Respiratory mask assembly

Information

  • Patent Grant
  • 8353294
  • Patent Number
    8,353,294
  • Date Filed
    Monday, March 21, 2011
    13 years ago
  • Date Issued
    Tuesday, January 15, 2013
    11 years ago
Abstract
A cushion for a respiratory mask assembly includes a breathing chamber forming portion and a face contacting portion formed in one piece of an elastomeric material, and a gusset portion including one or more folds. The breathing chamber forming portion includes a mask interior breathing chamber and the face contacting portion is structured to engage a patient's face. The gusset portion is structured to provide flexibility to the face contacting portion. The breathing chamber forming portion includes a front side of the mask and the face contacting portion includes a rear side of the mask. The breathing chamber forming portion, when provided to a mask frame, includes an exterior surface exposed at the front side of the mask.
Description
FIELD OF THE INVENTION

The present invention relates to a cushion for a respiratory mask assembly used for providing ventilatory support, e.g., for treatment of Sleep Disordered Breathing (SDB) with Non-invasive Positive Pressure Ventilation (NPPV).


BACKGROUND OF THE INVENTION

The use of NPPV for treatment of SDB such as Obstructive Sleep Apnea (OSA) was pioneered by Sullivan (see U.S. Pat. No. 4,944,310). Apparatus for the treatment of SDB involves a blower which delivers a supply of air at positive pressure to a patient interface via a conduit. The patient interface may take several forms, such as a nasal mask assembly and a nasal and mouth mask assembly. Patients typically wear a mask assembly while sleeping to receive the NPPV therapy.


Mask assemblies typically comprise a rigid shell or frame and a soft face-contacting cushion. The cushion spaces the frame away from the patient's face. The frame and cushion define a cavity which receives the nose or nose and mouth. The frame and cushion are held in position on the patient's face by a headgear assembly. The headgear assembly typically comprises an arrangement of straps which pass along both sides of the patient's face to the back or crown of the patient's head.


U.S. Pat. No. 5,243,971 (Sullivan and Bruderer) describes a nasal mask assembly for Continuous Positive Airway Pressure (CPAP) having a ballooning/molding seal that conforms with the patient's nose and facial contours. The mask assembly has a face-contacting portion mounted to a shell which is sized and shaped to overfit the nose region of the patient. The face-contacting portion is in the form of a distendable membrane which is molded from an elastic plastics material. The distendable membrane and the shell together define a chamber. Pressurized gas admitted to the chamber causes the membrane to distend outwardly from the patient's face. The contents of this patent are hereby incorporated by reference.


U.S. Pat. No. 6,112,746 (Kwok et al.) describes a nasal mask assembly and a mask cushion therefor. The cushion comprises a substantially triangularly shaped frame from which extends a membrane. The frame has a scalloped edge by which the cushion is affixed to a mask body. The membrane has an aperture into which the patient's nose is received. The membrane is spaced away from the rim of the frame, and its outer surface is of substantially the same shape as the rim. U.S. Pat. No. 6,513,526 (Kwok et al.) describes such a cushion for use with a full face mask. The entire contents of these patents are hereby incorporated by reference.


In a traditional mask assembly including a cushion, a seal is formed between the cushion and the face of a patient as the result of a contact force which acts along a contact line of the cushion. The contact force typically is a function of tension in the headgear straps which acts through the frame of the mask assembly, the walls of the cushion and the seal-forming portion of the cushion. In a traditional mask assembly, the frame defines a cavity or volute adapted to receive at least a portion of the nose, with the cushion forming a perimeter of the cavity. Thus, in use, the portion of the patient's face within the cavity is exposed to air or breathable gas at positive pressure and hence receives a force as the result of that positive pressure.


U.S. Pat. No. 5,074,297 (Venegas) describes a respiratory mask assembly for use with intermittent positive pressure breathing treatment which is said to facilitate the formation and automatic adjustment of the seal between a patient's face and a facial unit of the respiratory mask. The respirator mask assembly comprises a facial unit, an expandable piston adjacent the facial unit and a rigid support structure attached to one end of the piston, and an attachment mechanism for securing the mask assembly to a patient. During the inspiration portion of the ventilation cycle a positive pressure is developed within the mask assembly, causing the piston to expand. Because the attachment mechanism and the support cooperate to resist significant expansion of the piston, a force is generated which presses the facial unit against the patient's face and maintains an air tight seal. When pressure within the mask unit decreases, the contact force on the facial unit is likewise decreased and the seal is eliminated.


A common problem with prior art mask assemblies, such as the mask assemblies taught by U.S. Pat. Nos. 5,074,297, 5,243,971 and 6,112,746, is patient comfort. Patients can develop sores and red marks on their faces after several hours use of a mask assembly. The nasal bridge area of the patient's face has been identified as being particularly sensitive.


Moreover, the face contacting portion may apply excessive pressure to the wearer's face resulting in discomfort and possibly, skin irritation. This can occur when the face contacting portion is distorted beyond its normal range of elasticity to conform to certain facial contours, thus requiring the application of excessive forces to obtain a seal. In some cases, these excessive pressures and forces may cause the wearer's face to distort to conform with the face contacting portion, which increases wearer discomfort, facial soreness and ulceration.


Another common problem with prior art mask assemblies is buildup of CO2 in the mask cavity. Mask assemblies typically include a vent which allows the continuous washout of exhaled gasses from the cavity. One factor affecting the washout of exhaled gases is the dead space within the mask cavity.


Another common problem with these masks is a broken or ineffective seal. for example, the mask may become dislodged if the wearer rolls over when sleeping, thereby creating a drag force on the gas supply line which is transmitted to the mask and breaking the seal between the mask and wearer. If a mask is used for the administration of Continuous Positive Airway Pressure (CPAP) treatment for the condition obstructive sleep apnea, such a leak can result in a pressure supplied to the entrance of the wearer's airway that is below the therapeutic value. Thus, treatment becomes ineffective.


Another problem with existing full face (oro-nasal) masks occurs when wearers move their jaws during treatment, which often happens. As a result, air leaks are created below the mouth from the mid-region extending to the region at the sides or corners of the mouth.


To address these and other problems, the masks described in U.S. Non-Provisional application Ser. No. 09/885,455 filed Jun. 21, 2001, and U.S. Non-Provisional patent application Ser. No. 10/655,622, have been developed. One aspect common to these applications includes the concept of a gusset section. However, there is perhaps at least a perception that the gusset section is large in terms of its visual appearance, despite the benefits derived from the gusset section.


There are a number of mask systems on the markettoday which do not have one or more of the benefits of the masks described in these applications. Rather than completely reconfigure the currently existing designs, it may be economically more desirable to merely redesign only a portion the mask system, or component thereof, to take advantage of one or more of the teachings and benefits offered by applicants' prior solutions.


SUMMARY OF THE INVENTION

One aspect of the invention is directed towards a mask assembly having a cushion that provides more comfort to the patient.


Another aspect of the invention is directed towards a mask assembly having a cushion that controllably distributes facial contact pressure around the patient's face.


A further aspect is directed to a forehead support that can be moved to accommodate facial cushions having different depths and/or profiles.


Another aspect of the invention is directed towards a mask assembly having a cushion that controllably distributes facial contact forces around a contact line on the patient's face. In one example, a gusset portion may be provided that is tailored to have variable or varying widths. The gusset portion may be formed, profiled and sized with varying widths. Alternatively, the profile or effective width can be changed using one or more clamps provided along any portion of the cushion perimeter.


Another aspect of the invention is directed towards a mask assembly which has minimal impingement of a patient's vision.


Another aspect of the invention is directed towards a mask assembly having a cushion which has a low profile.


Another aspect of the invention is directed towards a mask assembly which seals at a low pressure and which is comfortable at high pressures.


Another aspect of the invention is directed towards a mask assembly having a cushion which provides reinforcement structure to regulate pressure distribution.


Another aspect of the invention is directed towards a mask assembly providing additional footprint area and/or a spring section with a spring constant constructed so that the forces on the face from the cushion are a function of the mask pressure and the additional footprint area, and/or the spring constant of the spring section.


A further aspect of embodiments of the invention provides a full face mask with a cushion that forms a stable and reliable seal with a wearer's face.


An additional aspect of embodiments of the invention provides a full face mask that effectively seals the region directly below and/or to the sides of the lower lip.


A further aspect of embodiments of the invention provides a full face mask that offers effective and comfortable sealing at relatively high pressures.


In one example, a respiratory mask assembly for delivering breathable gas to a patient includes a frame to support one of at least first and second compliant patient interfaces; and a forehead support adjustably mounted to the frame, wherein the forehead support is structured and configured to be moved between a first position for use with the first patient interface and a second position relative to the frame for use with a second patient interface, whereby the forehead support maintains a horizontal offset distance with the first and second patient interfaces which is substantially constant.


In another example, a cushion for a respiratory mask to deliver breathable gas in a range of operating pressures to a patient includes a non-face contacting portion connected to a frame; a face-contacting portion structured to form a contact seal with the patient's face in use; and a central portion that interconnects the non-face contacting portion and the face-contacting portion, the central portion being structured to automatically adjust a component of force applied to the patient's face through the face-contacting portion in accordance with operating pressure, while maintaining the contact seal throughout the range of operating pressures.


Principles of these examples may be applied to any type of cushion for use on a respiratory mask, including but not limited to silicone elastomer, gel, foam or any combination thereof.


Principles of these examples may be applied to any type of respiratory mask, including CPAP systems or non-positive ventilation masks, such as respirators.


Other aspects, features and advantages of this invention will become apparent from the following detailed description when taken in conjunction with the accompanying drawings, which are a part of this disclosure and which illustrate, by way of example, principles of this invention.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings facilitate an understanding of the various embodiments of this invention. In such drawings:



FIG. 1 is a side view of a mask assembly illustrating a first embodiment of the invention in a first position;



FIG. 2 is a similar side view thereof in a second position;



FIG. 2A is a partial exploded view of a forehead support assembly according to yet another embodiment of the present invention;



FIG. 3 is a partial perspective view of a mask assembly illustrating an alternative embodiment of the present invention;



FIG. 4 is a perspective view of a mask assembly illustrating a further embodiment of the present invention;



FIG. 5 is a graph that illustrates the relation between mask pressure and contact force on the patient's face for a mask with a gusset and/or spring portion;



FIG. 6 is a schematic view of a mask according to an embodiment of the present invention;



FIG. 7 is a schematic view of a mask according to a further embodiment of the present invention;



FIG. 7A is a schematic view of a mask according to another embodiment of the present invention;



FIG. 8 is a partial schematic view illustrating an alternative embodiment of the present invention;



FIG. 9 is a schematic view of yet another embodiment according to the Present invention;



FIG. 9A is a partial schematic view of a cushion according to yet another embodiment of the present invention;



FIGS. 9B and 9C are schematic views of another embodiment of the present invention;



FIG. 10 is a partial schematic view of still another embodiment according to the present invention;



FIG. 11 is a partial schematic view of a further embodiment according to the present invention;



FIG. 12 is a schematic top or rear view according to still another embodiment of the present invention;



FIG. 13 is a partial schematic view of another embodiment of the present invention;



FIG. 13A is a partial schematic view of yet another embodiment of the present invention;



FIG. 14 is a partial schematic view of still another embodiment of the present invention;



FIG. 15 is a partial schematic view of another embodiment of the present invention;



FIGS. 16A and 16B are partial schematic views illustrating a further embodiment of the present invention;



FIGS. 16C and 16D are additional embodiments of the present invention;



FIG. 17 illustrates a partial cross-sectional view of a cushion wall section according to the present invention;



FIGS. 18A and 18B are partial schematic views illustrating a further embodiment in accordance with the present invention;



FIGS. 19A and 19B illustrate partial schematic views of still another embodiment according to the present invention;



FIGS. 20A and 20B are a partial schematic views of still a further embodiment of the present invention;



FIG. 21 is a partial schematic view illustrating still another embodiment of the present invention;



FIG. 22 is a partial schematic view of a further embodiment according to the present invention;



FIG. 23 is a partial schematic view according to another embodiment of the present invention;



FIG. 24 is a partial schematic view according to another embodiment of the present invention;



FIGS. 24A-24U are partial schematic views according to further cushion embodiments of the present invention;



FIG. 25-27C illustrate a further embodiment according to the present invention;



FIG. 27D illustrates a perspective view of a cushion arrangement according to another embodiment of the present invention;



FIG. 27E is a side view illustrating a cushion arrangement according to yet another embodiment of the present invention;



FIG. 28 is a schematic view illustrating another embodiment according to the present invention;



FIG. 29 is a schematic view of a cushion according to yet another embodiment of the invention;



FIG. 29A is a schematic top view of the cushion in FIG. 29;



FIG. 30 is a top perspective view of a cushion with features described in relation to FIG. 29;



FIG. 31 is a bottom perspective view thereof;



FIG. 32 is a rear view thereof;



FIG. 33 is a front view thereof;



FIG. 33A is a perspective view of a cushion according to still another embodiment of the present invention;



FIG. 34 is a schematic view illustrating a clamp according to an embodiment of the present invention;



FIG. 35 is a schematic view illustrating another clamp according to the present invention;



FIG. 36 is a partial schematic view illustrating still another clamp according to the present invention;



FIG. 37 illustrates a further embodiment according to the present invention;



FIG. 38 illustrates an additional embodiment according to the present invention;



FIG. 39 is a graph which illustrates the relation between contact force applied to the patient's face and travel of the frame toward the face according to an aspect according to the present invention;



FIGS. 40 and 41 illustrate a portion of a headgear assembly according to an embodiment of the present invention;



FIG. 42 illustrates a further alternative headgear strap embodiment according to the present invention;



FIGS. 42A and 42B illustrate headgear according to an embodiment of the present invention;



FIG. 43 is a schematic top view of a forehead pad assembly according to an embodiment of the present invention;



FIG. 44 is a schematic top view of a forehead pad and, forehead support according to an embodiment of the present invention;



FIG. 45 is a schematic top view of a forehead support and pad assembly according to an embodiment of the present invention;



FIGS. 46 and 47 are schematic front views of a mask system with an adjustable vent cover according to an embodiment of the present invention;



FIG. 48 is a schematic view of a pad position sensor according to an embodiment of the present invention;



FIG. 49 is a schematic side view of a forehead pad according to an embodiment of the present invention;



FIGS. 50-52 illustrate a full face mask assembly according to another embodiment of the present invention;



FIGS. 53-55 illustrate a full face mask assembly according to yet another embodiment of the present invention; and



FIG. 56 is a schematic diagram illustrating a mask assembly according to another embodiment of the present invention.





DETAILED DESCRIPTION OF ILLUSTRATED EMBODIMENTS

Upgradable Cushion/Forehead Connector System



FIG. 1 shows a respiratory mask assembly 10 that includes a frame 12 and a cushion 14 that may be permanently or removably connected to the frame 12. A forehead support 16 is movably mounted to an upper portion 13 of the frame 12. A headgear assembly (not shown) can be removably attached to the frame 12 and/or forehead support 16 to maintain the frame 12 and cushion 14 in a desired adjusted position on the patient's face. For example, the headgear assembly may include a pair of upper and lower straps with the upper straps removably connected to slotted connector structures 18 provided on the forehead support 16 and the lower straps removably connected to slotted clip structures 20 provided on the frame 12. The slotted connector structures 18 may be replaced with slotted clip structures. The headgear assembly and frame 12 may be removably attached to one another in any suitable manner.


In the illustrated embodiment, the mask assembly 10 is a nasal mask structured to deliver breathable gas to a patient's nose. However, the mask assembly 10 may be a mouth (oro) mask or the mask assembly may be a full-face (oro-nasal) mask. In another alternative, the cushion could be replaced with a nozzle assembly, as taught in ResMed Limited's. U.S. Non-provisional patent application Ser. No. 10/781,929, filed Feb. 20, 2004, incorporated herein by reference in its entirety.


A swivel elbow assembly 22 is removably attached to a front portion of the frame 12. The elbow assembly 22 is structured to be connected to a conduit that is connected to a pressurized supply. The pressurized supply supplies pressurized breathable gas through the conduit and elbow assembly 22 and into the cushion 14 for breathing by the patient.


As compared to the aforementioned U.S. Non-Provisional patent application Ser. No. 10/655,622, the mask assembly includes one main difference, which relates to the upper portion 13 of the frame 12. All other aspects and components are similar to or exactly as described in U.S. Non-Provisional patent application Ser. No. 10/655,622.


The mask assembly 10 may be provided with the ability to allow two or more cushions 14 for use with frame 12. In particular, the upper portion 13 of the frame 12 includes first and second slots 30, 32 connected by a keyway 34. In FIG. 1, a pivot shaft 36, which is provided in this example on each side of the forehead support 16, is positioned in the second slot 32. This position is desirable for use with the cushion 14, which includes a gusset portion 28, as the presence of the gusset portion 28 may increase a distance D measured from the frame 12 (where it interfaces with non-face contacting portion 24 of the cushion 14) to face-contacting portion 26 of the cushion 14.


