defined in accordance with the present invention using the parameter “integrated diffraction intensity ratio”.
Both crystallinity and crystallite orientation have a bearing on the deformation and recovery properties. Crystallinity tends to affect stiffniess and/or bending strain characteristics of crystalline polymers. In crystalline thermoplastic resins, there exist crystalline regions where polymer molecules pack regularly and compactly, and non-crystalline regions where molecular packing is somewhat irregular and less compact. The crystalline regions are believed to contribute to the flexural rigidity of the material, owing to less free volume and more restricted polymer chain motion. Consequently, increasing a proportion of crystalline regions, or overall crystallinity, generally increases material stiffness. Crystallite orientation has not been generally recognized by persons skilled in this art as a property that influences the ease of deformation and subsequent resistance to recovery after bending of a crystalline polymer element. In particular, the crystallite orientation has not been recognized for providing beneficial affects to the performance of a nose clip on a respirator. This benefit in ease of deformation and subsequent resistance to recovery of structural crystalline polymers elements has been discovered to arise from the alignment of the crystalline regions, in the direction along which deformation will occur.
The inventors found that nose clips that have certain degree of crystallinity and particular crystallite orientation of the polymeric material exhibit good malleability and shape-retention properties. The benefits of the invention are particularly derived when the crystallite orientation is along the plane of deformation or bending of the nose clip element. The present invention provides a nose clip for use with a respiratory facemask where crystalline thermoplastic resin is extruded in the form of films, sheets, rods, strands, and variations thereof to provide a nose clip that exhibits high resistance to recovery after deformation. The polymeric material may be provided with crystalline and non-crystalline regions, wherein the crystal molecular chain axis direction of the crystalline regions orients uniaxially and uniplanarly. The thermoplastic polymeric material is “semi-crystalline” in that it contains crystalline and non-crystalline domains. The crystallite orientation may be optimized by the following: (a) the crystallinity index is at least about 0.5, preferably at least about 0.6, more preferably at least about 0.7, and (b) the degree of the orientation of the crystalline domain is predominately along the lengthwise-dimension with an integrated diffraction intensity ratio of at least about 2.0, preferably at least about 2.5, more preferably at least about 3.0. The integrated diffraction intensity for the lengthwise dimension may be at least about 40, 50, or 60 intensity-degree.
Mask body 14 is adapted to fit over the nose and mouth of a person in spaced relation to the wearer's face to create an interior gas space or void between the wearer's face and the interior surface of the mask body. The mask body 14 may be of a curved, hemispherical, cup-shape such as shown in
As shown in
The mask body may be spaced from the wearer's face, or it may reside flush or in close proximity to it. In either instance, the mask body helps define an interior gas space into which exhaled air passes before leaving the mask interior through the exhalation valve. The mask body also could have a thermochromic fit-indicating seal at its periphery to allow the wearer to easily ascertain if a proper fit has been established—see U.S. Pat. No. 5,617,849 to Springett et al.
As shown in
Filtering materials that are commonplace on negative pressure half mask respirators—like the filtering face mask 10 shown in
Examples of fibrous materials that may be used as filters in a mask body are disclosed in U.S. Pat. No. 5,706,804 to Baumann et al., U.S. Pat. No. 4,419,993 to Peterson, U.S. Reissue Pat. No. Re 28,102 to Mayhew, U.S. Pat. Nos. 5,472,481 and 5,411,576 to Jones et al., and U.S. Pat. No. 5,908,598 to Rousseau et al. The fibers may contain polymers such as polypropylene and/or poly-4-methyl-1-pentene (see U.S. Pat. No. 4,874,399 to Jones et al. and U.S. Pat. No. 6,057,256 to Dyrud et al.) and may also contain fluorine atoms and/or other additives to enhance filtration performance—see, U.S. Pat. Nos. 6,432,175B1, 6,409,806B1, 6,398,847B1, 6,397,458B1 to Jones et al. and U.S. Pat. Nos. 5,025,052 and 5,099,026 to Crater et al., and may also have low levels of extractable hydrocarbons to improve performance—see U.S. Pat. No. 6,213,122 to Rousseau et al. Fibrous webs also may be fabricated to have increased oily mist resistance as described in U.S. Pat. No. 4,874,399 to Reed et al., and in U.S. Pat. Nos. 6,238,466 and 6,068,799, both to Rousseau et al. The filtration layer optionally could be corrugated as described in U.S. Pat. Nos. 5,804,295 and 5,763,078 to Braun. The mask body also can include an outer cover web 22 to protect the filtration layer. The cover web may be made from nonwoven webs of BMF as well, or alternatively from webs of spunbond fibers. An inner cover web also could be used to provide the mask with a soft comfortable fit to the wearer's face—see U.S. Pat. No. 6,041,782 to Angadjivand et al. The cover webs also may have filtering abilities, although typically not nearly as good as the filtering layer 20.
