Information
-
Patent Grant
-
6796306
-
Patent Number
6,796,306
-
Date Filed
Tuesday, July 9, 200222 years ago
-
Date Issued
Tuesday, September 28, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Bennett; Henry A
- Mitchell; Teena
-
CPC
-
US Classifications
Field of Search
US
- 128 20024
- 128 20418
- 128 20419
- 128 20425
- 128 20426
- 128 20427
- 128 20429
- 128 20511
- 128 20523
- 128 20524
- 128 20627
- 137 1
- 137 3
- 137 93
- 137 111
- 137 114
- 137 50524
-
International Classifications
-
Abstract
A demand regulator with air dilution for regulating the pressure and flow of a respiratory gas comprises an inlet for additional gas and an outlet leading to a respiratory mask, and also dilution means. Control means switch a supply of pressurized additional gas between at least two passages. At least one of these passages corresponds to an economy flow and has a restricted cross section for limiting the flow of additional gas transmitted to the inlet. The other passage has a cross section which is such that the additional gas has a maximum flow in order to supply the user with additional gas in a physiologically sufficient manner.
Description
BACKGROUND OF THE INVENTION
The invention concerns the respiratory apparatuses which are intended to protect persons on board an aircraft, in particular the technical flight crew, from the effects of depressurization at high altitude and/or from fumes or toxic gases.
More precisely, the invention concerns the respiratory apparatuses with a demand regulator with air dilution and the regulators for regulating the pressure and flow of respiratory gas.
A regulator for regulating the pressure and flow of respiratory gas generally comprises, connected to a nose-and-mouth mask:
inlet means for additional gas, generally oxygen, or highly oxygen-enriched air, and
an ejector for mixing dilution air with the additional gas and connected to an outlet supplying a user with diluted additional gas.
These respiratory apparatuses are supplied, at the inlet level, with additional gas delivered by pressurized oxygen cylinders, chemical generators, or generators by selective absorption and return of oxygen called OBOGS (acronym for On-Board Oxygen Generator System).
The regulators deliver a respiratory gas for which the course of the enrichment for a given flow as a function of altitude presents an inverse bell shape, that is to say the run of the solid-line curve in FIG.
1
. Because of the characteristics of the ejector, the flow of additional gas (oxygen), at low altitude, is much greater than the flow corresponding to the necessary physiological minimum, which for its part increases in a monotonous manner as a function of the cabin altitude (dashed-line curve in FIG.
1
).
The flow of additional gas (oxygen) delivered to the respiratory apparatus is too high relative to the requirements and is the cause of excessive consumption of additional gas (oxygen).
An object of the invention is in particular to make available a respiratory apparatus with a regulator for regulating the pressure and flow of respiratory gas, with which it is possible to reduce the flow of additional gas required.
SUMMARY OF THE INVENTION
This object is achieved, by virtue of a regulator of the type described above, additionally comprising, at the inlet of additional gas to the ejector, control means which are able to modify the cross section of passage of the additional gas to the ejector; these means can in particular switch the supply of additional gas between several inlet passages having different cross sections; for example, one of these passages corresponds to a flow called “economy” and has a smaller cross section than that of the other passage called “full flow”.
This is because the passage of smaller cross section has a loss of charge which limits the flow of additional gas delivered to the respiratory mask (dotted-line curve in
FIG. 1
) to a value close to the physiological minimum necessary for a given altitude (dashed-line curve in FIG.
1
).
Means are advantageously provided in order to guarantee the safety of the user without intervention on his part or by preventing false manoeuvres.
This object can be achieved in several ways. As an example, a regulator is provided which comprises safety means which have the following characteristics:
they prohibit switching of the supply of additional gas to the passage of smaller cross section when there is no delivery of dilution air (for example upon manual switching to what is called “100%” mode, corresponding to a delivery of pure additional gas to the respiratory mask), and
they prohibit the delivery of pure additional gas to the mask by cutting off the air admission, when the supply of additional gas is effected via the passage of smaller cross section.
The regulator according to the invention advantageously comprises the following characteristics in isolation or in combination:
the control means can be actuated manually;
it comprises an altimetric capsule for actuating the control means as a function of the altitude.
When the regulator is fitted on a respiratory mask with inflatable harness, it comprises a harness inflation actuator for bringing the supply of additional gas into communication with the inflatable harness in order to inflate it; the control means advantageously cooperate with the harness inflation actuator in order to switch the supply of additional gas to the “full flow” passage when the harness inflation actuator is used to inflate the harness. For example, the control means switch the supply of additional gas to the “full flow” passage under the effect of the pressure of the gas supplying the harness.
According to another aspect, the invention is a generator of enriched respiratory gas, comprising a pressure regulator according to the invention.