In one form of the embodiment shown in FIGS. 1 and 2, the mask assembly is provided with two individual forehead supports 16, one for each of the two positions shown therein. With the first forehead support, the shaft 36 is positioned further away from the adjustment mechanism, e.g., a tongue and groove or ratchet mechanism, as shown in FIG. 1. With the second forehead support, as shown in FIG. 2, the shaft 36 is positioned closer to the adjustment mechanism. In another form, the shaft 36 may be adjustably mounted with respect to the adjustment mechanism (ratchet assembly). For example, shaft 36 could be movably attached (e.g., via pivoting, sliding or the like) to a lower leg portion of the “T” shaped forehead support 16, so as to allow movement of the shaft 36 relative to the ratchet mechanism, for selective seating within one of the two slots 30 or 32. Alternatively, a different retaining mechanism could be employed, such as a friction fit or screw thread, etc.


As shown in FIG. 2A, forehead support 16 includes an adjustment mechanism similar to that described in U.S. Pat. No. 6,532,961, incorporated herein by reference in its entirety. The adjustment mechanism in FIG. 2A is slightly different than that used in FIGS. 1 and 2. However, one would recognize that the following teachings are equally applicable to either adjustment mechanism. The forehead support includes structure allowing movement between shaft 36 and main arm portion 36.1. In this embodiment shaft 36 is mounted on a movable arm portion 36.2, e.g., in a living hinge, joint, pivot, etc. Movable arm portion 36.2 can move toward and away from main arm portion 36.1, depending on whether shaft 36 is to be seated within slot 30 or 32. In this way, proper engagement between teeth/recesses 36.4 and positioning pin 36.5 can be maintained. A spring 36.3 or other resilient member may be provided to bias arm portion 36.2 towards or away from main arm portion 36.1.


Referring back to the embodiment of FIGS. 1 and 2, the position of the shaft 36 can be changed from the second slot 32 to the first slot 30. For example, the forehead support 16, along with each shaft 36, may be rotated in a clockwise direction (as seen in FIG. 1) until the narrower dimension of each shaft 36 aligns with keyway 34. Upon alignment, the forehead support 16 and shafts 36 can be moved, e.g., slid, in the direction towards the first slot 30, until the full extent of the shaft 36 is located in the first slot 30. Thereafter, the forehead support 16 along with each shaft 36 are rotated in a counterclockwise sense until the forehead support 16 is in a position facing the patient's forehead, in which position the wider side of each shaft 36 prevents its release from the first slot as the key way 34 is more narrow than the wider side of each shaft 36.



FIG. 2 shows shaft 36 in position within the first slot 30. In addition, it can be seen that the cushion 14 from FIG. 1 has been replaced with another cushion 14′, which is identical in all ways except the cushion 14′ does not include a gusset. Instead, the cushion 14′ may be a standard Mirage® cushion available from ResMed, Ltd., modified to include a non-face contacting side which will interface with frame 12 and cushion clips 38.


Without a gusset, cushion 14′ has a dimension d which is less than dimension D in FIG. 1. As such, the position of forehead support 16 relative to the upper portion 13 of the frame 12 is changed, due to movement of the forehead support 16 and shaft 36 to the first slot 30. Therefore, the relative distance e1 and e2 between the cushion 40 of forehead support 16 and the face-contacting portion 26 of the cushion 14, 14′, respectively, remains substantially constant. In other words, e1 and e2 (the horizontal offset between the forehead support and the cushion) are substantially the same, even though the forehead support 16 has been moved. Moreover, the forehead support 16 can be moved a distance d1, which is approximately the same thickness of the gusset portion 28, or the difference between D and d. Accordingly, the forehead cushion 40 and face-contacting portion 26 in each of FIGS. 1 and 2 will contact the patient in approximately the same location, such that the positioning, fit and/or feel of the mask 10 with either of cushions 14, 14′ is substantially the same.


In this example, the two slots 30, 32 are arranged somewhat diagonally, which in practice may also have the effect of changing the height h of the forehead support 16 relative to the cushion 14, 14′. In particular, the height H1 between the forehead cushion 40 and the cushion 14 in FIG. 1 may be less than the height H2 between the forehead cushion 40 and the cushion 14′ in FIG. 2. However, the heights H1 and H2 can be dimensioned to be the same, in which case, for example, the slots may be located horizontally side-by-side, or the height H2 can be less than height H1, if desired, depending on application.


Moreover, the forehead support 16 can be moved between the slots 30, 32 for the purpose of changing the contact profile between the cushion 40 and the patient's forehead, while keeping the same cushion, e.g., cushion 14 or cushion 14′. In other words, it is not necessary to change the cushion and to make use of the added adjustability. To this end, there are numerous arrangements which can allow the position of the forehead support 16 to be altered with respect to the upper portion 13 of the frame 12. Also, the number of slots can be changed in accordance with the number of different positions which are necessary to accommodate cushions having various depths D or d, or d to D. There may be a predetermined number of fixed positions, e.g., three to five, or more, or there may be an infinite number of positions made possible by a sliding arrangement, for example.


In one embodiment, the frame 12 may be sold with a Mirage®-type cushion 14′, in which case the cushion frame 16 would be positioned as shown in FIG. 2. If preferred, the patient can upgrade to a gusseted cushion 14 as shown in FIG. 1, in which case the shafts 36 would be repositioned from the second slots 32 into the first slots 30, as shown in FIG. 1.



FIG. 3 shows a sample of a forehead support 42 which is slidable with respect to an upper part 44 of a frame 12. In this example, the forehead support 42 is not pivotable, rotatable or otherwise movable to change the angular attitude of the upper part 44 relative to the patient's forehead, although provision could be made for this as well. The forehead support 42 is provided with a finger-operated push button 46, e.g., only a single finger-operated push button, which is resiliently urged or locked in a first position in which the forehead support 42 is prevented from moving relative to the upper part 44 of frame 12. When the button 46 is depressed, the forehead support 42 is free to move, or it can be spring biased to move towards and/or away from the patient's forehead, to effect a relative change in position due to the different facial geometries among patients, or to simply compensate for the change between a cushion with a gusset and a cushion without a gusset or a cushion having a greater profile depth. The forehead support 42 may be supported and guided by a pair of pins or extensions 48 which are positioned within slots 50 provided on the upper part 44 of frame 12. The push button 46 may be associated with one or more tabs which can be selectively positioned in one of a plurality of slots 52, in this case four slots. However, the cushion frame 16 and the upper part 44 can be structured to be fixed relative to one another via friction, such that an infinite number of relative positions can be achieved. The forehead support 16 may be provided with one or more cushions 54.



FIG. 4 illustrates yet another embodiment of a mask, like that shown in FIG. 1, but which includes a push button arrangement to allow for horizontal movement of the forehead support 16′ relative to the patient's forehead, to accommodate for different cushion depths or for patient's having differing facial geometries. Like elements have been used to denote like parts.


Cushion Alternatives



FIG. 5 plots mask pressure (Pmask) versus contact force of the mask cushion against the patient's face (Fcontact). A mask designer ideally wants to create a mask which falls within a zone Z of comfort and seal. The zone Z is bounded on four sides. The upper and lower sides represent maximum comfortable contact force and minimum contact force, respectively. Below the minimum contact force, a proper seal will not be maintained, while forces above the maximum comfortable contact force will be undesirable from the patient's perspective. The left and right side borders of the zone Z represent the typical minimum and maximum operating pressures of the mask, respectively. For example, the mask may operate with pressures in the range of about 4-20 cm H2O, although other pressures are contemplated.


Line L1 is the performance curve for one example of a mask described in U.S. application Ser. No. 09/885,455 or U.S. application Ser. No. 10/655,622. The mask includes a cushion with a gusset having an increased projected area A1, compared with the contact area A of the cushion on the patient's face.


The cushion, e.g., the gusset, may include a spring portion to help maintain the performance curve within the zone Z. The effect of the spring portion is to provide an additional contact force at low mask pressures when the effect of the gusset portion is insufficient to provide the minimum sealing force. As a result, the cushion maintains a seal through the range of operating pressures. Moreover, the cushion represented by line L1 falls within the zone of comfort and seal Z throughout the range of operating pressures.


Thus, for example, by combining a gusset portion with a spring structure in a cushion, a designer can tailor the contact force of the cushion such that it falls within the zone of comfort and seal Z throughout the working range of pressure. The same principles may be applied for different pressure ranges.


Further, the size of the zone Z may change (e.g., by changing the maximum comfortable contact force) depending on a particular region of the patient's face. For example, the maximum comfortable contact force may be reduced for a nasal bridge region of the face. As a result, the cushion can be tailored for that particular region such that it falls within the zone of comfort and seal Z throughout the range of operating pressures.


Another example is that the upper side of the zone Z is in fact a straight line as this is the maximum force that the face can take without damage to the skin occurring. However, the maximum force for which the user is comfortable may be below this line. Indeed the upper side of the zone may be a sloping line, indicating a low maximum comfortable force at low pressure leading up to a higher maximum comfortable force at high pressures.


Although the cushion 14′ in FIG. 2 does not include a gusset portion, it can nonetheless be provided with structure and/or a configuration allowing it to incorporate one or more features or advantages associated with a cushion having a gusset portion. In particular, there are a number of masks currently on the market today which can be modified, sometimes in minor ways, to achieve at least one or more of the benefits of a mask with a gusset and/or spring portion. For example, currently existing mask systems can be modified to keep the contact force within zone Z for a given pressure range and/or a specific portion of the patient's face. In some cases, these modifications may not include the use of a gusset and/or spring portion.



FIG. 6 illustrates a schematic view of a first cushion embodiment of the present invention. A mask assembly 60 includes a frame 62 and a cushion 64. The cushion may include a face contacting portion 65 that is adapted to contact with a portion of the patient's face, or at least interact with the patient. Moreover, face contacting portion, as used herein, does not require any contact with the patient's face so long as a sealed interface is established with the patient's airways. Portion 65 includes a membrane 66 spaced above an underlying rim 68. The face contacting portion 65 may be mounted on a concertina-type connecting structure 70 that is configured or structured to provide a spring-like effect. Connecting structure 70 forms a bridge or transition between the contacting portion 65 and frame 62. For example, the connecting structure 70 may include a wire insert. Alternatively, or in addition, the connecting structure 70 may comprise an elastomeric and/or a plastic spring.



FIG. 7 shows a schematic view of another embodiment of a mask assembly 72 which includes a frame 74, and a cushion 76. The frame 74 includes a mount 78 provided or fixed to an inside surface of the frame 74. The mount 78 includes a receiving aperture 80 to receive an end 82 of a spring 84, e.g., an elastomer spring. The end 82 may be in the form of a ball joint which is received in aperture 80, which may be at least part sphere shaped. End 82 is structured to pivot to allow face contacting portion 90 to move sideways relative to frame 74, thereby increasing performance in the event the frame is “bumped.” Spring 84 may have a generally T-shape, with arms 86 extending laterally and having an end 88 provided or connected to each side of face contacting portion 90. In this case, connecting structure 92 may be structured without a spring like effect, in which case the spring effect is supplied solely by the springiness of spring 84. In an alternative, the connecting structure 92 may include a spring wire or be made of a plastic or elastomeric spring, as described above. The spring constants of the connecting structure 92 and the spring 84 should be coordinated to provide the most optimum spring and dampening characteristics. Spring 84, e.g., arms 86, may include one or more apertures 94 which allow for the passage of gas.


As shown in FIG. 7, connecting structure has generally fully developed pleats or folds in connecting portion 92. However, the cushion need not be fully pleated. For example, as shown in FIG. 7A, the connecting structure 92.1 includes gradual pleats that can include indents that cause the cushion to fold under deformation force.



FIG. 8 shows a partial schematic view of an alternative embodiment. In this embodiment, frame 96 includes a mount 98 having an aperture 100 to receive an end 102 of a spring member 108, like that described above.



FIG. 9 illustrates a schematic view of a mask assembly 110 including a frame 112 and a cushion 114 provided to the frame 112. The cushion 114 includes a non-face contacting portion 116 oriented towards the frame 112, and a face contacting portion 118 having a membrane 120 and an underlying rim 122. The cushion 114 includes a central portion 124 located between the non-face contacting and face contacting portions 116, 118 of the cushion 114. The central portion 124 in this example includes an inverted portion 126 that extends inwardly towards the nose receiving cavity. Inverted portion 126 provides for a similar level of flexibility and travel as an external gusset but covers less area on the face, e.g., it has a smaller footprint or projected area, which is perceived as less obtrusive by the patient. The inverted portion 126 may be provided with a wire spring embedded within the wall thickness, or the inverted portion 126 may be made of a plastic or elastomeric material having a spring constant that can be selected based on the desired operating characteristics. Moreover, spring may have a fixed or variable spring rate.


The inverted portion 126 may include an internal spring member 128, and/or an external spring member 130. The spring members can be made of plastic or metal. The internal spring member 128 may be a compression spring, while the external spring 130 may be leaf or tension spring. Springs 128, 130 can be manufactured with a predetermined generally V-shape or U-shape.


Spring member 128 can be assembled with cushion by sliding the spring member 128 on the inside of the cushion, until it reaches the inverted portion 126. The spring member 130 can be assembled with cushion by sliding the spring member 130 on the outside of the cushion, until it reaches the inverted portion 126. Alternatively the spring members can be split and connected as they are assembled onto the cushion. The ease of assembly allows different springs to be used by different users. Therefore the allowed travel, flexibility and spring stiffness can be tailored to patient preference, seal requirements or a particular pressure range. When in position, the spring members 128, 130 can be maintained in position by friction, and/or an adhesive. If one or both of spring members 128, 130 are used, then it is not necessary that the inverted portion 126 have spring resiliency. In this case, the system simply bottoms out (at low pressures) if at least one of the springs 128, 130 is not used. In another embodiment, a plurality of spring members, shaped like spring members 128, 130, can be provided with various spring rates.



FIG. 9A shows a further embodiment. Provided to the non-face contacting portion 116 is a thin arcuate or circular section membrane 116.1 which in turn attaches to face contacting portion 118. This thin membrane 116.1 acts as a receiving channel for an inflatable tube 116.2. This tube acts as a spring and may be inflated or deflated by means of a valve to vary the spring stiffness.



FIG. 9B illustrates an embodiment like that shown in FIG. 9, but does not include spring members 128, 130. Instead, mask assembly 110 has a cushion 114 that includes a groove 114.1 structured to accommodate an insert 114.2. Insert may be an open or closed cell foam, or it may be a spring foam, i.e., one molded in a spring shape. In an alternative, the insert 114.2 could be a gel filled member. The insert in isolation is shown in FIG. 9C. Insert 114.2 is structured to provide a spring effect to cushion 114. Insert 114.2 is not provided in the air path to the patient, but rather is positioned within a groove on the outside of the cushion.



FIG. 10 is a partial schematic view of another embodiment, shown without a frame. Cushion 132 includes a non-face contacting portion 134 structured to be attached to or otherwise provided to a frame. A face contacting portion 136 includes a membrane 138 and an underlying rim 140, similar to that previously described. A central portion 142 provided between the non-face contacting and face contacting portions 134, 136 includes a gusset portion 144. An internal spring 146, e.g., a leaf spring, an elastomer, a plastic and/or a composite spring, is provided on the inside of the cushion 132. The internal spring 146 can be inserted inside the cushion until it reaches the gusset portion 142, at which point the spring 146 is maintained in place via friction, glue, and/or other appropriate fastener mechanisms. In the alternative, spring 146 can be formed with central portion 142 in an over-molding process.


In the embodiment of FIG. 10, the cushion can be a standard Mirage®-type cushion, which does not include a gusset portion 144. However, the spring 146 can be arranged such that it pushes out the side wall of the cushion between the portions 134, 136, thereby creating or forming the gusset portion 144. Similarly, the springs 128, 130 in the embodiment of FIG. 9 can be used to create the inverted portion 126, in the event the side walls of the cushion are relatively straight before the insertion of a spring member.


In yet another alternative, the cushion 110 may be provided with the inverted portion 126, and a spring insert like spring member 146 can be inserted inside the cushion, to evert the inverted portion 126 until it assumes an external gusset like configuration, like that shown in FIG. 10. Conversely, the cushion may start out in the everted state, as shown in FIG. 10, and a spring member like spring member 130 in FIG. 9 can be provided on the outside of the cushion, to convert the gusset portion 144 into an inverted portion as shown in FIG. 9.


In the event the cushion is to include a central portion which is to change shape, e.g., everting or inverting, the cushion should be structured such that the inverted and everted positions are stable. Such can be accomplished by allowing one or both ends of the central portion of the cushion to bend, flex and or pivot relative to the other portions of the cushion. The apex of the inverted or everted portion should be structured and/or its materials selected such that it can allow for inversion or eversion. Initially, the central portion will resist such movement, but beyond a certain limit, the central portion will flip from the inverted position to the everted position, or vice versa. In this way, the cushion is stable in the inverted and everted positions, generally resisting large movement, but at the same time can be everted or inverted upon the application of sufficient force not normally encountered during use of the mask system. The use of a spring member will help to resist inadvertent flipping, especially for preventing inverting movement, although a spring is not necessary to prevent either inverting or everting of the cushion.