Preferably, the nose clip comprises a polymeric material that is in the form of strands that generally have large aspect ratios. The aspect ratio may be at least 50, at least 100, and still at least 300. The aspect ratio also could be as high as about 450 to 500. The polymeric strand(s) can be, for instance, bundled together in various configurations or used individually.
The semi-crystalline thermoplastic polymeric material may include thermoplastic polymer(s) such as polyethylene, polypropylene, polyolefins, and combinations thereof. The polymeric material preferably has a recovery efficiency of at least 40%, preferably 50%, and more preferably 60%. The polymeric material also may have an elastic modulus of 10,000 to 20,000 Mega Pascals (MPa), and preferably 14,000 to 16,000 MPa. The inventive nose clip also preferably has a peak stress of not greater than 600 MPa, more preferably not greater than 400 MPa and has a return (recovery) stress of at least 50 MPa, more preferably at least 100 MPa. In addition to polymers, the thermoplastic polymeric material (and other parts of the nose clip, e.g., supporting substrate) may also include other ingredients such as dyes, filters, pigments, stabilizers, antimicrobial agents, and combinations thereof. The additional ingredients may be used in various amounts as long as they do not substantially adversely impact the malleable, shape-retaining characteristics of the nose clip. The thermoplastic polymer(s) that comprise the nose clip, preferably have a glass transition temperature Tg of at least 35° C., and preferably at least 50° C. The glass transition temperature preferably exceeds the highest anticipated temperature under which the respiratory mask may be used.
X-Ray Diffraction Pole Figure Analysis
Through the use of wide-angle x-ray diffraction methods, orientations of crystallographic axis of polymeric materials can be determined stereoscopically and quantitatively. Pole figure analysis is a technique that is used with x-ray diffraction to quantitatively measure the degree of the uniaxial-uniplanar orientation, otherwise known as texture, of crystallites. The applications of pole figure analysis to polymeric materials are well recognized in the technical literature, see L. E. Alexander, X-ray Diffraction Methods in Polymer Science, W
Reflection geometry data were collected in the form of survey scans and pole figures through use of a Huber 424-511.1 four circle diffractometer using a CuKαradiation source, scintillation detector registry of the scattered radiation. Samples were positioned so as to place the lengthwise-dimension (LD) in the vertical plane and corresponded to a tilt angle setting of 0 degrees X and a rotation Φ angle setting of 0 degrees. The diffractometer used a pinhole collimation with a 700-micrometer (μm) aperture, fixed exit slits, and nickel filters. X-ray generator settings of 40 kilovolts (kV) and 30 milliamps (mA) were employed. Pole figure data were collected at tilt angles X of 0 to 75 degrees and rotation angles Φ from −180 to +180 degrees, each using a 5-degree step size. The intensity for the (2 0 0) maximum was sufficient that corrections for background and amorphous scattering were not required. For polymers of lower crystallinity (Index <0.6) and when significant background scattering is present, appropriate corrections to the intensity data should be made.