Other aspects, objects and advantages of the invention will become apparent on reading the following detailed description of a number of embodiments.
The invention will also be better understood with the aid of the attached drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
shows, as a function of altitude, the course of the enrichment in additional gas corresponding to the necessary physiological minimum, the course of the enrichment in additional gas delivered by generators of additional gas, and the flow of additional gas delivered by a flow regulator according to the invention;
FIG. 2
shows diagrammatically, in cross section, the fluid circuit of one embodiment of a flow regulator according to the invention;
FIG. 3
shows partially and diagrammatically, in cross section, the fluid circuit of another embodiment of the flow regulator shown in
FIG. 2
;
FIG. 4
shows partially and diagrammatically, in cross section, the fluid circuit of yet another embodiment of the flow regulators shown in
FIGS. 2 and 3
; and
FIG. 5
shows diagrammatically, in cross section, safety means intended for regulators according to the invention.
DETAILED DESCRIPTION OF EMBODIMENTS
According to a first embodiment, illustrated in
FIG. 2
, the demand regulator
1
according to the invention is provided with a flow limiter
2
controlled by an actuator for inflating a harness supporting a respiratory mask.
The regulator
1
comprises a housing and a “normal/100%” switch
3
, shown in
FIG. 2
at position “100%” (air admission closed off).
The housing is made up of several parts joined together and defining a circuit for fluids. It comprises several fluid communications with the outside of the housing: a connector piece
27
for supply of additional gas, a tubing
4
connecting with the inside of a respiratory mask (not shown), a dilution air inlet
5
, a passage
6
to the atmosphere, and an exhaled gases outlet
7
. It also comprises an inlet
8
in communication with the flow limiter
2
.
The housing additionally comprises several internal fluid communications: a primary conduit
9
comprising a calibrated constriction
22
, and a secondary conduit
10
connecting compartments separated by a main flap valve
11
to a compartment
21
corresponding to a pilot flap valve
12
.
The housing also comprises several switching members for modifying the circulation of the fluids in the circuit defined by the housing. These switching members are the main flap valve
11
and the pilot flap valve
12
; the regulator shown has in addition a valve
13
for connecting the compartment
21
of the pilot flap valve
12
to the atmosphere, and an altimetric capsule
14
.
The flap valves are of classical configuration. In the case illustrated, the main flap valve
11
is formed by a membrane
15
cooperating with a fixed seat
16
. The membrane
15
separates a control chamber
17
from the inlet
8
, the primary conduit
9
and the connection tubing
4
. The control chamber
17
is connected to the inlet
8
via a calibrated constriction
18
. When it is subjected to the inlet pressure of the additional gas, the membrane
15
is pressed against the seat
16
, closes the passage of the additional gas in this seat
16
and separates the inlet
8
from the tubing
4
.
The pilot flap valve
12
comprises a membrane
19
sensitive to the pressure. The membrane
19
carries an obturator
20
which cooperates with a fixed seat to bring the control chamber
17
into communication with the compartment
21
delimited by the membrane
19
, or by contrast to separate the chamber
17
and the compartment
21
. The compartment
21
also communicates with the inlet
8
via the constriction
22
.
The pilot flap valve
12
also constitutes a release valve permitting escape of the exhaled gases via the outlet
7
for exhaled gases.
The pressure prevailing in the chamber
21
is limited by the venting valve
13
which ensures that the overpressure in the chamber
21
does not exceed a predetermined value.
The altimetric capsule
14
cuts off or authorizes the entry of air via the dilution air inlet
5
as a function of the altitude. At high altitude, the altimetric capsule
14
cuts the entry of dilution air so that the mask is supplied only with the additional gas originating from the flow limiter
2
.
The functioning of the regulator
1
is known and is therefore not detailed here. For more details regarding its functioning, reference can be made to the documents FR-A-1 557 809 and FR-A-2 781 381.
The flow limiter
2
comprises a “full flow”/“economy” actuator
23
, a passage of restricted cross section
25
and a “full flow” passage
26
. The regulator
1
shown has in addition a harness inflation actuator
41
, a harness connector
28
, a plunger
29
and a piston
30
. The harness inflation actuator
41
comprises a tap
42
and a bracket
24
.
The “full flow” passage
26
has a cross section which is such that the additional gas is transmitted through this passage with a maximum flow, making it possible to supply the user with pure additional gas physiologically sufficient for the maximum altitude set. The passage of restricted cross section
25
corresponds to an “economy” flow and reduces the flow of additional gas transmitted from the supply
27
to the inlet
8
.
The plunger
29
comprises a zone of reduced diameter. Depending on the position of the plunger
29
, this zone brings the supply
27
into communication at one and the same time with the passage of reduced cross section
25
and the “full flow” passage
26
, or brings the supply
27
into communication only with the passage of reduced cross section
25
.