FIG. 11 is a partial schematic view (without cross-hatching for clarity) of a cushion 148 according to another embodiment. Cushion 148 includes a non-face contacting portion 150, a face contacting portion 152, and a central portion 154 between the portions 150 and 152. Central portion 154 includes a protruding gusset portion 156. A skeleton, e.g., a spring member 158, may be provided within the wall thickness of at least a portion of the gusset portion 156. A skeleton may include a malleable wire rim or bead 160 provided around at least a portion of the circumference of the cushion. A prong rim, or lip 162 may be provided within underlying rim 164, to help maintain its shape.



FIG. 12 is a partial top schematic view showing a cushion 166 including gusset portions 168 located at one and preferably all three apices of the cushion 166. Flexible folds or a spring 170 are provided along at least the cheek regions 172 of the cushion. These folds allow a similar level of flexibility and travel (away from the face) as the gusset portions 168 but do not incorporate the increased area. It can be seen that the total area of the gusset around the mask has been reduced, thus helping to increase visibility. The sealing force of the cushion may be provided entirely from the gusset portions 168 or may also include some spring force from portions 170. Moreover, portions 170 and 170.1 may be in the form of relatively rigid beams. The gusset portions 168 may also incorporate some spring force.



FIG. 13 illustrates a partial schematic view of yet another embodiment of a cushion 174 according to the present invention. Cushion 174 includes a non-face contacting portion 176 adapted to be connected to or otherwise provided to the frame (not shown in FIG. 13). Portion 176 is preferably made of a material having a spring effect, such as polypropylene, or another semi-rigid material such as polyurethane—one that will resiliently maintain its general shape, but which will provide some degree of spring effect upon the application of pressurized gas under variable pressure to the mask, tightening of the head straps, etc. Portion 176 extends outwardly away from the end where it is connected to frame, to an intermediate portion that includes a transition region 179 which is where the relatively more rigid and elastic materials are joined. Portion 180 may include a membrane 182 and an underlying rim 184, which share a common side wall 183, as described above. A projected area 181 is defined between the end of the transition region 179 and a mid-point 182.1 of membrane 182. As shown, the projected area 181 extends outside the area of contact 185 between membrane 182 and the patient. Pressure acts on this additional area leading to the application of a force to the membrane 182 and underlying rim 184. Portion 180 is preferably made of a material that is softer than the semi-rigid material of the non-face contacting portion 176. Transition 178 may include a rigid connection between the semi-rigid and compliant materials of portions 176, 180, respectively. Alternatively, the transition region 178 may include a hinge, e.g., a living hinge (e.g., polypropylene) or an axle hinge, or the parts may otherwise be co-molded and allowed to move relative to one another by flexing or bending relative to one another.



FIG. 13A shows another embodiment which is similar to the embodiment of FIG. 13, but which add a spring portion 180.1.



FIG. 14 illustrates a partial schematic view of still another embodiment according to the present invention. A cushion 186 includes a non-face contacting portion 188, a face contacting portion 190 and a central portion 192 located generally between the portions 188, 190. Central portion 192 includes a gusset portion 193, like that described above. Face contacting portion 190 includes a membrane 194 and an inflatable chamber 196 provided below the membrane 194. Inflatable chamber 196 forms an underlying rim and includes a channel 198 that is filled with air or another suitable fluid, such as gel and/or soft durameter elastomer. The stiffness of chamber 196 can be changed depending on the pressure of the medium contained therein, or the pressure can be fixed at a predetermined range or level. The stiffener also depends on the material make-up of chamber 196.



FIG. 15 discloses another embodiment of a cushion 200 having an elastic cuff 202. The elastic cuff is provided between face contacting portion 204, including membrane 206 and rim 208. Advantages of the elastic cuff are described in U.S. Non-Provisional patent application Ser. No. 10/655,622 filed Sep. 5, 2003. In FIG. 15, the elastic cuff 202 can be used in conjunction with a gusset portion 209.


The chamber 196 (FIG. 14) or elastic cuff 202 (FIG. 15) provides a spring Or spring-like effect. The spring should be of comparative stiffness to that provided as the gusset is compressed at a pressure. Thus, the chamber/cuff plus gusset provides additional force when the gusset is compressed. This force is provided without increasing the area of the gusset, which is less obtrusive to the patient. This helps provide a force at low pressures such as 4 cm H20 to allow the performance to fit within the zone Z (FIG. 5). Because this force does not increase proportionally with pressure (as does the force provided by gusset area), the increase is not as significant at high pressures as it would have been if the gusset area had been increased to try and fit within zone Z. Compare, e.g., FIG. 43 of U.S. Non-Provisional patent application Ser. No. 10/655,622.



FIG. 16A illustrates a partial schematic view of a cushion 210 according to yet another embodiment of the present invention. Cushion 210 has a non-face contacting portion 212 adapted to be connected to or otherwise provided to a frame (not shown in this view). Face-contacting portion 214 is provided at the other end of cushion. A central portion 216 is provided between the portions 212 and 214. Central portion 216 includes a side wall portion, e.g., a thin walled section 218, which may take the form of one or more cut-outs, grooves or areas of predetermined weakness, e.g., one or more portions subject to deformation and resilient restoration of their shape. The side wall or thin walled section 218 may resiliently deform, buckle or flex upon donning of the mask and/or with changes in air delivery pressure and/or strap tension, in which case the cushion would form an improvised gusset portion. The thus formed gusset portion in the side wall can be converted back into a substantially straight wall section when the force and/or pressure is removed.


In the position shown in FIG. 16A, a projected area 215 extends from the center point of membrane 214 to the outer surface of side wall. If sufficient force is provided to the central portion, the side wall of the central portion 216 will extend or buckle outwardly, as shown in FIG. 16B to form an increased projected area 215′. In the position shown in FIG. 16B, projected area 215′ of the improvised gusset portion 217 extends outward and defines a projected area that is greater than projected area 215. Pressure acts upon this additional area effectively increasing the sealing force. This is more likely to occur at low pressures when the force on the mask due to pressure is low and thus the strap tension can deform the cushion. At high pressures, the increased force on the mask due to pressure is more likely to cause the headgear straps to move or extend and thus the side wall will assume the general posture shown in FIG. 16A, in which case there is little or no projected area or stored spring force, meaning that sealing force is maintained by strap tension that opposes the gas delivery pressure tending to move or lift the mask away from the face.


This design acts as a spring under relatively light load and has gusset-like effect at higher pressure, thereby providing a variable effect. The spring becomes weaker when bent, which helps form a gusset which increases sealing force.



FIG. 16C illustrates yet another embodiment in which wall 218′ has a variable thickness, e.g., created using a notch 218B. This will cause wall 218′ to collapse at the weakest point, to add predictability. FIG. 16D is yet another embodiment in which side wall 218″ is pre-formed at an angle, to encourage buckling outward or inwards, as desired.



FIG. 17 shows a partial, schematic perspective view according to a variation of the embodiment in FIGS. 16A and 16B. Central portion 216 is provided with a plurality of cut-outs 220′ to provide predetermined areas of weakness which may flex or buckle to provide one or more of the advantages described. Central portion 216 could be in the form of an adapter that is provided to the non-face contacting portion of a standard or conventional cushion. Cut-outs 220′ are preferably not in the form of thru-holes, but rather are in the form of blind-bore apertures.


The contact force applied to the patient's face can be tailored by adjusting a wall thickness of central portion 216. The central portion acts as a spring structure to provide a component of the contact force on the patient's face through the membrane 214. Central portion 216 may have a uniform wall thickness with a thin cross-section. The central portion may have a thicker cross-section, with the thinner wall providing a smaller component of force than the thicker wall. The cross-section of the wall may vary around the perimeter of the gusset portion 217. For example, a gusset portion may have a thin wall in the patient's nasal bridge region, but a thicker wall in the patient's cheek region. Moreover, the wall of central portion may be varied in conjunction with the desired maximum projected area 215, for example, by increasing the thickness of the wall to result in a reduced projected area 215.



FIG. 18A is yet another schematic drawing depicting a cushion 222 according to a different embodiment. Cushion 222 includes a non-face contacting portion 224 structured to be attached or otherwise provided to a cushion frame (not shown in this figure). A face contacting portion 226, in this example having only a single membrane, can be provided opposite the non-face contacting portion 224. A central portion 228 between the portions 224, 226 may include a buckle region 230. Depending on the pressure inside the mask and the strap tension, buckle region will allow the central portion 228 to flex, bow or move outwardly, to thereby effect a change in the projected area of the cushion on the face. This in turn changes the force applied to the face contacting portion 226. FIG. 18B shows the cushion in such a position, including an increased projected area 231′.



FIG. 19A is a partial schematic view of a cushion 232 according to still another embodiment of the invention. Cushion 232 includes a non-face contacting portion 234, a face contacting portion 236 and a central portion 238. A rim 240 may be positioned below a membrane 242 of portion 236, although it is not necessary. The membrane 236 branches away from rim support 246, and has a relatively rounded outer wall profile. A space 248 is created between the outer side of the rim support 246 and the inner side of the membrane. With this structure, the membrane 242 and central portion 238 may more easily flex, bow or pivot outwardly to enable a change from projected area 239 (FIG. 19A) to increased projected area 239′, as shown in FIG. 19B. As shown in FIG. 19A, outward movement of the membrane/central portion can be facilitated by scoring or cutting a small notch 249 in the wall of the membrane or central portion. This embodiment provides the advantages of a gusset portion. However, if a seal cannot be formed, the straps can be tightened so that the membrane 242 rests against the rim 240.



FIG. 20A is a partial schematic view of a cushion 250 according to yet another embodiment of the invention. Cushion 250 includes a non-face contacting portion 252, a face contacting portion 254 and a central portion 256 between the portions 252 and 254. Central portion includes thin walled sections that can kink, like a drinking straw, when the air delivery pressure changes. The kinking sections may be formed of a relatively rigid or semi-rigid plastic that is formed to allow it to flex, e.g., via a thin-walled section. For example, the plastic is like that of a drinking straw, which is generally rigid but can deform or flex as desired compared to the cushions that are made of silicone. In this embodiment, the projected area may not necessarily change, although provision could be made to do so. However, thin wall sections, e.g., about 0.2-1.0 mm, in central portion 256 have a spring effect which helps maintain the seal in place and a sufficient sealing force, especially during low pressure periods or during changes of gas delivery pressure. FIG. 20B shows cushion in a crushed state; in which central portion 256 has been plastically deformed to assume this configuration. The cushion maintains this shape, even without force, because it is plastically (v. elastically) deformed. In this position, central portion offers little or no spring effect.



FIG. 21 is a partial schematic view of a mask assembly 260 according to another embodiment of the present invention. Assembly 260 includes a frame 262 and a cushion 264, e.g., a ResMed Mirage® cushion, both of which are commercially available. Assembly 260 includes a segmented design having an intermediate adapter portion 266 with a first end 268 that interfaces with the frame 262 and a second end 270 that interfaces with the cushion 264. Intermediate adapter portion 266 can be made of a relatively rigid or semi-rigid material, such as polypropylene formed in a thin wall to allow for flexing, and it may include a gusset portion 272. This allows for customization of the gusset portion to suit the flexibility or force range that is required. Alternatively, intermediate adapter portion 266 may include any of the alternatives described herein for providing more flexibility of the mask or for allowing a change in the applied sealing force with a change in pressure, e.g., via the use of a variable projected area and/or a variable spring force provided by a spring member or other resilient force. In this way, any mask can be retrofit to include an intermediate adapter member 266 according to this embodiment. Moreover, various ones of the embodiments described herein can be provided on an intermediate adapter portion so that the existing mask components need not be modified. Frame 262 may be integrally formed with gusset portion 272, with cushion 264 detachably provided thereto.



FIG. 22 illustrates a partial view of a cushion 274 having a gusset portion 276 positioned between non-face contacting and face contacting portions 278, 280 of the cushion. Cushion 274 is substantially entirely gel-filled. Gel may include a soft flexible liquid, semi-liquid and/or visco-elastic polymer. Such gel material may be disposed and displaced within a skinned body. The skin may be stiff (non-stretchable), or it may be elastic or subject to elongation. FIG. 23 illustrates an alternative in which only a portion 282 is filled with gel. In FIG. 23, the gel portion 282 acts as a spring to provide the advantages of adding a spring previously discussed.



FIG. 24 is a partial schematic view of a cushion 284 having a gusset portion 286. The contact force applied to the patient's face can be tailored by providing one or more reinforcement structures. The size, shape and geometry of these reinforcement structures can be arranged to vary stiffness in different sections of the gusset portion 286. For example, less stiff sections at nasal bridge region, stiffer sections at cheek region, to provide the required comfort and seal level. In this example, an inside portion of the gusset portion 286 includes a reinforcement member 288, e.g., an elastic flap or a gel filled pocket. Gel may act as a shock absorber and/or provide additional cushioning if and when the cushion bottoms out. An alternative to gel is gel foam, e.g., gel with bubbles or other filler with various compressible qualities. The added resiliency of member 288 has the advantage of preventing overstretching or undesirable deformation of the gusset portion 286 at high pressure or relative movement between frame and cushion, e.g., by bumping at night.


Member 288 should have a spring stiffness similar to that of the gusset under pressure and thus will provide additional force as the gusset closes. As previously discussed (for cuffs and springs) this force is not pressure related. Thus it increases the force at low pressure allowing the performance of the mask to fit within the zone Z, see FIG. 5.



FIGS. 24A-24U illustrate further embodiments according to the present invention. FIG. 24U schematically illustrates a partial section of a mask assembly 800 having a cushion including a face contacting/interacting portion 802 that may include a membrane 804 with an optional underlying rim 806. Cushion includes a non-face contacting portion 808 that is supported by a frame 810. A central portion 812, in the form of a black box, is provided between portions 806 and 808.



FIGS. 24A-24T illustrate various central portions that can be used for control portion 812 in FIG. 24U. In the case of FIGS. 24N and 24R, face-contacting interacting portion 808 and/or frame 810 (FIG. 24U) would be adjusted, e.g., widened, to accommodate for illustrated offset. Various features of FIGS. 24A-24T are tabulated below in Table 1.










TABLE 1





Drawings
Comment







FIG. 24A
Circular cross-section. Provides more travel for the same



outer area. The circular shape will deform less when



pressurized, therefore outer area remains constant.


FIG. 24B
Underside notch has dual purpose. On extension



provides more travel (longer path length), on



compression acts as spring. Upperside is tapered



wall section.


FIG. 24C
Circular cross-section at end of straight gusset.



Provides more travel for the same outer area. The



circular shape will deform less when pressurized,



therefore outer area remains constant.


FIG. 24D
Like FIG. 24C, but with tapered or thickened wall



section. When pressurized, the thickened wall



section tends to keep the form.


FIG. 24E
Underside notch provides more travel on extension.



This is assisted by the thickened upper wall which



tends to keep the form. This also allows for a



constant outer area (Ag).


FIG. 24F
In compression, a spring constant is added. In



extension, no spring effect (one-sided spring). This



has the advantage of having a spring at low pressures



but not necessarily at high pressures.


FIG. 24G
Angled gusset provides more travel for the same outer



area.


FIG. 24H
Internal gusset provides more travel for the same outer



area.


FIG. 24I
Thickened section deforms only under higher pressures.



At lower pressures, thickened section will touch when



gusset is compressed and act as spring. This has the



advantage of having a spring at low pressures but not



necessarily at high pressures.


FIG. 24J
Thickened section deforms only under higher pressures.



This moves the spring tab away from the lower section



(i.e., no spring). At lower pressures, spring tab will touch



when gusset is compressed and act at spring. This has



the advantage of having a spring at low pressures but



not necessarily at high pressures.


FIG. 24K
Thickened section will not deform under pressure,



maximizes outer area with respect to FIG. 24G. Angled



gusset also provides for more travel for the same area.


FIG. 24L
Double gusset provides more travel for the same outer



area.


FIG. 24M
Spring element added.


FIG. 24N
Attachment point moved outwards. Outer area



maintained fixed. Underside notch provides more



travel (longer path length).


FIG. 24O
In compression, a spring constant is added. In extension,



no spring effect (one-sided spring). Note: Similar to but



more spring and less expansion of the gusset at high



pressures.


FIG. 24P
Angled gusset provides more travel for the same outer



area.


FIG. 24Q
In compression, a spring constant is added. In extension,



no spring effect (one-sided spring). Similar to FIG. 24F,



this has the advantage of having a spring at low pressures



but not necessarily at high pressures.


FIG. 24R
Attachment point moved outwards. Outer area maintained



fixed. Shape of gusset provides more travel (longer path



length).


FIG. 24S
Spring effect in extension. No spring effect in compression.



Thick walls provide more constant outer area under pressure.


FIG. 24T
Double internal gusset allows for outer area to be varied from



large to none while still allowing significant travel.