Crystal planes that are coaxial, or alternatively, normal to the polymer molecular chain axes are preferred for this characterization. The pole figures were two-dimensional representations of the three-dimensional intensity distribution produced by a given diffraction plane. The data were collected with reference to the sample geometry at selected values of azimuthal rotation and sample plane tilt. The data were plotted in the form of a stereographic projection, the resulting pole figure representing the sample tilt as a distance (radius) from the center of the figure. Azimuthal rotation was depicted as a rotation about the pole figure normal—see, for example,
When characterizing the molecular chain alignment of polyethylene, the pole figure of interest measures the intensity distribution for the orthorhombic (2 0 0) reflection. The pole figure of interest, when characterizing the molecular chain alignment of materials of the invention, was the (2 0 0) reflection. The (2 0 0) reflection plane runs parallel to the molecular chain axis. Since the (2 0 0) plane is parallel to the polymer chain axis, it can be used to measure the crystallite alignment level.
Intensity distributions for (2 0 0) pole figures were evaluated by taking intensity traces along the lengthwise and transverse dimensions of a nose clip specimen. Data evaluation was carried out by plotting the reflected intensity, normalized to the intensity measured at 0 degrees tilt, against tilt angle. The resulting normalized intensity trace was fitted by use of the program ORIGIN (Origin Lab Co., Northhampton, Mass.) to a Gaussian distribution. The ratio of cumulative reflected intensities (integrated area under the intensity plot, noted by cross-hatching in
Crystallinity Index Method
For the crystallinity evaluation, data are collected in a 2D or “two-dimensional” mode to allow capture of the orientation effects by the detection system similar to using a photographic film but in a digital format. These 2D data are then reduced to one-dimensional data by radially averaging to remove the effects of orientation. Reducing to one-dimensional data set allows calculation of crystallinity index values from a data set that is not biased by the preferred orientation present in the sample.
Crystallinity index was determined using transmission geometry data collected in the form of survey scans through use of a Bruker GADDS Microdiffractometer (available from Bruker AXS Inc of Madison, Wis.), CuKαradiation source, and HiStar 2D position sensitive detector registry of the scattered radiation. Samples were positioned so as to place the lengthwise dimension in the vertical plane of the diffractometer. The diffractometer was fitted with pinhole collimation that used a 300 micron aperture and graphite incident beam monochromator. The detector was centered at 0 degrees (2θ), and no sample tilt was employed. Data were accumulated for 15 minutes at a sample to detector distance of 6 cm. X-ray generator settings of 50 kV and 100 mA were employed; values of crystallinity were reported as an index of the percent crystallinity. Two-dimensional data were radially summed to produce a conventional one-dimensional diffraction pattern. The resulting pattern was subjected to profile fitting using the program ORIGIN (Origin Lab Co., Northhampton, Mass.) to separate amorphous and crystalline polymer scattering components. For profile fitting, a parabolic background model and a Gaussian peak shape model were employed Crystallinity index was evaluated as the ratio of crystalline scattering above background to total amorphous and crystalline scattering above background within the 10 to 35 degrees (2θ) scattering angle range.
Integrated Diffraction Intensity Ratio
The integrated diffraction intensity ratio (IDIR) is defined as the dimensionless ratio of the integrated intensity of a sample taken in the lengthwise-dimension (LD) to that of the transverse-dimension (TD), given as:
Dynamic Mechanical Analysis (DMA)
Intrinsic modulus and stress strain analysis were conducted using a Dynamic Mechanical Analyzer (DMA). A DMA machine provides quantitative information on viscoelastic, Theological, and mechanical properties of a material by measuring the mechanical response of a sample as it is deformed under periodic stress or steady stress. The viscoelastic response of a sample is determined by precise measurement and control of temperature, time, frequency, amplitude, stress, and phase angle.
Forced frequency DMAs and Rheometers control oscillation frequency, strain amplitude, and test temperature or time in a continuous dynamic test. A typical test holds at least one of these variables constant while systematically varying the second and third. For example, a temperature sweep characterizes the temperature dependence of the rheological and mechanical properties of a material. This test mode also provides a sensitive means for measuring glass transition and other secondary transitions, knowledge of which can identify sample morphology, softening points, and useful temperature ranges.
Samples were measured using TAI Q800 and 2980 series DMAs (available from TA Instruments, New Castle, Del.) in single cantilever bending geometry. Room temperature (23-24° C.) experiments were performed on samples in dynamic mode for elastic modulus (intrinsic stiffness), and then under cyclic strain ramp to from 0-5% total strain over a total of 5 cycles. Values of modulus, peak stress, and return stress were reported in units of Mega Pascals (MPa). A “recovery efficiency” is also calculated as the percent of return stress to peak stress.