The plunger is displaceable between these two positions by manual action on the “full flow”/“economy” actuator
23
or by a piston
30
belonging to the harness inflation tap
42
.
The piston
30
can be brought temporarily into the position illustrated, by virtue of the harness inflation bracket
24
. In this rest position, the supply
27
and the harness inflation connector
28
do not communicate. In the other position, a groove
31
of the piston
30
brings the supply
27
and the harness connector
28
into communication.
When the piston
30
is brought into the harness inflation position, it displaces the plunger
29
into its position where the supply
27
is in communication with the passage of restricted cross section
25
and with the “full flow” passage
26
, if the plunger
29
is not already in this position. This constitutes a safety measure. Thus, with the embodiment of the invention described here, the user's first inhalation through the mask cannot be limited by an insufficient flow of additional gas. The user, if he so wishes and if he deems it useful, can then change to “economy” mode by bringing the plunger
29
into the “economy” position where only the passage of restricted cross section
25
is in communication with the supply
27
. However, also as a safety measure, in order to change to this “economy” mode, the user will first have to position the normal/100% actuator
3
in the “normal” position (position offset towards the left in relation to that shown in FIG.
2
), that is to say with intake of dilution air. This is because the passage of restricted cross section
25
does not allow the user to be supplied with 100% additional gas with sufficient flow.
FIG. 1
shows a case where the user switches the actuator
23
at 2500 m to limit the flow of additional gas to 0.65 1/min (NTPD) below this altitude (see dotted-line curve). Above this altitude, the user will remain or will return to “full flow” of additional gas by positioning the “full flow”/“economy” actuator
23
in its position permitting communication of the supply
27
with the “full flow” passage
26
.
According to yet another variant, the flow limiter
2
comprises several passages of restricted cross section
25
which have different calibres and which can be brought into communication selectively with the supply
27
in such a way as to approach the flow curve corresponding to the physiological minimum by stages corresponding to limited flows.
According to a second embodiment, illustrated in
FIG. 3
, the demand regulator
1
according to the invention is provided with a flow limiter
2
controlled by altimetric capsule.
The regulator
1
is identical to that described before.
The flow limiter
2
, according to this embodiment, comprises an altimetric capsule
32
and an obturator
33
in addition to the “full flow”/“economy” actuator
23
, the harness inflation bracket
24
, the passage of restricted cross section
25
, the “full flow” passage
26
, the supply
27
of additional gas, the harness connector
28
, the plunger
29
and the piston
30
which have already been described.
However, in this flow limiter
2
, the plunger
29
and the piston
30
are independent. The piston
30
is displaced by virtue of the harness inflation bracket
24
in order to bring the groove
31
into communication with the supply
27
and the harness connector
28
, but in this displacement the plunger
29
is not stressed, irrespective of its position.
The supply
27
is connected to the passage of reduced cross section
25
and to the “full flow” passage
26
by way of a direct conduit
34
. The direct conduit
34
permanently places the supply
27
with the passage of restricted cross section
25
. A control conduit
35
makes it possible to transmit the pressure of the additional gas in the supply
27
to the plunger
29
.
At low altitude, the obturator
33
is pressed, by a spring or the elasticity of the capsule, onto a seat and closes the control conduit
35
. At a predetermined altitude, the altimetric capsule
32
sufficiently stresses the obturator
33
in order to overcome the action of the spring. The control conduit
35
opens and the plunger
29
is displaced under the pressure of the respiratory gas to the “full flow” position, if it was in the “economy” position. Thus, the user is assured of always having a sufficient delivery of respiratory gas irrespective of the altitude.
According to a third embodiment, illustrated in
FIG. 4
, the demand regulator
1
according to the invention is provided with a flow limiter
2
sensitive to the pressure in the harness.
The regulator
1
, in this embodiment, is also identical to that described in relation to the first embodiment.
The flow limiter
2
, according to this embodiment, comprises a safety conduit
36
between the piston
30
and the plunger
29
, in addition to the “full flow”/“economy” actuator
23
, the harness inflation actuator
24
, the passage of restricted cross section
25
, the “full flow” passage
26
, the supply
27
of respiratory gas, the harness connector
28
, the plunger
29
and the piston
30
which have already been described.
However, in the same way as in the second embodiment, in this flow limiter
2
, the plunger
29
and the piston
30
are independent. The piston
30
is displaced by virtue of the harness inflation bracket
24
in order to bring the groove
31
into communication with the supply
27
and the harness connector
28
. In this displacement the plunger
29
is not sent, but the additional gas sent into the harness is also stressed in the safety conduit
36
and with the same pressure. This pressure is sufficient to displace the plunger
29
to the “full flow” position, if it was in the “economy” position. The user's first inhalation through the mask cannot therefore be limited by an insufficient flow of additional gas. In this case too, the user, if he so wishes and if he deems it useful, can then change to “economy” mode by acting on the “full flow”/“economy” actuator
23
to displace the plunger
29
to the “economy” position where only the passage of restricted cross section
25
is in communication with the supply
27
, with the same safety measure, assured by the normal/100% actuator
3
, as that described in relation to the first embodiment.