Notes:


1 Extension is taken to be movement of frame away from lower cushion


2 Compression is taken to be movement of frame towards lower cushion


3 Travel is taken to be amount of extension plus compression


4 Outer area is taken to be the outer area of the gusset







FIGS. 25-27C are illustrations of a mask assembly 290 according to still another embodiment of the present invention. Mask assembly 290 includes a frame 292 which is provided with a cushion 294. Cushion 294 and breathing chamber forming portion. 298 are formed in one piece, although they could be formed in separate pieces and/or portion 298 could be formed as part of frame 292. Cushion 294 has &resilient face contacting portion 296. Cushion is provided to frame 292 as shown and described in US. Design Pat. No. D484,237, U.S. non-Provisional patent application Ser. No. 10/221,572 and U.S. non-provisional patent application Ser. No. 10/221,574 each incorporated herein by reference in its entirety.


Cushion 294 is adapted to include a concertina-type gusset portion 300, including one or more folds. As seen in FIG. 26, the gusset portion 300 tapers as it approaches the apex 301 of the mask above the nose of the patient. As shown in FIG. 27A, it can be seen that gusset portion 300 also tapers in width as it approaches the apex. As such, the gusset portion 300 is at a minimum or nil at the apex, meaning that very little if any gusset type Compensation is offered at the apex. The gusset portion 300 essentially allows the cushion 294 to move in an arcuate manner generally indicated by arrow 302 in FIG. 27A. This may be described as a “hinged-concertina” form of a gusset portion. FIG. 27B shows the cushion without the frame. FIG. 27C shows the gusset portion in a stretched or expanded position, as indicated by the area 302.


As a father design, as shown in FIG. 27D, the flexibility could be achieved through the addition of one or more small compression springs 300.1 on the bottom corners of the mask and the cushion may have a thin side wall that could collapse in any direction. A hinge point may be provided at the apex. A portion 300.2 could be formed with a rigid beam, as desired.



FIG. 27E shows a mask assembly 290 like that shown in FIG. 27A, but the bottom portion of the gusset is converted into one or more compression springs 300.3. Compression springs 300.3 may take the form of a single spring that is generally centered over the lip portion, or it may include a spring at each corner of the bottom portion of the cushion.



FIG. 28 is a schematic view of a mask assembly 310 having a frame 312 and a cushion 314. Frame 312 includes a bulbous flange portion 316 which simulates the shape of a gusset portion. Bulbous portion 316 may be solid, or it may simply be a skeleton with ribs which may help the bulbous flange portion 316 to act as a spring. Cushion 314 may include a thin membranous section 318 that is stretched to seal over bulbous portion 316. Section 318 may be made of silicone, gel and/or foam.


In use, the silicone may extend away from the bulbous flange portion due to either the weight of the cushion or the force of the pressurized gas acting on it. However, if the headgear straps are tightened and the gusset portion is compressed, the silicone will bottom out upon the spring which will provide an additional sealing force.


In another aspect, the gusset portion or the simulated versions or adaptations of the gusset portion have applications particularly suited to barriatrics. In particular, due to rapid weight loss following a barriatric operation, the flexible nature of the gusset helps to accommodate changes in the shape of the face, thereby maintaining a seal with the same cushion and forehead strap position throughout the treatment period. Standard cushions including silicone, gel and foam-based products may not have sufficient flexibility to achieve a seal though the treatment period, in particular require modifications to the strap lengths, and possibly changes in cushion sizing. With the cushions described herein, an automatic sealing system is provided, i.e., the cushion may move automatically to seal against the face. This automatic motion compensates for variations in pressure and variations in facial position.


An advantage of the systems described herein is that each can be customized through variation of the projected area of the gusset around the perimeter of the lower cushion to provide tailored forces at differing locations. One potential use of this technology relates to use for infant masks. For example, the mask can utilize gusset portions to provide force at set locations which are most comfortable for an infant. In another example, a system of different gussets for different nights or weeks could be implemented with each changing the pressure points and preventing continuous constant pressure from a mask deforming the face.



FIG. 29 illustrates a schematic drawing of a cushion 400 according to still another embodiment of the present invention. Cushion 400 in this example, is a nasal cushion, although it could also be a full face (oro-nasal) cushion. Cushion 400 includes a nasal bridge region 402, an upper lip region 404 and cheek regions 406 therebetween. Cushion 400 includes a region 408, including a gusset and/or spring portion, as described above. Region 408 has variable dimensions along the perimeter of the cushion 400. For example, region 408 is defined between the perimeter edge 412 of the cushion 400 and a dotted line 410 shown in FIG. 29. As shown, region 408 is relatively small or nil in the nasal bridge and/or upper lip regions 402, 404, where relatively little force is required, which can help reduce the possibility of discomfort, while cheek regions 406 have a relatively wider profile for region 408. Further, region 408 has cut away portions 412 to allow for improved patient vision. Cut-out 412.1 is provided to reduce/eliminate contact with lip of patient. FIGS. 30-33 illustrate cushion 400 from various perspectives and views. Non-face contacting portion 414 and face contacting portion 416, including membrane 418, are shown, e.g., in FIG. 30.


The force is primarily applied to the cheek region and in particular the creases in the cheek. These areas are the least sensitive to pressure and are thus preferable for reasons of comfort. In addition the force is focused on areas where there may be leak (like creases in the cheek) rather than areas where typically little leak occurs (eg: upper lip region). The areas where there is little gusset area such as the upper lip region may contain concertina type folds 400.1 (see FIG. 33A). These allow the flexibility and travel that the gusset provides without applying force due to pressure. As an alternative embodiment, these folds may incorporate some element of spring force through any of the methods previously discussed.


Although gusset area is near zero in the region of the eyes and lips of the patient, the thin wall has a height (FIG. 29A) that allows the cushion to rotate sideways to maximize stability. The effect is similar to that described above in relation to FIG. 31 (described below), in which the vertical centerline acts as a hinge about which side portions (cheek regions) may pivot. Although displacement of cushion to frame is reduced, the cushion still decouples frame movement side-to-side.


Full Face Mask Embodiments



FIGS. 50-55 disclose two alternative embodiments of the present invention which are directed to full face masks.



FIGS. 50-52 illustrate a mask assembly 900 including a shell 902 with integrally attached slots 904 for receiving straps of a headgear assembly, not shown. Shell 902 is provided with a source of pressurized air through central aperture, typically via an air supply conduit such as an elbow 903. Shell 902 also includes upstanding support structure 908 which may be provided for the support of the forehead pad assembly. Shell 902 may also be provided with one or more vents 910. In FIG. 50, a portion of a cushion 912 can be seen around the perimeter of shell 902. In particular, cushion 912 is provided with a gusset 914 having frontal and side profile views which are similar to that disclosed in FIGS. 29 and 30-33. For example, as shown in FIG. 50, gusset 914 includes cheek regions 914a, a nasal bridge region 914b, and a lower lip region 914c. As described above in relation to FIG. 29, for example, these portions of the gusset have various profiles in order to tailor the amount of force which is applied to the particular region of the patient's face, depending on the sensitivity of the patient's face as well as the required sealing forces thereof.



FIG. 51 is a side profile view of the mask assembly 900. Cushion includes a shell contacting portion 913 which may have a profile, for example, shown in FIG. 10. Gusset 914 is seen as having a relatively low profile in the nasal bridge region 914b. For example, the nasal bridge region 914b is provided generally adjacent the upper portion of the shell which is covered by the shell contacting portion 913 of cushion 912. A face contacting portion 916 may include a soft membrane as well as an underlying rim, as described in relation to FIG. 10.


Further, a ring shaped reinforcement 918 is provided between gusset 914 and face contacting portion 916. Further details of the reinforcement 918 are described in U.S. Provisional Application No. 60/643,121, filed Jan. 12, 2005, incorporated by reference in its entirety. The reinforcement 918 may be secured to the cushion 912 in any suitable manner. For example, the reinforcement 918 may be attached to an exterior surface of the cushion 912, e.g., by friction fit, adhesive, and/or mechanical fasteners. In an embodiment, the reinforcement 918 may be provided within a groove circumscribing a portion of cushion 912 which lies between gusset 914 and face contacting portion 916. The reinforcement 918 has a function of limiting distendability or expansion of the cushion 912 when subject to high pressures, for example. In one embodiment, the reinforcement 918 may be constructed of a substantially rigid material, e.g., plastic, composite. In another embodiment, the reinforcement 918 may take the form of an insert made of open or closed cell foam and function like insert 114.2 described above in FIGS. 9B and 9C.



FIGS. 53-55 disclose a mask assembly 950 according to yet another embodiment of the present invention. Mask assembly 950 includes a shell substantially identical to that described in relation to FIGS. 50-52, and will not be described in more detail with respect to this embodiment. The main difference between this embodiment and the embodiment of FIGS. 50-52 resides in the structure and function of cushion 912. For example, cushion 912 in FIGS. 53-55 has a gusset 932 which is generally equal in the nasal bridge region, the cheek regions, and the lower lip region. For example, in comparing FIGS. 51 and 54, it can be seen that the gusset portion 932 in the nasal bridge region in FIG. 54 extends higher than the edge of the shell 902, as opposed to the arrangement shown in FIG. 51 in which the nasal bridge region 914B is substantially equal in height as compared to shell 902. In addition, cushion 912 shown in FIGS. 53-55 includes an insert 918 similar to that described in relation to FIGS. 50-52. Insert 918 may include a gap 920 (FIG. 55) which is provided in the nasal bridge region of insert 918.


Headstrap Plate Variation



FIG. 56 illustrates schematically a mask assembly 900 according to another embodiment of the present invention.


Mask assembly 960 includes a cushion 962 including a face contacting portion 964 which may be similar to that described above. Cushion 962 is supported by a bellows 966 which in this embodiment is further provided to a plate 968. The bellows 966 may expand under mask pressure. Plate 968 can have a total force defined by the area of the plate times the mask pressure to which the plate is subjected (F=Area×P).


The force is applied to ends x and y of lever arms 970 and 970, respectively, so that each lever area experiences a force defined by the area times the pressure divided by two (F=Area×P/2). Each lever 910 is mounted so as to pivot about an axis 972, which in this example is asymmetrically oriented such that it defines a distance l1 and a second distance l2. The force is multiplied by the ratio l2 divided by l1 (l2/l1) and transferred to a rod 974 provided to each lever 970. Each rod 974 is connected to a strap lever 976, which in this case is pivotably mounted at a point which is approximately in the center of lever 976. Lever 976 in turn is connected to a strap portion of 978 of a headgear assembly. Accordingly, each strap 978 is tensioned with the force defined by the relation:

F=Area×P/2×l2/l1.

Accordingly, strap tension is proportional to mask pressure.


After-Market Clamp Accessory



FIG. 34 illustrates a cushion 500, generally like the cushion shown in FIG. 1. Cushion 500 includes a gusset portion 502. One or more clamps, schematically shown as paper clips 504 in this example, can be applied to gusset portion 502 in various positions. Clamps 504 can be positioned radially outward from the cushion to adjust the width of gusset portion 502, which may include a spring portion, to thereby adjust the projected area. Clamps 508 are positioned on the cushion where it is desirable or allowable to reduce the contact force. Further, the clamps may be positioned along any portion of the perimeter of cushion 500, to thereby fine tune balance between maximum comfort and sealing force.


As an alternative, gusset portion 502 may include a linear fastener such as a tongue and groove arrangement that is used in Zip-Loc™ plastic bags. The linear fastener may be provided along the entire perimeter, as shown in imaging dotted lines 506 in FIG. 34, or only a portion thereof, of the cushion 500. When tongue and groove of linear fastener are engaged, the gusset portion 502 would be generally inoperable, such that the cushion 500 would operate as though it did not include a gusset portion. Alternatively the tongue and groove of linear fastener are positioned mid-way or at some preferred distance from the edge of the gusset and when engaged, whilst the gusset portion exterior to the tongue and groove is inoperable, the gusset within the tongue and groove still operates. This may be used to apply a gusset to selected regions of the face for example. In another alternative, the cushion could include a plurality of concentric sets of tongues/grooves, such that the width of the gusset portion can be selectively adjusted.



FIG. 35 illustrates cushion 500 with another example of a clamping arrangement. In this embodiment, clamps 508 may be made of plastic and/or metal. Clamps 508 are provided along a central axis 509 of cushion 500. As shown in FIG. 36, cushion 500, in particular the lateral sides of gusset portion 502, are encouraged to flex or bow about axis 509, thereby wrapping the gusset portion 502 and/or adjoining sections of the cushion 500 towards the patient's face in the cheek regions. This helps promote a good seal in a region of the patient's face which is best able to withstand prolonged sealing forces. Thus, wrapping or bowing of the gusset portion can be achieved without the use of clamps 508.


Clamps 504, 508 can be provided as an after-market accessory, to help patients tailor the cushion fit according to their special needs. Alternatively, a range of cushions with gusset portions having various profiles, sizes, and spring constants could be provided.


Over-the-Head Mask Systems



FIG. 37 illustrates a mask assembly 320 including a patient interface 322, e.g., a cushion or a nozzle assembly, which is in communication with an over-the-head air inlet tube 324. A ball joint 326 or hinge, e.g., forms a connection between interface 322 and tube 324. Tube may optionally include a spring 328, e.g., a stainless steel leaf spring, to help bias the interface 322 towards the patient's face, to thereby help ensure support for mask and/or a good seal, while at the same time offering a higher degree of flexibility and/or comfort. Alternatively, the inlet tube 324 can be formed of a material having inherent resiliency, thereby avoiding the need for spring 328. Inlet tube 324 received pressurized gas from air delivery conduit 330. Headgear 331 is provided to support and/or hold the mask assembly and/or the air delivery conduit.


With this arrangement, ball joint 326 allows interface 322 to rotate about all axes of movement, at least to some degree. This helps to decouple for forces associated With supporting the headgear from the forces associated with a maintaining a seal. This is similar to the use of a gusset, which also helps decouple these forces. In yet another embodiment, the spring 328 and/or tube 324 could have a variable stiffness than changes with pressure, e.g., get stiffer with pressure increases.


In an alternative embodiment shown in FIG. 38, mask assembly 332 includes a flexible wall joint 340 to replace the ball joint from FIG. 37. Wall joint 340 allows relative movement between interface 334 and inlet tube 336. Inlet tube 336 may include inherent springness, or it may include spring, e.g., a stainless steel leaf spring 338. Headgear 342 may be provided to support mask assembly and/or air delivery conduit 344. Tube 336 and/or spring 338 may change stiffness with pressure variations, as described above.


Changeable Extendibility of Headgear


In another form of the invention, the extensibility of the headgear is selectively variable. For example, relatively low elasticity headgear might be used for low mask pressures, while relatively higher elasticity headgear may be used for high mask pressures, such as around 20 cm H2O. In one form, this is achieved by having duplicate straps within the headgear, one extensible, the other, relatively inextensible. At low pressures, both straps are used, the net effect being that the headgear is relatively inextensible. At high pressures, the inextensible strap is disengaged, with the result that the headgear is relatively extensible overall.



FIG. 39 illustrates the contact force of the cushion on the patient's face against travel of the mask shell towards the face. As can be seen from FIG. 39, the contact force of the cushion Fc linearly increases with the travel of the mask shell towards the face, for three constant pressures P1, P2 and P3. For each pressure, the contact force Fc is defined by the relation Fc=Pi(Ag−Ac), where Ag is the projected area, of the gusset and Ac is the contact area between the face and the cushion; e.g., the membrane, of the cushion. If the gusset includes a spring, a spring constant k times its displacement distance x must be taken into account as well.



FIG. 39 shows a first curve which represents headgear with low elasticity, and a second curve which represents headgear with high elasticity. Low elasticity headgear may be used for VPAP and CPAP applications, while high elasticity headgear may be useful for auto set applications.


For CPAP, a constant position may be preferable, ie: the force is maintained constantly with the set pressure at the preferred sealing and comfort position. The gusset still provides flexibility to allow for movements in head position and skin position through the night. The use of low elasticity headgear means that this position is maintained. However some users may prefer high elasticity for comfort and a totally flexible system.


For VPAP, a low elasticity headgear may be preferred since this prevents the frame ‘bouncing’, ie: moving backwards and forwards with changes in pressure since both the gusset and headgear are elastic. This ‘bouncing’ may disrupt the flow generator control systems or may lead to discomfort. Similarly, some users may prefer high elasticity for comfort and a totally flexible system.



FIG. 40 illustrates an embodiment including headgear with selectively variable elasticity. For example, a portion 600 of a headgear strap is shown in FIGS. 40 and 41. Headgear strap portion 600 includes a first end 602 structured to connect with a slotted headgear connector formed on forehead support or mask frame, as shown in FIG. 1. Portion 600 includes a second end 604 which is configured for connection to a rear part of the headgear which is guided around the back of the patient's head. Headgear strap portion 600 includes an intermediate portion 606 which includes gathers. First and second portions 602 and 604 are made of relatively inextensible or relatively non-elastic materials such that there length does not substantially change upon application of tensile forces. In comparison, intermediate portion 606 is relatively elastic and can change in accordance with strap tension. Examples of the materials used for the relatively more elastic intermediate portion 606 include any suitable elastomeric material which is suitably covered with a cloth material that is comfortable to the patient. Therefore, if the patient or clinician selects relatively more extensible headgear for use with a particular patient's therapy, the relatively elastic intermediate portion will change in length as pressure is changed.