Effective Hydraulic Diameter
The effective hydraulic diameter Dh is used in the determination of the aspect ratio of noseclip elements, including individual strands or rectangular forms. The effective hydraulic diameter is the given as four times the cross-sectional area of noseclip element divided by the cross-sectional perimeter of the element. Hydraulic diameter Dh is given as:
Dh=4A/U
The following Examples have been selected merely to further illustrate features, advantages, and other details of the invention. Although the Examples serve this purpose, the particular ingredients and amounts used as well as other conditions and details are not to be construed in a manner that would unduly limit the scope of this invention.
A nose clip of the invention was constructed and attached to a mask body. The nose clip included polyethylene (PE) strands manufactured by Mitsui Chemicals, Inc., Tokyo, Japan under the brand name of ‘TeknoRote’. The construction of the nose clip generally resembled the nose clip shown in
The above described strands moldable strands were affixed to a respirator for fit evaluation. The respirator used was a commercially available 8511™ particulate respirator manufactured by the 3M Company, St. Paul, Minn. The sole modification to the respirator was that the original nose clip was removed and was replaced with the inventive nose clip. The inventive nose clip was attached to the respirator using an ultrasonic welder. The welder was fitted with a horn that directed energy to an anvil that was placed inside the mask, at the end of each wing section 13 and 15 (
A respirator was constructed as described in Example 1 except that the noseclip was affixed to the respirator using an adhesive. The adhesive was 3M Super 77 type spray adhesive, manufactured by 3M Company, St. Paul, Minn. Before applying the adhesive, the nose clip was contoured to the shape of the nose area of the respirator. Adhesive was applied uniformly to the entire underside of the contoured nose clip. After applying the adhesive, the nose clip was carefully pressed onto the respirator. Care was taken to not deform the shape of the mask body, while providing sufficient pressure to make a good bond between the mask body and the nose clip.
A polyethylene nose clip from a commercially available facemask (Toyo Safety, Miki City, Japan) was evaluated was evaluated for mechanical and morphologic properties. The nose clip was generally about 90 mm long and had a 3.65 mm×0.672 rectangular cross-section. The aspect ratio of the material was 79:1. The nose clip material was tested for degree of crystallinity using the Crystallinity Index Method. Crystalline orientation was determined in accordance with the X-Ray Diffraction Pole Figure Analysis. Pole figure images are shown in
A polyethylene nose clip furnished to the 3M Company by Sekisui Chemical Co. Ltd. of Osaloa, Japan was evaluated. The nose clip material was generally about 90 mm long and had a 5.35 mm×0.95 mm rectangular cross-section. The aspect ratio of the material was about 56:1. The nose clip material was tested for degree of crystallinity using the Crystallinity Index Method. Crystalline orientation was determined in accordance with the X-Ray Diffraction Pole Figure Analysis. Pole figure images are shown in FIGS. 10 and 11 with accompanying plots of normalized intensity.
As is evident by the crystallography and intrinsic mechanical properties of the materials employed, the thermoplastic polymeric materials used in the inventive nose clips have a significantly higher recovery efficiency over a known thermoplastic nose clips. This can be attributed to the greater presence of uniaxial texture in the inventive nose clip as is observed by a greater integrated diffraction intensity in the lengthwise-dimension and integrated diffraction intensity ratio as compared that for the Comparative Examples. Greater recovery efficiency implies a better holding fit relative to the force required to achieve fit. Improvements in recovery efficiency translate into more comfortable fit without compromising the retained level of fit. An improvement in this parameter may also contribute to the distributive capacity of the inventive nose clip. Use of multiple strands in a nose clip may also provide a more uniform distribution of shape-retaining forces.
This invention may take on various modifications and alterations without departing from its spirit and scope thereof. Accordingly, this invention is not to be limited to the above described but is to be controlled by the limitations set forth in the following claims and any equivalents thereof
This invention may be suitably practiced in the absence of any element not specifically disclosed herein.
All patents and patent applications cited above, including those in the Background section, are incorporated by reference into this document in total.