Although the regulator
1
can be placed on a user's seat, in civil aircraft it is generally carried on this user's mask. The mask is in standby position or stored in a receiving box
37
. In this case, illustrated in
FIG. 5
, the regulator
1
is advantageously provided with safety means intended to bring the normal/100% actuator
3
to the 100% position when the mask equipped with the regulator
1
is removed from the receiving box
37
. These safety means consist for example of an elastic lock
38
placed on the receiving box
37
and intended to cooperate with a stub
39
of the normal/100% actuator
3
. When the mask equipped with the regulator
1
is introduced into the receiving box
37
, in the direction of the arrow F, the lock
38
brings the normal/100% actuator
3
towards the right in
FIG. 5
in such a way that it is necessarily in the 100% position once the mask has been removed from its receiving box
37
. As has been explained above, this additionally ensures that the “full flow”/“economy” actuator
23
is not in the “economy” position when the mask is removed from its receiving box
37
.
Numerous variants of the invention can be imagined without departing from the scope of the invention. This is the case in particular when several characteristics described above are combined, such as those intended to ensure the safety of the person using the regulator and flow limiter according to the invention.
Claims
- 1. Demand regulator with air dilution for regulating the pressure and flow of a respiratory gas, the regulator comprising:inlet means for additional gas, an ejector for mixing dilution air with the additional gas and connected to an outlet supplying a user with diluted additional gas, in which control means, situated at the inlet, are able to modify the cross section of passage of the additional gas to the ejector by switching a supply of additional gas between several inlet passages, at least two inlet passages having different cross sections.
- 2. Regulator according to claim 1, comprising an altimetric capsule for actuating the control means as a function of the altitude.
- 3. Demand regulator with air dilution for regulating the pressure and flow rate of a respiratory gas, the regulator comprising:inlet means for additional gas, an ejector for mixing dilution air with the additional gas and connected to an outlet supplying a user with diluted additional gas, in which control means, situated at the inlet, are able to modify the cross section of passage of the additional gas to the ejector by switching a supply of additional gas between two inlet passages, one of which has a smaller cross section than the other.
- 4. Regulator according to claim 3, comprising safety means which prohibit switching of the supply of additional gas to the passage of smaller cross section when there is no delivery of dilution air.
- 5. Regulator according to claim 3, comprising safety means which prohibit the delivery of pure additional gas to the mask by cutting off the admission of air, when the supply of additional gas is effected via the passage of smaller cross section.
- 6. Regulator according to claim 3, in which the control means can be actuated manually.
- 7. Respiratory mask comprising a demand regulator with air dilution for regulating the pressure and flow of a respiratory gas, the regulator comprising:inlet means for additional gas, an ejector for mixing dilution air with the additional gas and connected to an outlet supplying a user with diluted additional gas, in which control means, situated at the inlet, are able to modify the cross section of passage of the additional gas to the ejector by switching a supply of additional gas between two inlet passages, one of which has a smaller cross section than the other.
- 8. Mask according to claim 7, comprising a harness inflation actuator for bringing the supply of additional gas into communication with an inflatable harness in order to inflate it.
- 9. Mask according to claim 8, in which the control means cooperate with the harness inflation actuator in order to switch the supply of additional gas from the passage of smaller cross section to the passage of greater cross section, when the harness inflation actuator is used to inflate the harness.
- 10. Mask according to claim 8, in which the control means switch the supply of respiratory gas from the passage of smaller cross section to the passage of greater cross section under the effect of the pressure of the gas supplying the inflation of the harness.
- 11. Generator of enriched respiratory gas, comprising a demand regulator with air dilution for regulating the pressure and flow of a respiratory gas, the regulator comprising:inlet means for additional gas, an ejector for mixing the dilution air with the additional gas and connected to an outlet supplying a user with diluted additional gas, in which control means, situated at the inlet, are able to modify the cross section of passage of the additional gas to the ejector by switching a supply of additional gas between two inlet passages, one of which has a smaller cross section than the other.
Priority Claims (1)
Number |
Date |
Country |
Kind |
01 09153 |
Jul 2001 |
FR |
|
US Referenced Citations (11)
Foreign Referenced Citations (2)
Number |
Date |
Country |
2 781 381 |
Jan 2000 |
FR |
1 577 943 |
Oct 1980 |
GB |