Headgear portion also includes a supplemental strap portion 608 which is made of a relatively less or substantially inextensible material. Supplemental strap portion 608 includes a fastener 610 which may be selectively coupled with a complimentary fastener portion 612 provided on first portion 602, which is substantially inelastic. Fasteners may take the form of buckles, snaps and VELCRO®, for example. If the fasteners 610 and 612 are engaged, headgear strap portion 600 is thereby rendered substantially inextensible, as the supplemental strap portion 608 forms a bridge over and renders inoperative the relatively elastic intermediate portion 606. FIG. 41 is a side view showing additional details of strap portion 600. Also, strap portion 608 allows a patient to stretch a mask system off the head without unclipping or detaching, thereby improving convenience of removing mask and donning same.


In accordance with another embodiment, the selection of either the extensible or substantially inextensible modes can be performed automatically, in conjunction with the operating pressure of the system. For example, FIG. 42 shows a portion 620 of strap assembly including a first portion 622 adapted to be provided to a slotted connector or a slotted connector clip of the mask frame or forehead support. The second end 624 is provided to the remaining portion of headgear which leads to the rear portion of the patient's head. Headgear also includes a relatively elastic portion, schematically illustrated as element 626 in FIG. 42. As indicated, the elasticity of portion 626 allows the headgear to extend with increased pressure or tensile forces applied to the strap. First and second portions 622 and 624 are made of relatively inextensible or non-elastic material. A supplemental strap portion 628 includes a first end 630 provided adjacent first portion 622 of the strap assembly. Supplemental strap portion 628 includes a second end 630 fixedly attached to second end 624. A sleeve 634 may be provided to surround a portion of main strap portion 621 and supplemental strap portion 628. A portion of main strap portion 621 includes a first coupling member 636 while supplemental strap portion 628 includes a second coupling member 638. Coupling members 636 and 638 may be in the form of an electromagnetic assembly which is selectively operable in dependence on sensed operating pressure of the mask assembly. Accordingly, if the mask operating pressure is too high, coupling attraction between coupling members 636 and 638 can be discontinued, thereby allowing the headgear portion 620 to stretch via relatively elastic or extensible portion 626. At relatively lower pressures, the coupling members 636 and 638 can be engaged so that the headgear becomes relatively inelastic, which thereby improves sealing at lower operating pressures. Of course, the use of electromagnetic coupling members is exemplary only, as numerous other alternatives would be apparent to one of ordinary skill in the art.



FIGS. 42A and 42B schematically illustrate mask systems on a patient that utilize selectively extensible headgear. In FIG. 42A, an elastic strap portion 650 forms a bridge between relatively non-extendible portions 652, 654 of headgear, thereby allowing the lower strap portion, as a whole, to stretch.


Portions 652, 654 include recesses 658 (FIG. 42A) that are adapted to receive a relatively inextensible strap portion or member 660, shown in position in FIG. 42B. Member 660 includes hooks or projections that are received in recesses 658.


In one example, the headgear may be used with a gusset portion or a improvised or simulated gusset portion described above. When used in conjunction with the autosetting device, an advantage over substantially inextensible headgear can be gained by employing headgear which incorporates a set amount of elasticity. This provides a system that allows the headgear length to be set at a low initial pressure for the autoset unit, e.g., about 4-6 cm H2O. At these pressures, the gusset portion should normally be set in a substantially closed position, allowing the maximum force to be applied. See FIG. 39. This provides a seal even at low mask pressure. As the pressure is increased using the autoset system, the gusset may ideally extend away from the face, providing less force than if it was in the almost closed position and thus more comfort, although a seal is still maintained as the pressure is higher than it was at the low setting (4-6 cm H2O). A similar behaviour to this could also be used for the ramping functionality of the flow generators (i.e., those machines that start at a low pressure and then ramp to the preferred setting). The extensibility preferred to allow the gusset to move away from the face can be achieved by modifying the material that is used for the headgear, e.g., silicone versus polypropylene. Alternatively, an elastic strip can be incorporated into the headgear, as described above in relation to FIGS. 40 and 41. As an additional feature this strip may incorporate a clip or hook or other fasteners so that it may be restrained when the elasticity is not required. This, therefore, provides a headgear than can be optimized for either CPAP or bi-level treatment where elasticity is not required or auto setting treatment where elasticity is preferred. See FIG. 39.


Further Embodiments

In another embodiment shown in FIG. 43, the force associated with use of forehead pad assembly 820 can be changed in dependence of treatment pressure. The forehead pad assembly 820 can be attached to a forehead support in the manner illustrated in FIGS. 25, 26, 27A and 27C. This may provide a way of optimizing position relative to the face and improve comfort by providing something that feels more like an air cushion. Such forehead pads could provide decoupling of the forces between the forehead support frame and the forehead pads in the patient's forehead region, which may improve patient comfort and compliance.


In an alternative, each forehead pad 822 may include a chamber 824 that may be filled with air, a gel, etc. The pressure within each chamber 824 may be fixed, meaning a closed system, or it can be linked to mask pressure, in which case the forehead support would be pushed away from the head when air pressure increases.


In another alternative, the pressure within each chamber 824 may be adjustable, e.g., via a pump 826. A servo control 828 could be used to set the pressure. In another alternative, the pressure could be controlling dynamically, independent from mask pressure, e.g., via servo control 828 that receives information from a position and/or pressure sensor. Such dynamic control can be pre-programmed and/or based on IPAP/EPAP, AutoSet changes in mask pressure at night, and/or the pressure ramp up stage as the patient falls asleep. Moreover, the feedback can be based on sensed leak measurement to adjust the forehead support to improve mask leaks in real time. Leak measurement can be used to dynamically adjust the forehead support when the patient falls asleep.


In still another embodiment, the pads 822 may be mounted on spring portions 823, which form a portion of or are inserted within a side walls of the pads. The embodiment can be used independently of or in conjunction with the other embodiments.


In another embodiment, the shape of the gusset portion may be maintained in an optimum position. For example, position sensors can be used to measure the displacement or change or shape of the gusset. The shape of the gusset portion can be changed, e.g., bent or straightened, depending on the sensed position of the gusset, or the sensed strap tension. In another example, the forehead pad(s) can be used to adjust the shape of the gusset portion. For example, a feedback loop may be used to monitor the position of the gusset portion, and the forehead pads can be mounted on a screw or other adjustable device which can be changed in dependence with the sensed shape and/or position of the gusset portion.


In yet another embodiment shown in FIG. 44, forehead pad(s) 830 can be adjustably mounted to forehead support 832. For example, the forehead pads 830 can be mounted to the frame using a ball joints 834 which pivot in two or more planes. This would effectively decouple the action of moving the forehead support or frame from the application of force to the patient. In addition, ball joints 834 can be mounted on springs 836 so they press against the forehead in a controlled fashion. Another embodiment is shown in FIG. 45, in which roller balls 838 contact the patient's forehead 840 and are spring mounted on a support 842. Therefore, the shape of the forehead pad is no longer compromised between comfort and load/deflection control. The springs control forces while the roller balls 838 are designed for comfort.


The forehead support provides vertical (relative to a vertical person) stability. The addition of a gusset, spring or gusset/spring combination to the forehead supports would provide an active support system that can adapt to changes in mask, user or strap position. In particular it would decrease the importance of the headgear strap position, allowing the forehead pads to accommodate a certain level of movement and thus preventing the requirement to overtighten the headgear straps in order to ensure the mask is stable through the night.


In one embodiment, the forehead pads may be compressible in the axial direction towards the forehead support. This may be used in conjunction with a mask having a cushion with a gusset, and/or headgear with a main strap which has an elasticity that is selectively adjustable.


In other embodiment, the forehead support or the forehead pad may include an inflatable bladder or pillow. The pillow may inflate or deflate with changes in treatment pressure, which in turn may change the distance between the forehead support or pad and the patient's forehead. The forehead pad may be mounted on such a pillow via the use of any mechanical expedient, such as sliding pins with a spring, e.g., a silicone spring. Details of the pillow are described in ResMed Limited's currently pending PCT Application No. PCT/AU03/01471 filed Nov. 6, 2003, incorporated herein by reference in its entirety.


A pillow added to the forehead support or pad could effectively act as a shock absorber. In addition or as an alternative, the pillow may include a progressive spring constant which changes with pressure. This would help eliminate any adverse effects of using headgear having a limited range of extensibility.


In another example, the adjustable forehead support may include a cantilevered spring which extends from the mask to support the forehead support. As such, the forehead pads will be spring biased against the patient's forehead, but may resiliently flex in response to changes in strap tension and/or treatment pressure.


In each of these examples, it is desirable to maintain vertical stability through the pressure range. Such vertical stability may be created via friction between the forehead pads and the forehead or the cushion and the patient's nose region. Friction adequate to maintain the mask system in the vertical position can be achieved via the use of the expedients described above.


In addition, it may be desirable to provide a system that can maintain the vertical position of the mask assembly. For example, as shown in FIG. 48, the forehead support may include at least one roller pad 700 which may rotate if it moves in relation to the patient's forehead. A sensor 702 may be provided on one of roller pads 700 to detect the amount, if any, of rotation of the roller pad 700, to thereby determine how much the mask assembly has moved in relation to the face.


In another embodiment, the vent cover 840 as shown in FIGS. 46 and 47 can be designed such that it is rotatable with respect to the swivel elbow. For example, such rotation may include 0°-360° rotation. As such, the vented air can be diverted in any direction. As an alternative, the cover may be square-shaped and fit on a complimentary square-shaped portion of the swivel elbow. As such, the cover may be removed and placed in any one of four directions, thereby diverting the exhaled gas to the desired direction.



FIG. 49 shows a schematic side view of a forehead pad 850 including three possible forehead engagement surfaces 852, 854, 856. Each surface includes a cupped, concave shape to resiliently contact the patient. Pad 850 includes a side lug 858 that is supported by a forehead support (not shown). Lug 858 is eccentrically mounted, or offset, so that the pad 850 spaces the forehead support away from the patient at three different distances depending on the surface 852, 854, 856 that contacts the patient's forehead.


The masks systems described herein can be modified, in accordance with the masks systems described in U.S. Non-Provisional application Ser. No. 09/885,455 filed Jun. 21, 2001, and U.S. Non-Provisional patent application Ser. No. 10/655,622 filed Sep. 5, 2003. Individual components of the embodiments can be combined, as would be understood, even though the exact combination of elements from different embodiments may not be explicitly shown in the drawings.


It can thus be appreciated that the aspects of the present invention have been fully and effectively accomplished. The foregoing specific embodiments have been provided to illustrate the structural and functional principles of the present invention, and are not intended to be limiting. To the contrary, the present invention is intended to encompass all modifications, alterations and substitutions within the spirit and scope of the present disclosure.

Claims
  • 1. A respiratory mask assembly, comprising: a frame;an elbow assembly supported by the frame and adapted to connect to an air delivery conduit;a cushion provided to the frame, the cushion including: a face contacting portion comprising an elastomeric material, and a breathing chamber forming portion, and;at least a portion of the cushion structure to provide flexibility and travel to the face contacting portion,wherein the frame defines an opening exposing at least a part of an exterior of the breathing chamber forming portion of the cushion; anda forehead support provided with a forehead cushion that is structured to engage a patient's forehead, the forehead support being slidably mounted to an upper portion of the frame to allow linear movement of the forehead support; andan adjustment mechanism to allow selective adjustment of the forehead support relative to the frame in a plurality of predetermined fixed positions, the adjustment mechanism including an actuator with only a single finger-operated push button associated with at least one tab adapted to be selectively positioned in one of a plurality of slots to positively lock the forehead support relative to the frame in one of the plurality of predetermined fixed positions, the single finger-operated push button being actuatable with a single finger of the patient,wherein the single finger-operated push button is resiliently urged in a first position in which the forehead support is prevented from moving relative to the upper portion of the frame, and the single finger-operated push button is adapted to be depressed to allow the forehead support to be moved relative to the upper portion of the frame,wherein the upper portion of the frame includes a support arm and a housing provided to a free end of the support arm, and the forehead support includes a slider that is slidably received within a receiving space defined by the housing to move between an extended position and a retracted position, the slider including a free end that is enclosed by the housing throughout movement between the extended position and the retracted position,wherein the housing includes a front side and a rear side, the receiving space extending from the rear side of the housing, and the front side of the housing includes a closed configuration,wherein the forehead support is slidably mounted for horizontal, linear movement which is substantially perpendicular to a longitudinal axis of the support arm,wherein the forehead support includes a stop to at least stop the forehead support in a fully extended position with the respect to the frame,wherein the single finger-operated push button includes a portion that extends through an opening provided in a top side of the housing, andwherein the single finger-operated push button is adapted to be depressed in a direction which is substantially parallel to the support arm.
  • 2. A respiratory mask assembly according to claim 1, further comprising plurality of vents to washout CO2 from a breathing chamber of the cushion.
  • 3. A respiratory mask assembly according to claim 2, wherein the plurality of vents includes at least four vents.
  • 4. A respiratory mask assembly according to claim 1, wherein the cushion is a full-face cushion.
  • 5. A respiratory mask assembly according to claim 1, wherein a portion of the cushion is provided within a mask retaining portion of the frame such that the face contacting portion is provided on a first side of the mask retaining portion.
  • 6. A respiratory mask assembly according to claim 5, wherein the at least a portion of the cushion is provided between the breathing chamber forming portion and the face contacting portion, and the at least a portion of the cushion is provided on the first side of the mask retaining portion adjacent the face contacting portion.
  • 7. A respiratory mask assembly according to claim 6, further comprising upper slotted connector structures provided on the forehead support adapted to engage upper headgear straps of headgear and lower slotted clip structures provided on the frame adapted to engage lower headgear straps of headgear.
  • 8. A respiratory mask assembly according to claim 7, wherein the elbow assembly is a swivel elbow assembly.
  • 9. A respiratory mask assembly according to claim 1, wherein the frame includes a mask retaining portion that at least partly encloses or wraps around the cushion.
  • 10. A respiratory mask assembly according to claim 9, wherein the mask retaining portion includes an inwardly facing retaining surface that engages an outwardly facing surface of the cushion.
  • 11. A respiratory mask assembly according to claim 1, wherein the single finger-operated push button is adapted to be depressed in a substantially vertical direction which is substantially parallel to the longitudinal axis of the support arm that extends from a connection point to the frame to the housing.
  • 12. A respiratory mask assembly according to claim 1, wherein the at least a portion of the cushion includes a side wall pre-formed at an angle to encourage buckling outwards or inwards upon donning of the mask assembly and/or application of headgear strap tension.
  • 13. A respiratory mask assembly according to claim 1, wherein the at least a portion of the cushion includes a side wall pre-formed at an angle to encourage flexing or bending in response to a force that is generated due to contact of the face contacting portion with the patient's face and application of headgear strap tension to maintain a seal between the face contacting portion and the patient's face.
  • 14. A respiratory mask assembly according to claim 1, wherein the cushion includes: (i) a non-face contacting portion connected to or otherwise provided to the frame, made of a resilient material that maintains its general shape and structured to provide some degree of spring effect for comfort and seal upon donning of the mask assembly and/or applying headgear strap tension, the non-face contacting portion extending outwardly away from the frame; and (ii) a face-contacting membrane of the face contacting portion spaced apart from an underlying rim.
  • 15. A respiratory mask assembly according to claim 1, wherein the stop is provided by an extension provided to the slider that is structured to engage a first stop portion of the housing to stop the forehead support in the fully extended position.
  • 16. A respiratory mask assembly according to claim 15, further comprising a second stop to stop the forehead support in a fully retracted position with respect to the frame.
  • 17. A respiratory mask assembly according to claim 16, wherein the second stop is provided by (1) the extension that is structured to engage a second stop portion of the housing to stop the forehead support in the fully retracted position and/or (2) the forehead support engaging a rear side of the housing.
  • 18. A respiratory mask assembly according to claim 1, wherein the cushion includes a non-face contacting portion oriented towards the frame and the face contacting portion that is adapted to contact with a portion of the patient's face, the face contacting portion including a membrane spaced above an underlying rim, and the at least a portion of the cushion is provided between the non-face contacting and face contacting portions and provides a portion that extends inwardly from the face contacting portion towards a breathing chamber of the cushion.
  • 19. A respiratory mask assembly according to claim 1, wherein the forehead cushion is mounted to the forehead support for movement in two or more planes.
  • 20. A respiratory mask assembly according to claim 1, wherein the forehead cushion is mounted to the forehead support such that movement of the forehead support is decoupled from application of forces to the patient.
  • 21. A respiratory mask assembly according to claim 1, wherein the forehead cushion includes a concave surface adapted to contact the patient's forehead.
  • 22. A respiratory mask assembly according to claim 1, wherein the forehead cushion includes a single cushion including two attachment points to the forehead support and adapted to extend across the patient's forehead.
  • 23. A respiratory mask assembly according to claim 1, wherein the at least a portion of the cushion includes at least one fold.
  • 24. A respiratory mask assembly according to claim 1, wherein the at least a portion of the cushion includes an inverted portion.
  • 25. A respiratory mask assembly according to claim 24, wherein the inverted portion extends inwardly towards a breathing chamber of the cushion, the inverted portion defining a spring structure.
  • 26. A respiratory mask assembly according to claim 25, wherein the face-contacting portion includes a membrane spaced above an underlying rim, and the membrane and underlying rim are supported by the inverted portion.
  • 27. A respiratory mask assembly according to claim 26, wherein the inverted portion includes a first portion extending inwardly from a non-face contacting portion of the cushion to an interior tip portion and a second portion extending outwardly from the interior tip portion away from the breathing chamber to a base of the face contacting portion, both the membrane and the underlying rim being mounted proximate an outer edge of the second portion.
  • 28. A respiratory mask assembly for delivering breathable gas to a patient, comprising: a frame having an extended support arm with a housing provided on a free end of the support arm;a mask assembly cushion associated with the frame;a forehead support provided with a slider that is slidably received within a receiving space defined by the housing to move between extended and retracted positions, the slider being equipped with a forehead cushion that is structured to engage a patient's forehead;a headgear assembly removably attached to the frame and forehead support to maintain the mask assembly cushion in a desired adjusted position on the patient's face, the headgear assembly including a pair of upper straps and a pair of lower straps with the upper straps removably connected to slotted connector structures provided on the forehead support and the lower straps removably connected to slotted clip structures provided on the frame;a swivel elbow assembly attached to a front portion of the frame, the swivel elbow assembly adapted to be connected to a conduit that is connected to a pressurized supply that supplies pressurized breathable gas through the conduit and elbow assembly and into a breathing chamber defined by the mask assembly cushion for breathing by the patient; andan adjustment mechanism to allow selective adjustment of the forehead support relative to the housing in a plurality of predetermined fixed positions, the adjustment mechanism including an actuator with only a single finger-operated push button to releasably lock the forehead support relative to the housing in one of the plurality of predetermined fixed positions, the single finger-operated push button being resiliently urged in a lock position in which the forehead support is prevented from moving within the housing, and the single finger-operated push button is adapted to be depressed, with a single finger of the patient, to release the forehead support and allow linear movement of the forehead support in a direction substantially perpendicular to a longitudinal axis of the support arm,wherein the housing includes a front side and a rear side, the receiving space extending from the rear side of the housing, and the front side of the housing includes a closed configuration such that a free end of the slider is enclosed by the housing throughout movement between the extended and retracted positions,wherein the single finger-operated push button includes a portion that extends through an opening provided in a top side of the housing, andwherein the single finger-operated push button is adapted to be depressed in a direction which is substantially parallel to the support arm.
  • 29. A respiratory mask assembly according to claim 28, wherein the single finger-operated push button is adapted to be depressed in a substantially vertical direction which is substantially parallel to the longitudinal axis of the support arm that extends from a connection point to the frame to the housing.
  • 30. A respiratory mask assembly according to claim 28, wherein the forehead support is linearly movable in only a single dimension, in and between the plurality of predetermined fixed positions, and is not pivotable, rotatable, or otherwise movable to change an angular attitude of the forehead support.
  • 31. A respiratory mask assembly according to claim 28, wherein the actuator with only a single finger-operated push button is associated with at least one tab adapted to be selectively positioned in one of a plurality of slots.
  • 32. A respiratory mask assembly according to claim 31, wherein the plurality of slots includes four slots.
  • 33. A respiratory mask assembly according to claim 31, wherein the actuator with only a single finger-operated push button is associated with a plurality of tabs.
  • 34. A respiratory mask assembly according to claim 28, wherein the forehead support includes a pair of extensions that are positioned within slots provided on the housing to support and guide the forehead support.
  • 35. A respiratory mask assembly according to claim 34, wherein the extensions are provided to opposing sides of the slider.
  • 36. A respiratory mask assembly according to claim 28, wherein the support arm and housing are generally L-shaped, the support arm providing a vertically extending leg and the housing providing a horizontally extending leg that is transverse to the support arm.
  • 37. A respiratory mask assembly according to claim 28, wherein the single finger-operated push button is adapted to be depressed in a generally vertical direction which is generally transverse to a direction of movement of the forehead support.
  • 38. A respiratory mask assembly according to claim 28, wherein the slider includes a pair of supports received in respective guide slots provided to the receiving space of the housing to guide the slider between extended and retracted positions with respect to the housing.
  • 39. A respiratory mask assembly according to claim 28, wherein the slider and the receiving space include complementary non-round shapes.
  • 40. A respiratory mask assembly according to claim 28, wherein an exterior of the housing includes a generally rectangular shape.
  • 41. A respiratory mask assembly according to claim 28, wherein the mask assembly is a full-face mask structured to deliver breathable gas to the patient's nose and mouth.
  • 42. A respiratory mask assembly according to claim 28, wherein the mask assembly cushion includes a non-face contacting portion oriented towards the frame and a face contacting portion adapted to contact with a portion of the patient's face, the face contacting portion including a membrane spaced above an underlying rim.
  • 43. A respiratory mask assembly according to claim 42, wherein the face contacting portion is provided to a connecting structure that forms a transition between the face contacting portion and the frame and provides a spring-like effect.
  • 44. A respiratory mask assembly according to claim 42, wherein the mask assembly cushion includes a central portion between the non-face contacting portion and the membrane, the central portion including an inverted portion that extends inwardly the breathing chamber of the mask assembly cushion, the inverted portion including a spring structure.
  • 45. A respiratory mask assembly according to claim 28, wherein the mask assembly cushion includes a breathing chamber forming portion and a face contacting portion, the breathing chamber forming portion including the breathing chamber and the face contacting portion structured to engage a patient's face.
  • 46. A respiratory mask assembly according to claim 28, wherein the frame has a front side and a rear side, and the front side of the frame defines an opening through which at least part of the mask assembly cushion is exposed.
  • 47. A respiratory mask assembly according to claim 28, wherein at least a portion of the mask assembly cushion extends beyond a perimeter of the frame.
  • 48. A respiratory mask assembly according to claim 28, wherein the forehead cushion defines a chamber.
  • 49. A respiratory mask assembly according to claim 28, wherein the forehead cushion includes a pair of shank portions adapted to be received within respective openings provided in the forehead support to attach the forehead cushion to the forehead support.
  • 50. A respiratory mask assembly according to claim 28, further comprising a vent cover provided to the swivel elbow assembly to vent air.
  • 51. A respiratory mask assembly according to claim 28, wherein the mask assembly cushion includes a side wall pre-formed at an angle to encourage buckling outwards or inwards upon donning of the mask assembly and/or application of headgear strap tension to maintain a seal between a face contacting portion of the cushion and the patient's face.
  • 52. A respiratory mask assembly according to claim 28, wherein the mask assembly cushion includes a side wall pre-formed at an angle to encourage flexing or bending in response to a force that is generated due to contact of a face contacting portion of the mask assembly cushion with the patient's face and application of headgear strap tension to maintain a seal between the face contacting portion and the patient's face.
  • 53. A respiratory mask assembly according to claim 28, wherein the mask assembly cushion includes: (i) a non-face contacting portion connected to or otherwise provided to the frame, made of a resilient material that maintains its general shape but will provide some degree of spring effect for comfort and seal upon donning of the mask assembly and/or application of headgear strap tension, the non-face contacting portion extending outwardly away from the frame; and (ii) a face-contacting membrane of a face contacting portion of the mask assembly cushion spaced apart from an underlying rim.
  • 54. A respiratory mask assembly according to claim 28, wherein the forehead support is slidably mounted for horizontal, linear movement.
  • 55. A respiratory mask assembly according to claim 28, wherein the forehead support includes a stop to at least stop the forehead support in a fully extended position with respect to the frame.
  • 56. A respiratory mask assembly according to claim 28, wherein the slider includes an exterior surface that slides relative to an interior surface of the receiving space defined by the housing.
  • 57. A respiratory mask assembly for delivering breathable gas to a patient, comprising: a frame;a facial cushion engaged with the frame;a forehead support provided with a forehead cushion that is structured to engage a patient's forehead, the forehead support being slidably mounted to the frame to allow linear movement of the forehead support; andan adjustment mechanism to allow selective adjustment of the forehead support relative to the frame in a plurality of predetermined fixed positions, the adjustment mechanism including an actuator with only a single finger-operated push button associated with at least one tab adapted to be selectively positioned in one of a plurality of slots to positively lock the forehead support relative to the frame in one of the plurality of predetermined fixed positions, the single finger-operated push button being actuatable with a single finger of the patient,wherein the single finger-operated push button is resiliently urged in a first position in which the forehead support is prevented from moving relative to the upper portion of the frame, and the single finger-operated push button is adapted to be depressed to allow the forehead support to be moved relative to the upper portion of the frame,wherein the frame includes a main body, a support arm extending substantially vertically upwards from the main body, and a housing provided to a free end of the support arm, and the forehead support includes a slider that is slidably received within a receiving space located inside the housing to move between extended and retracted positions, the slider including a free end that is enclosed by the housing throughout movement between the extended and retracted positions,wherein the forehead support is slidably mounted for linear, substantially horizontal movement which is substantially perpendicular to the substantially vertically extending support arm,wherein the forehead support includes a stop to at least stop the forehead support in a fully extended position with respect to the frame, andwherein the single finger-operated push button includes a portion that extends through an upwardly facing opening provided in the housing,wherein the housing includes a forwardly facing side and a rearwardly facing side, the receiving space extending from the rearwardly facing side of the housing, and the forwardly facing side of the housing includes a closed configuration,wherein the single finger-operated push button is adapted to be depressed in a substantially vertically downwards direction which is substantially parallel to the vertically extending support arm.
  • 58. A respiratory mask assembly according to claim 57, wherein the forehead support is linearly movable in only a single dimension, in and between the plurality of predetermined fixed positions, and is not pivotable, rotatable, or otherwise movable to change an angular attitude of the forehead support.
  • 59. A respiratory mask assembly according to claim 58, wherein the slider and the receiving space inside the housing include complementary non-round shapes.
  • 60. A respiratory mask assembly according to claim 59, wherein an exterior of the housing includes a generally rectangular shape.
  • 61. A respiratory mask assembly according to claim 60, wherein the plurality of slots includes four slots.
  • 62. A respiratory mask assembly according to claim 61, wherein the single finger-operated push button is associated with a plurality of tabs.
  • 63. A respiratory mask assembly according to claim 62, wherein the facial cushion includes a side wall pre-formed at an angle to encourage buckling outwards or inwards upon donning of the mask assembly and/or application of headgear strap tension to maintain a seal between a face contacting portion of the facial cushion and the patient's face.
  • 64. A respiratory mask assembly according to claim 62, wherein the facial cushion includes a side wall pre-formed at an angle to encourage flexing or bending in response to a force that is generated due to contact of a face contacting portion of the facial cushion with the patient's face and application of headgear strap tension to maintain a seal between the face contacting portion and the patient's face.
  • 65. A respiratory mask assembly according to claim 62, wherein the facial cushion includes: (i) a non-face contacting portion connected to or otherwise provided to the frame, made of a resilient material that maintains its general shape and structured to provide some degree of spring effect for comfort and seal upon donning of the mask assembly and/or applying headgear strap tension, the non-face contacting portion extending outwardly away from the frame; and (ii) a face-contacting membrane of a face contacting portion of the facial cushion spaced apart from an underlying rim.
  • 66. A respiratory mask assembly according to claim 62, wherein the stop is provided by an extension provided to the slider that is structured to engage a first stop portion of the housing to stop the forehead support in the fully extended position.
  • 67. A respiratory mask assembly according to claim 66, further comprising a second stop to stop the forehead support in a fully retracted position with respect to the frame.
  • 68. A respiratory mask assembly according to claim 67, wherein the second stop is provided by (1) the extension that is structured to engage a second stop portion of the housing to stop the forehead support in the fully retracted position and/or (2) the forehead support engaging a rear side of the housing.
  • 69. A respiratory mask assembly according to claim 62, wherein the facial cushion includes a non-face contacting portion oriented towards the frame and a face contacting portion that is adapted to contact with a portion of the patient's face, the face contacting portion including a membrane spaced above an underlying rim, and an inverted portion is provided between the non-face contacting and face contacting portions and provides a portion that extends inwardly from the face contacting portion towards a breathing chamber of the facial cushion.
  • 70. A respiratory mask assembly according to claim 69, wherein the mask assembly is a full-face mask structured to deliver breathable gas to the patient's nose and mouth.
  • 71. A respiratory mask assembly according to claim 62, wherein the facial cushion includes a non-face contacting portion oriented towards the frame and a face contacting portion adapted to contact with a portion of the patient's face, the face contacting portion including a membrane spaced above an underlying rim.
  • 72. A respiratory mask assembly according to claim 57, wherein the frame has a front side and a rear side, and the front side of the frame defines an opening through which at least part of the facial cushion is exposed.
CROSS REFERENCE TO APPLICATIONS

This application is a continuation of U.S. application Ser. No. 11/628,714, filed Dec. 7, 2006, allowed, which is the US national phase of international application PCT/AU2005/000850 filed 15 Jun. 2005, which designated the U.S. and claims the benefit of U.S. Provisional Application No. 60/648,687, filed Feb. 2, 2005, U.S. Provisional Application No. 60/634,272, filed Dec. 9, 2004, and U.S. Provisional Application No. 60/579,678, filed Jun. 16, 2004, each incorporated by reference in its entirety. Also U.S. Non-Provisional application Ser. No. 09/885,445 filed Jun. 21, 2001, now U.S. Pat. No. 6,986,352, and U.S. Non-Provisional patent application Ser. No. 10/655,622 filed Sep. 5, 2003, now U.S. Pat. No. 7,523,754, are incorporated by reference in their entireties.

US Referenced Citations (441)
Number Name Date Kind
4429 Cooke et al. Mar 1846 A
35724 Wilcox Jun 1862 A
463351 Elliott Nov 1891 A
715611 Schnenker et al. Dec 1902 A
716530 Giddens Dec 1902 A
781516 Guthrie Jan 1905 A
812706 Warbasse Feb 1906 A
1070986 Richter Aug 1913 A
1081745 Johnston et al. Dec 1913 A
1176886 Ermold Mar 1916 A
1192186 Greene Jul 1916 A
1333075 Hill et al. Mar 1920 A
1381826 Hansen Jun 1921 A
1653572 Jackson Dec 1927 A
1672165 Lewis Jun 1928 A
1733020 Jones Oct 1929 A
1926027 Biggs Sep 1933 A
2029129 Schwartz Jan 1936 A
2033448 James Mar 1936 A
2123353 Catt Jul 1938 A
2130555 Malcom Sep 1938 A
2133699 Heidbrink Oct 1938 A
2141222 Pioch Dec 1938 A
2245658 Erickson Jun 1941 A
2245969 Francisco et al. Jun 1941 A
2248477 Lombard Jul 1941 A
2254854 O'Connell Sep 1941 A
2287353 Minnick Jun 1942 A
2317608 Heidbrink Apr 1943 A
2359506 Battley et al. Oct 1944 A
2371965 Lehmberg Mar 1945 A
2376871 Fink May 1945 A
2382364 Yant Aug 1945 A
2415846 Randall Feb 1947 A
2428451 Emerson Oct 1947 A
2438058 Kincheloe Mar 1948 A
2454103 Swidersky Nov 1948 A
2578621 Yant Dec 1951 A
2590006 Gordon Mar 1952 A
2617751 Bickett Nov 1952 A
2625155 Engelder Jan 1953 A
2638161 Jones May 1953 A
2664084 Hammermann Dec 1953 A
2706983 Matheson et al. Apr 1955 A
2747464 Bowerman May 1956 A
2823671 Garelick Feb 1958 A
2832015 Ortega Apr 1958 A
2893387 Gongoll et al. Jul 1959 A
2931356 Schwarz Apr 1960 A
D188084 Garelick May 1960 S
2939458 Lundquist Jun 1960 A
3013556 Galleher Dec 1961 A
3141213 Nicholas Jul 1964 A
3182659 Blount et al. May 1965 A
3189027 Bartlett Jun 1965 A
3193624 Webb et al. Jul 1965 A
3238943 Holley Mar 1966 A
3315674 Bloom et al. Apr 1967 A
3330273 Bennett Jul 1967 A
3362420 Blackburn et al. Jan 1968 A
3363833 Laerdal Jan 1968 A
3474783 Ulmann Oct 1969 A
3494072 Olson Feb 1970 A
3523534 Nolan Aug 1970 A
3535810 Baehrle Oct 1970 A
3555752 Bogaert Jan 1971 A
3556122 Laerdal Jan 1971 A
3580051 Blevins May 1971 A
3700000 Hesse et al. Oct 1972 A
3720235 Schrock Mar 1973 A
3726275 Jackson et al. Apr 1973 A
3750333 Vance Aug 1973 A
3752157 Malmin Aug 1973 A
3796216 Schwarz Mar 1974 A
3799164 Rollins Mar 1974 A
D231803 Huddy Jun 1974 S
3824999 King Jul 1974 A
3830230 Chester Aug 1974 A
4034426 Hardwick et al. Jul 1977 A
4049357 Hamisch, Jr. Sep 1977 A
4062357 Laerdal Dec 1977 A
4064875 Cramer et al. Dec 1977 A
4069516 Watkins, Jr. Jan 1978 A
4077404 Elam Mar 1978 A
4111197 Warncke et al. Sep 1978 A
D250131 Lewis et al. Oct 1978 S
4120302 Ziegler Oct 1978 A
4121580 Fabish Oct 1978 A
4161946 Zuesse Jul 1979 A
4164942 Beard et al. Aug 1979 A
4167185 Lewis Sep 1979 A
4226234 Gunderson Oct 1980 A
4245632 Houston Jan 1981 A
4265239 Fischer, Jr. et al. May 1981 A
4274404 Molzan et al. Jun 1981 A
4275908 Elkins et al. Jun 1981 A
D262322 Mizerak Dec 1981 S
4304229 Curtin Dec 1981 A
4328797 Rollins et al. May 1982 A
4337767 Yahata Jul 1982 A
4347205 Stewart Aug 1982 A
4354488 Bartos Oct 1982 A
4380102 Hansson Apr 1983 A
4402316 Gadberry Sep 1983 A
4412537 Tiger Nov 1983 A
4467799 Steinberg Aug 1984 A
4494538 Ansite Jan 1985 A
4506665 Andrews et al. Mar 1985 A
4522639 Ansite et al. Jun 1985 A
4549334 Miller Oct 1985 A
4558710 Eichler Dec 1985 A
4580556 Kondur Apr 1986 A
4606340 Ansite Aug 1986 A
D285496 Berman Sep 1986 S
4616647 McCreadie Oct 1986 A
4622964 Flynn Nov 1986 A
4633972 DeRocher Jan 1987 A
4655213 Rapoport et al. Apr 1987 A
4665570 Davis May 1987 A
4671271 Bishop et al. Jun 1987 A
4676241 Webb et al. Jun 1987 A
4677975 Edgar et al. Jul 1987 A
4677977 Wilcox Jul 1987 A
4713844 Westgate Dec 1987 A
H397 Stark Jan 1988 H
D293613 Wingler Jan 1988 S
4732147 Fuller Mar 1988 A
4739755 White et al. Apr 1988 A
4770169 Schmoegner et al. Sep 1988 A
4774941 Cook Oct 1988 A
4782832 Trimble et al. Nov 1988 A
4783029 Geppert et al. Nov 1988 A
4794921 Lindkvist Jan 1989 A
4799477 Lewis Jan 1989 A
4807617 Nesti Feb 1989 A
4809692 Nowacki et al. Mar 1989 A
4811730 Milano Mar 1989 A
4819629 Jonson Apr 1989 A
4821713 Bauman Apr 1989 A
4835820 Robbins, III Jun 1989 A
4841953 Dodrill Jun 1989 A
4848334 Bellm Jul 1989 A
4848366 Aita et al. Jul 1989 A
4870963 Carter Oct 1989 A
4875714 Lee Oct 1989 A
4875718 Marken Oct 1989 A
4898174 Fangrow, Jr. Feb 1990 A
4899614 Katamui Feb 1990 A
4905686 Adams Mar 1990 A
4907584 McGinnis Mar 1990 A
4910806 Baker et al. Mar 1990 A
4919128 Kopala et al. Apr 1990 A
4938210 Shene Jul 1990 A
4938212 Snook et al. Jul 1990 A
4944210 Flock et al. Jul 1990 A
4944310 Sullivan Jul 1990 A
4946202 Perricone Aug 1990 A
D310431 Bellm Sep 1990 S
4971051 Toffolon Nov 1990 A
4974586 Wandel et al. Dec 1990 A
4986269 Hakkinen Jan 1991 A
4989596 Macris et al. Feb 1991 A
4989599 Carter Feb 1991 A
4997217 Kunze Mar 1991 A
5003633 Itoh Apr 1991 A
5005568 Loescher et al. Apr 1991 A
5005571 Dietz Apr 1991 A
5027809 Robinson Jul 1991 A
5038776 Harrison et al. Aug 1991 A
5042473 Lewis Aug 1991 A
5042478 Kopala et al. Aug 1991 A
5046200 Feder Sep 1991 A
5054482 Bales Oct 1991 A
5062421 Burns et al. Nov 1991 A
5063922 Hakkinen Nov 1991 A
5069205 Urso Dec 1991 A
5074297 Venegas Dec 1991 A
D323908 Hollister et al. Feb 1992 S
5109839 Blasdell et al. May 1992 A
5109840 Daleiden May 1992 A
5121745 Israel Jun 1992 A
5133347 Huennebeck Jul 1992 A
5136760 Sano et al. Aug 1992 A
5140980 Haughey et al. Aug 1992 A
5140982 Bauman Aug 1992 A
5156146 Corces et al. Oct 1992 A
5159938 Laughlin Nov 1992 A
5178138 Walstrom et al. Jan 1993 A
D333015 Farmer Feb 1993 S
D334633 Rudolph Apr 1993 S
5215336 Worthing Jun 1993 A
5220699 Farris Jun 1993 A
5231983 Matson et al. Aug 1993 A
5233978 Callaway Aug 1993 A
5243971 Sullivan et al. Sep 1993 A
5245995 Sullivan et al. Sep 1993 A
5253641 Choate Oct 1993 A
5265595 Rudolph Nov 1993 A
5279289 Kirk Jan 1994 A
5280784 Kohler Jan 1994 A
5311862 Blasdell et al. May 1994 A
5322057 Raabe et al. Jun 1994 A
5322059 Walther Jun 1994 A
5343878 Scarberry et al. Sep 1994 A
5349349 Shimizume Sep 1994 A
5349949 Schegerin Sep 1994 A
5357951 Ratner Oct 1994 A
5372130 Stern et al. Dec 1994 A
5388273 Sydor et al. Feb 1995 A
5388571 Roberts et al. Feb 1995 A
5391248 Brain Feb 1995 A
5398673 Lambert Mar 1995 A
5404871 Goodman et al. Apr 1995 A
5419318 Tayebi May 1995 A
5429126 Bracken Jul 1995 A
5429683 Le Mitouard Jul 1995 A
5431158 Tirotta Jul 1995 A
5438981 Starr et al. Aug 1995 A
5441046 Starr et al. Aug 1995 A
D362061 McGinnis et al. Sep 1995 S
5477852 Landis et al. Dec 1995 A
5479920 Piper et al. Jan 1996 A
5481763 Brostrom et al. Jan 1996 A
5488948 Dubruille et al. Feb 1996 A
5492116 Scarberry et al. Feb 1996 A
5501214 Sabo Mar 1996 A
5509404 Lloyd et al. Apr 1996 A
5517986 Starr et al. May 1996 A
5538000 Rudolph Jul 1996 A
5538001 Bridges Jul 1996 A
5540223 Starr et al. Jul 1996 A
5542128 Lomas Aug 1996 A
5546936 Virag et al. Aug 1996 A
5558090 James Sep 1996 A
RE35339 Rapoport Oct 1996 E
5560354 Berthon-Jones et al. Oct 1996 A
5570682 Johnson Nov 1996 A
5570689 Starr et al. Nov 1996 A
D377089 Starr et al. Dec 1996 S
5592938 Scarberry et al. Jan 1997 A
5608647 Rubsamen et al. Mar 1997 A
5642730 Baran Jul 1997 A
5645049 Foley et al. Jul 1997 A
5647355 Starr et al. Jul 1997 A
5647357 Barnett et al. Jul 1997 A
5649532 Griffiths Jul 1997 A
5649533 Oren Jul 1997 A
5655520 Howe et al. Aug 1997 A
5655527 Scarberry et al. Aug 1997 A
5657493 Ferrero et al. Aug 1997 A
5657752 Landis et al. Aug 1997 A
5662101 Ogden et al. Sep 1997 A
5666946 Langenback Sep 1997 A
5676133 Hickle et al. Oct 1997 A
5685296 Zdrojkowski et al. Nov 1997 A
5687715 Landis et al. Nov 1997 A
5704345 Berthon-Jones et al. Jan 1998 A
5709204 Lester Jan 1998 A
5715814 Ebers Feb 1998 A
5724965 Handke et al. Mar 1998 A
5743414 Baudino Apr 1998 A
5746201 Kidd May 1998 A
5794617 Brunell et al. Aug 1998 A
5813423 Kirchgeorg Sep 1998 A
5832918 Pantino Nov 1998 A
5839436 Fangrow et al. Nov 1998 A
D402755 Kwok Dec 1998 S
5860677 Martins et al. Jan 1999 A
5884624 Barnett et al. Mar 1999 A
5896857 Hely et al. Apr 1999 A
5906199 Budzinski May 1999 A
5909732 Diesel et al. Jun 1999 A
5921239 McCall et al. Jul 1999 A
5935136 Hulse et al. Aug 1999 A
5937851 Serowski et al. Aug 1999 A
5975079 Hellings et al. Nov 1999 A
5979025 Horng Nov 1999 A
6016804 Gleason et al. Jan 2000 A
6029668 Freed Feb 2000 A
6039044 Sullivan Mar 2000 A
D423096 Kwok Apr 2000 S
6044844 Kwok et al. Apr 2000 A
6062148 Hodge et al. May 2000 A
6082360 Rudolph et al. Jul 2000 A
D428987 Kwok Aug 2000 S
6098205 Schwartz et al. Aug 2000 A
6112746 Kwok et al. Sep 2000 A
6119693 Kwok et al. Sep 2000 A
6123071 Berthon-Jones et al. Sep 2000 A
6152137 Schwartz et al. Nov 2000 A
6189532 Hely et al. Feb 2001 B1
6192886 Rudolph Feb 2001 B1
D439326 Hecker et al. Mar 2001 S
6196223 Belfer et al. Mar 2001 B1
6240605 Stevens et al. Jun 2001 B1
6250375 Lee et al. Jun 2001 B1
6256846 Lee Jul 2001 B1
6257237 Suzuki Jul 2001 B1
6272722 Lai Aug 2001 B1
6321421 Lim Nov 2001 B1
6341606 Bordewick et al. Jan 2002 B1
6347631 Hansen et al. Feb 2002 B1
6357441 Kwok et al. Mar 2002 B1
6374826 Gunaratnam et al. Apr 2002 B1
6381813 Lai May 2002 B1
6388640 Chigira et al. May 2002 B1
6397847 Scarberry et al. Jun 2002 B1
6412487 Gunaratnam et al. Jul 2002 B1
6418928 Bordewick et al. Jul 2002 B1
6422238 Lithgow Jul 2002 B1
6427694 Hecker et al. Aug 2002 B1
6431172 Bordewick Aug 2002 B1
6435181 Jones, Jr. et al. Aug 2002 B1
6449817 Hsu Sep 2002 B1
6463931 Kwok et al. Oct 2002 B1
6467483 Kopacko et al. Oct 2002 B1
6491034 Gunaratnam et al. Dec 2002 B1
6494207 Kwok Dec 2002 B1
D468823 Smart Jan 2003 S
6513206 Banitt et al. Feb 2003 B1
6513526 Kwok et al. Feb 2003 B2
6520182 Gunaratnam Feb 2003 B1
6530373 Patron et al. Mar 2003 B1
6532961 Kwok et al. Mar 2003 B1
6536435 Fecteau et al. Mar 2003 B1
6557556 Kwok et al. May 2003 B2
6595214 Hecker Jul 2003 B1
6615832 Chen Sep 2003 B1
6615834 Gradon et al. Sep 2003 B2
6626177 Ziaee Sep 2003 B1
6631718 Lovell Oct 2003 B1
D484237 Lang et al. Dec 2003 S
6679260 Her Jan 2004 B2
6679261 Lithgow Jan 2004 B2
6691707 Gunaratnam et al. Feb 2004 B1
6691708 Kwok et al. Feb 2004 B2
6701927 Kwok et al. Mar 2004 B2
6705647 Palmer Mar 2004 B1
6712072 Lang Mar 2004 B1
6729333 Barnett et al. May 2004 B2
D492992 Guney et al. Jul 2004 S
6789543 Cannon Sep 2004 B2
6796308 Gunaratnam et al. Sep 2004 B2
6823869 Raje et al. Nov 2004 B2
6832615 Hensel Dec 2004 B2
D502260 Lang et al. Feb 2005 S
6851425 Jaffre Feb 2005 B2
6851428 Dennis Feb 2005 B2
6860269 Kwok et al. Mar 2005 B2
6918390 Lithgow et al. Jul 2005 B2
6926004 Schumacher Aug 2005 B2
6973929 Gunaratnam Dec 2005 B2
6986352 Frater et al. Jan 2006 B2
D515698 Lang et al. Feb 2006 S
6997188 Kwok et al. Feb 2006 B2
7000614 Lang et al. Feb 2006 B2
7005414 Barnikol et al. Feb 2006 B2
7011090 Drew et al. Mar 2006 B2
7021311 Gunaratnam et al. Apr 2006 B2
7036508 Kwok May 2006 B2
7047965 Ball May 2006 B1
7059326 Heidmann et al. Jun 2006 B2
7066179 Eaton et al. Jun 2006 B2
7069932 Eaton et al. Jul 2006 B2
7089939 Walker et al. Aug 2006 B2
7095938 Tolstikhin Aug 2006 B2
7100610 Biener et al. Sep 2006 B2
7107989 Frater et al. Sep 2006 B2
7112179 Bonutti et al. Sep 2006 B2
7185652 Gunaratnam et al. Mar 2007 B2
7207334 Smart Apr 2007 B2
7216647 Lang et al. May 2007 B2
7219670 Jones et al. May 2007 B2
7234466 Kwok et al. Jun 2007 B2
7234773 Raftery et al. Jun 2007 B2
7290546 Sprinkle et al. Nov 2007 B2
7296574 Ho et al. Nov 2007 B2
7318439 Raje et al. Jan 2008 B2
7320323 Lang et al. Jan 2008 B2
7353827 Geist Apr 2008 B2
7406965 Kwok et al. Aug 2008 B2
7472704 Gunaratnam Jan 2009 B2
7503327 Gunaratnam Mar 2009 B2
7610916 Kwok et al. Nov 2009 B2
7614400 Lithgow et al. Nov 2009 B2
7621274 Sprinkle et al. Nov 2009 B2
7654263 Lang et al. Feb 2010 B2
7665464 Kopacko et al. Feb 2010 B2
7762259 Gunaratnam Jul 2010 B2
7775209 Biener et al. Aug 2010 B2
7779832 Ho Aug 2010 B1
7814911 Bordewick et al. Oct 2010 B2
7819119 Ho Oct 2010 B2
7827987 Woodard et al. Nov 2010 B2
7827990 Melidis et al. Nov 2010 B1
7856980 Lang et al. Dec 2010 B2
7861715 Jones et al. Jan 2011 B2
7882837 Kwok et al. Feb 2011 B2
7942149 Gunaratnam May 2011 B2
7967014 Heidmann et al. Jun 2011 B2
7992559 Lang et al. Aug 2011 B2
8091553 Bordewick et al. Jan 2012 B2
8113203 Lithgow et al. Feb 2012 B2
8186348 Kwok et al. May 2012 B2
8210180 Gunaratnam Jul 2012 B2
8230855 Raje et al. Jul 2012 B2
20020029780 Frater et al. Mar 2002 A1
20030034034 Kwok et al. Feb 2003 A1
20030062048 Gradon et al. Apr 2003 A1
20030075180 Raje et al. Apr 2003 A1
20030084904 Gunaratnam May 2003 A1
20030089373 Gradon et al. May 2003 A1
20030221691 Biener et al. Dec 2003 A1
20040112385 Drew et al. Jun 2004 A1
20040112387 Lang et al. Jun 2004 A1
20040118406 Lithgow et al. Jun 2004 A1
20040177850 Gradon et al. Sep 2004 A1
20040211428 Jones, Jr. et al. Oct 2004 A1
20040216747 Jones et al. Nov 2004 A1
20040226566 Gunaratnam et al. Nov 2004 A1
20050199239 Lang et al. Sep 2005 A1
20050211252 Lang et al. Sep 2005 A1
20060169286 Eifler et al. Aug 2006 A1
20070044804 Matula et al. Mar 2007 A1
20070137653 Wood Jun 2007 A1
20070215161 Frater et al. Sep 2007 A1
20080178885 Raje et al. Jul 2008 A1
20080264421 Kwok et al. Oct 2008 A1
20090139526 Melidis et al. Jun 2009 A1
20090173343 Omura et al. Jul 2009 A1
20100071700 Hitchcock et al. Mar 2010 A2
20100089401 Lang et al. Apr 2010 A1
20100282265 Melidis et al. Nov 2010 A1
20100300447 Biener et al. Dec 2010 A1
20110030692 Jones et al. Feb 2011 A1
20110056498 Lang et al. Mar 2011 A1
20110094516 Chang Apr 2011 A1
20110174311 Gunaratnam Jul 2011 A1
20110226254 Lang et al. Sep 2011 A1
20110259337 Hitchcock et al. Oct 2011 A1
20120174928 Raje et al. Jul 2012 A1
Foreign Referenced Citations (184)
Number Date Country
9177110 Nov 1991 AU
9464816 Dec 1994 AU
9516178 Jul 1995 AU
9459430 Oct 1995 AU
9532914 Feb 1996 AU
9741018 Apr 1998 AU
9889312 Jan 1999 AU
200071882 Jun 2001 AU
1039144 Sep 1928 CA
88122 Nov 1999 CA
1326371 Dec 2001 CN
2464353 Dec 2001 CN
1408453 Apr 2003 CN
284 800 Nov 1913 DE
459 104 Apr 1928 DE
701 690 Jan 1941 DE
923 500 Feb 1955 DE
159396 Jun 1981 DE
30 15 279 Oct 1981 DE
33 45 067 Jun 1984 DE
35 37 507 Apr 1987 DE
35 39 073 May 1987 DE
40 04 157 Apr 1991 DE
42 33 448 Apr 1993 DE
43 43 205 Jun 1995 DE
195 48 380 Jul 1996 DE
196 03 949 Aug 1997 DE
297 15 718 Oct 1997 DE
197 35 359 Jan 1998 DE
297 21 766 Mar 1998 DE
297 23 101 Jul 1998 DE
298 10 846 Aug 1998 DE
4 99 00 269.5 Jan 1999 DE
198 17 332 Jan 1999 DE
198 08 105 Sep 1999 DE
299 23 126 Mar 2000 DE
200 05 346 May 2000 DE
299 23 141 May 2000 DE
200 17 940 Feb 2001 DE
199 54 517 Jun 2001 DE
199 62 515 Jul 2001 DE
100 45 183 May 2002 DE
100 51 891 May 2002 DE
198 40 760 Mar 2003 DE
103 31 837 Jan 2005 DE
20 2004 018 108 Feb 2005 DE
103 38 169 Mar 2005 DE
0 054 154 Oct 1981 EP
0 252 052 Jan 1988 EP
0 264 772 Apr 1988 EP
0 334 555 Sep 1989 EP
0 386 605 Feb 1990 EP
0 427 474 May 1991 EP
0 462 701 Dec 1991 EP
0 303 090 Apr 1992 EP
0 549 299 Jun 1993 EP
0 602 424 Nov 1993 EP
0 608 684 Aug 1994 EP
0 697 225 Jul 1995 EP
0 178 925 Apr 1996 EP
0 747 078 Dec 1996 EP
0 821 978 Feb 1998 EP
0 853 962 Jul 1998 EP
0 958 841 Nov 1999 EP
1 027 905 Aug 2000 EP
1 057 494 Dec 2000 EP
1 099 452 May 2001 EP
1 205 205 May 2002 EP
1 334 742 Aug 2003 EP
1 356 843 Oct 2003 EP
1 356 843 Oct 2003 EP
1 555 039 Jul 2005 EP
145309 Jan 2000 ES
2 574 657 Jun 1986 FR
2 658 725 Aug 1991 FR
2 691 906 Dec 1993 FR
2 749 176 Dec 1997 FR
9916 Aug 1999 FR
649 689 Jan 1951 GB
823 887 Nov 1959 GB
1 395 391 May 1975 GB
1 467 828 Mar 1977 GB
2 145 335 Mar 1985 GB
2 147 506 May 1985 GB
2 164 569 Mar 1986 GB
2 186 801 Aug 1987 GB
2 267 648 Dec 1993 GB
2080119 Dec 1998 GB
2080120 Dec 1998 GB
2080121 Dec 1998 GB
S39-13991 Jul 1964 JP
S48-55696 Oct 1971 JP
S52-76695 Jun 1977 JP
S52-164619 Dec 1977 JP
S59-55535 Apr 1984 JP
S61-67747 May 1986 JP
H07-21058 Apr 1995 JP
H07-308381 Nov 1995 JP
H09-501084 Feb 1997 JP
H09-216240 Aug 1997 JP
H09-292588 Nov 1997 JP
H11-000397 Jan 1999 JP
1105649 Feb 1999 JP
11-104256 Apr 1999 JP
H11-381522 Nov 1999 JP
2000-135103 May 2000 JP
2000-279520 Oct 2000 JP
2000-515784 Nov 2000 JP
2003-502119 Feb 2003 JP
2003-175106 Jun 2003 JP
2003-190308 Jul 2003 JP
2004-329941 Nov 2004 JP
2005-506156 Mar 2005 JP
3686609 Aug 2005 JP
65 481 Aug 2000 SE
WO 8001044 May 1980 WO
WO 8001645 Aug 1980 WO
WO 8203548 Oct 1982 WO
WO 8606969 Dec 1986 WO
WO 8701950 Apr 1987 WO
WO 9103277 Mar 1991 WO
WO 9215353 Sep 1992 WO
WO 9220395 Nov 1992 WO
WO 9301854 Feb 1993 WO
WO 9402190 Feb 1994 WO
WO 9416759 Aug 1994 WO
WO 9420051 Sep 1994 WO
WO 9502428 Jan 1995 WO
WO 9504566 Feb 1995 WO
WO 9617643 Jun 1996 WO
WO 9625983 Aug 1996 WO
WO 9639206 Dec 1996 WO
WO 9707847 Mar 1997 WO
WO 9741911 Nov 1997 WO
WO 9804310 Feb 1998 WO
WO 9811930 Mar 1998 WO
WO 9812965 Apr 1998 WO
WO 9818514 May 1998 WO
WO 9824499 Jun 1998 WO
WO 9826829 Jun 1998 WO
WO 9826830 Jun 1998 WO
WO 9830123 Jul 1998 WO
WO 9834665 Aug 1998 WO
WO 9848878 Nov 1998 WO
WO 9921618 May 1999 WO
WO 9930760 Jun 1999 WO
WO 9943375 Sep 1999 WO
WO 9958181 Nov 1999 WO
WO 9961088 Dec 1999 WO
WO 9965554 Dec 1999 WO
WO 0021600 Apr 2000 WO
WO 0038772 Jul 2000 WO
WO 0050121 Aug 2000 WO
WO 0057942 Oct 2000 WO
WO 0069521 Nov 2000 WO
0078384 Dec 2000 WO
WO 0078381 Dec 2000 WO
WO 0078384 Dec 2000 WO
0197893 Dec 2001 WO
WO 0197892 Dec 2001 WO
WO 0197893 Dec 2001 WO
WO 0207806 Jan 2002 WO
WO 0211804 Feb 2002 WO
WO 0232491 Apr 2002 WO
WO 0245784 Jun 2002 WO
WO 0247749 Jun 2002 WO
WO 03035156 May 2003 WO
WO 03059427 Jul 2003 WO
WO 03082406 Oct 2003 WO
WO 03105921 Dec 2003 WO
WO 2004012803 Feb 2004 WO
2004022146 Mar 2004 WO
WO 2004021960 Mar 2004 WO
WO 2004022144 Mar 2004 WO
WO 2004022145 Mar 2004 WO
WO 2004022146 Mar 2004 WO
WO 2004022147 Mar 2004 WO
2004041342 May 2004 WO
WO 2004041342 May 2004 WO
WO 2004078228 Sep 2004 WO
2005018523 Mar 2005 WO
2005028010 Mar 2005 WO
WO 2005063326 Jul 2005 WO
WO 2005068002 Jul 2005 WO
Non-Patent Literature Citations (92)
Entry
Examiner's Report issued in related Australian Appln. No. 2005253641 (Aug. 18, 2011).
Office Action issued in related Japanese Appln. No. 2007-515732 (mailed Aug. 16, 2011) w/English translation.
Examiner's Report issued in related New Zealand Appln. No. 587820 ( Sep. 13, 2010).
Third Office Action issued in related Chinese Appln. No. 200580020203.6 (Dec. 23, 2011) w/English translation.
International Search Report for PCT/AU2005/000850 mailed Aug. 12, 2005.
U.S. Appl. No. 60/643,121, filed Jan. 12, 2005, inventors: Lynch et al.
International Preliminary Report on Patentability, Application No. PCT/AU2005/000850 (Dec. 20, 2006).
Supplementary European Search Report for copending European Application No. 05749447, mailed Dec. 2, 2009, 8 pages.
Examiner's First Reported issued in Australian Appln. No. 2005253641 (Apr. 20, 2010).
Office Action issued in Chinese Appln. No. 200580020203.6 (Jun. 1, 2010).
Office Action issued in Japanese Appln. No. 2007-515732 (Aug. 24, 2010).
Office Action issued in related Chinese Appln. No. 200580020203.6 (Jul. 6, 2011) w/English translation.
9 photographs of Weinmann mask, WM 23122, 1991.
4 additional photographs of “Weinmann Mask”, before applicants' filing date.
Photograph of Weinmann Mask, acquired prior to 1998.
Australian Appln. No. 2010201443—Examiner's First Report, dated Jun. 22, 2011.
Australian Appln. No. 2006206044—Examiner's First Report, dated Dec. 1, 2010.
Australian Appln. No. 2005256167—Examiner's First Report, dated Apr. 29, 2010.
Chinese Appln. No. 201010620187.7—Office Action (w/English translation), dated Jul. 10, 2012.
Chinese Appln. No. 201010620187.7—Office Action (w/English translation), dated Oct. 26, 2011.
Chinese Appln. No. 201010508994.X—Office Action (w/ English translation), dated Jun. 15, 2011.
Chinese Appln. No. 200580021230.5—Office Action (w/English translation), dated Jul. 3, 2009.
Chinese Appln. No. 2004800402201—Office Action (w/English translation).
Chinese Appln. No. 200410038106.7—Office Action (w/English translation), dated Jun. 15, 2007.
DeVilbiss Serenity Mask—Instruction Guide 9352 Series, before applicants' filing date.
DeVilbiss Serenity Mask—Mask Accessories, before applicants' filing date.
European Appln. No. EP 10185073.3—Search Report, dated Dec. 6, 2010.
European Appln. No. EP 10185072.5—Search Report, dated Dec. 6, 2010.
European Appln. No. EP 10185071.7—Search Report, dated Dec. 6, 2010.
European Appln. No. EP 10182015.7—Search Report, dated Jun. 15, 2012.
European Appln. No. EP 10181516.5—Search Report, dated Jun. 13, 2012.
European Appln. No. EP 10166255.9—Search Report, dated Oct. 25, 2010.
European Appln. No. EP 09178736.6—Search Report, dated Apr. 19, 2010.
European Appln .No. EP 09003544.5—Search Report, dated Jun. 2, 2009.
European Appln. No. EP 08161868.8—Search Report, dated Sep. 23, 2008.
European Appln. No. EP 06704773.8—Supplementary Search Report, dated Mar. 29, 2011.
European Appln. No. EP 05753870.4—Office Action, dated Jul. 19, 2010.
European Appln. No. EP 05753870.4—Supplementary Search Report, dated Dec. 15, 1999.
European Appln. No. EP 04730413.4—Supplementary Search Report, dated Sep. 29, 2009.
European Appln. No. EP 03793491.6—Supplementary Search Report, dated Jun. 15, 2010.
European Appln. No. EP 02714190.2—Search Report, dated Jul. 11, 2006.
European Appln. No. EP 02445110.6—Search Report, dated Nov. 6, 2003.
German Patent No. 101 51 984—Decision from Opposition hearing by Weinmann (w/English translation), dated Dec. 6, 2007.
Japanese Appln. No. 2008-318985—Office Action (w/English translation), dated Jun. 14, 2011.
Japanese Appln. No. 2007-550640—Office Action (w/English translation), dated Mar. 27, 2012.
Japanese Appln. No. 2007-550640—Office Action (w/English translation), dated Mar. 29, 2011.
Japanese Appln. No. 2007-516895—Office Action (w/English translation), dated Aug. 24, 2010.
Japanese Appln. No. 2005-004072—Office Action (w/English translation), dated Sep. 24, 2009.
Japanese Appln. No. 2004-569777—Office Action (w/English translation), dated Mar. 3, 2009.
Japanese Appln. No. 2004-137431—Office Action (w/English translation), dated Dec. 8, 2009.
Japanese Appln. No. 2003-537718—Office Action (w/English translation), dated Oct. 7, 2008.
Japanese Appln. No. 2001-50444—Office Action (w/English translation), dated Oct. 26, 2004.
Japanese Appln. No. 2000-029094—Office Action (w/English translation), dated 2004.
Mask 1 Photographs, Respironics Inc., Reusable Full Mask (small) Part #452033 Lot #951108, before applicants' filing date.
Mask 2 Photographs, Puritan—Bennett, Adam Curcuit, Shell Part #231700, Swivel Part #616329-00, Pillows (medium) Part #616324, before applicants' filing date.
Mask 3 Photographs, DeVilbiss Healthcare Inc., Devilbiss Seal-Ring and CPAP Mask Kit (medium), Part #73510-669, before applicants' filing date.
Mask 4 Photographs, Respironics Inc., Monarch Mini Mask with Pressure Port, Part #572004, Monarch Headgear, Part #572011, before applicants' filing date.
Mask 5 Photographs, Healthdyne Technologies, Nasal CPAP Mask (medium narrow), Part #702510, before applicants' filing date.
Mask 6 Photographs, Healthdyne Technologies, Soft Series Nasal CPAP Mask, Part #702020, before applicants' filing date.
Mask 7 Photographs, DeVilbiss Healthcare Inc., Small Mask and Seal Rings, Part #73510-668, before applicants' filing date.
Mask 8 Photographs, Respironics Inc., Reusable Contour Mask (medium), Part #302180, before applicants' filing date.
Mask 9 Photographs, Healthdyne Technologies, Healthdyne Large Headgear, before applicants' filing date.
Mask 10 Photographs, Respironics Inc., Soft Cap (medium), Part #302142, before applicants' filing date.
Mask 11 Photographs, Weinmann: Hamburg, Nasalmaskensystem mit Schalldämpfer (medium), Part #WN 23105, before applicants' filing date.
Mask 12 Photographs, Life Care, before applicants' filing date.
Mask 13 Photographs, Healthdyne Technologies, before applicants' filing date.
Mark 14 Photographs, King System, before applicants' filing date.
Mask 15 Photographs, Respironics Inc., Pediatric Mask, before applicants' filing date.
Mask 16 Photographs, Hans Rudolph Inc., Hans Rudolph Silicone Rubber Face Mask/8900, before applicants' filing date.
New Zealand Appln. No. 592219—Examination Report, dated Apr. 18, 2011.
New Zealand Appln. No. 556041—Examination Report, dated May 6, 2011.
PCT/AU2006/000037—International Search Report, dated Mar. 17, 2006.
PCT/AU2005/000931—International Preliminary Report on Patentability, dated Dec. 28, 2006.
PCT/AU2005/000931—International Search Report, dated Jul. 19, 2005.
PCT/AU2004/000563—International Search Report, dated Jul. 23, 2004.
PCT/EP2004/012811—International Search Report, dated Apr. 12, 2005.
PCT/AU03/01160—International Search Report, dated Oct. 8, 2003.
Product Brochure for ResMed “Sullivan® Mirage™—The Mirage is Real. A Perfect Fit—First Time,” © 1997 ResMed Limited, 4 pages.
Product Brochure for ResMed “Sullivan® Mirage™—The Mirage is Real. A Perfect Fit—First Time,” © 1998 ResMed Limited, 4 pages.
ResCare Limited, “Sullivan™ Nasal CPAP System, Nose Mask Clip—User Instructions” May 1990, 1 page, before applicants' filing date.
ResMed, Mask Systems Product Brochure, Sep. 1992, 2 pages.
ResMed Ltd., “Improving patient compliance with The ResMed Range of Mask Systems The Ultimate Interface for CPAP treatment,” 4 pages, before applicants' filing date.
The ResMed Range of Mask Systems, product brochure, Nov. 1995, 4 pages.
Respironics, Inc., “Nasal Mask System Silicone Contour Mask,” Product Instructions, Jun. 1997, 2 pages.
“Somnomask” brochure, 1999.
Somnotron CPAP—Great WM 2300 Instruction Manual, Weinmann Hamburg, 1991, 11 pages.
U.S. Appl. No. 60/227,472, filed Aug. 24, 2000 (expired).
U.S. Appl. No. 60/424,696, filed Nov. 2002 (expired).
U.S. Appl. No. 60/467,572, filed May 5, 2003 (expired).
Office Action in related Chinese Appl. No. 200580020203.6 (Apr. 18, 2012) with English translation thereof.
Office Action issued in a corresponding Japanese Application No. 2011-038110 (dated Aug. 14, 2012) with English translation thereof.
Office Action issued in a related Japanese Application No. 2007-515732 (dated Jun. 12, 2012) with English Translation thereof.
Related Publications (1)
Number Date Country
20110220110 A1 Sep 2011 US
Provisional Applications (3)
Number Date Country
60579678 Jun 2004 US
60634272 Dec 2004 US
60648687 Feb 2005 US
Continuations (1)
Number Date Country
Parent 11628714 US
Child 13064349 US