1. Field of the Invention
The invention concerns a respiratory mask with a mask body and an articulated connector that can be connected with a respiratory hose.
2. Description of the Related Art
Respiratory masks are used, for example, in connection with ventilators to carry respiratory gas to the patient and to help carry away exhaled respiratory gas. The respiratory mask is typically connected with the ventilator by the respiratory hose.
A disadvantage of previously known respiratory masks is that the exhalation of the patient through the mask body and the respiratory hose causes an acoustic effect that is unpleasant for the patient and persons in the vicinity. In addition, the exhaled stream of air produces a cool draft that brushes along the patient's skin.
The objective of the present invention is to create a comfortable design of a respiratory mask that largely eliminates these unpleasant effects on the patient by the exhaled air.
In accordance with the invention, the solution to this problem is characterized by the fact that at least one exhalation gap is located in the vicinity of the mask body, preferably in the vicinity of a connection on the mask body that receives the articulated connector.
The respiratory mask of the invention, which is to be understood not only as a single part but rather as an element of a complete ventilator, comprises a mask body and an articulated connector that can be connected with a respiratory hose, such that at least one exhalation gap is located in the vicinity of the transition between the articulated connector and a connection on the mask body that receives the articulated connector. In particular, the arrangement of the exhalation gap between the mask body and the connector keeps the noise level low compared to other positions in which it could be arranged. In this position of the exhalation gap, CO.sub.2 is also washed out especially effectively. Moreover, it is precisely in the area of transition between the mask body and the connector that it is possible to provide a large gap length, which is acoustically especially advantageous compared, for example, to holes and short slots.
The one or more exhalation gaps are preferably bounded by two outflow surfaces each.
The articulated connector is advantageously designed as a ball-and-socket joint and is supported on individual points, especially on two points, in a ball cage of the receiving connection. In this way, there is a slight amount of bearing friction, and easy mobility of the attached respiratory hose is guaranteed. Tolerances can also be compensated in a simple way.
In another advantageous embodiment of the respiratory mask, the one or more respiratory gaps are bounded by the outflow surfaces, such that they are located adjacent to at least one spacing element and in this regard are play-free or can even be provided with pretensioning relative to each other. This prevents the occurrence of undesired vibrations and resonances due to escaping air when play is present, for especially in an exhalation gap in a ball-and-socket joint, a large gap length is obtained. Under certain circumstances, this could prove acoustically unfavorable if moving parts are present in the gap.
In addition, the exhalation gap between two outflow surfaces can be produced largely tolerance-free if the surfaces forming the gap are pressed against each other by a pretensioning force, thus eliminating any play between them, and the height of the gap is adjusted by spacing elements between the surfaces. In a design of this type, the height of the gap depends, apart from the shape and positional tolerances of the surfaces that form the gap, only on the tolerance of the height of a rib used as a spacing element. Since typical rib heights in exhalation gaps are 0.1-0.5 mm, gap tolerances of ±0.005 mm or less can be produced with a high degree of process reliability. Consequently, flow and sound emissions can be maintained within very narrow limits.
The mask body and the connector are preferably joined with a mechanical coding system. This has the advantage of preventing incorrect attachment of the mask body and connector to each other and of preventing an incorrect combination of a connector with a mask body.
It is advantageous for the body of the mask and the connector to be attached to each other by a retaining ring with a locking device, for example, a bayonet catch. The retaining ring also serves to fix the exhalation gaps, for example, by pretensioning the outflow surfaces of the respiratory mask and complementary outflow surfaces on the retaining ring against each other.
In another advantageous embodiment of the respiratory mask, the outflow surfaces form an outflow channel, which carries away the respiratory gas flow at an angle of 10-45°, especially 20-30° and especially preferably about 25° to a plane arranged frontally with respect to the face of the patient. In this way, the exhaled air is carried away from the patient in a basically umbrella-shaped path and is not unpleasantly perceived by the patient.
In addition, the outflow channel can be designed in such a way that it prevents the flow of exhaled air from moving in the general direction of the patient's eyes, since a draft of air towards the eyes is felt as especially unpleasant.
Furthermore, the respiratory mask can be designed in such a way that surfaces of the mask that bound the outflow channel are made of hard plastic, and surfaces of elements of the respiratory mask that are handled are made of soft plastic. In this way, on the one hand, the flow of respiratory gas is reliably carried away, and, on the other hand, the ease of handling and operating the respiratory mask is improved.
The invention is explained below with reference to the examples illustrated in the figures.
The respiratory gas flow moves from inside the respiratory mask to outside the mask along the flow guide surface 16. After leaving the exhalation gap 14, which is the narrowest point, the respiratory gas flow leaves the respiratory mask in a fan-shaped flow path along the extended outflow surface 10. In this regard, the respiratory gas flow leaves the exhalation gap 14 at an angle alpha, which is preferably 10-45° to the vertical in
The functions of the individual components illustrated in
The perspective view in
The exhalation gaps 14 are preferably arranged in such a way that they extend in a region of the centering ring 13 that faces the outflow surface 10. In this way, the respiratory gas emerging from the exhalation gaps 14 is guided directly into the area of the outflow surface 10. After leaving the exhalation gaps 14, the respiratory gas flow is deflected on the wide and extended outflow surfaces 10, 28 and flows diffusely and quietly into the surrounding environment through the outflow channel defined by the outflow surfaces.
To provide further explanation of the function of the individual components, we shall now explain the assembly of the individual parts, starting from their unassembled state. This assembly can also be easily managed by the patient himself. In a first step, the mask body 1, which is made of the harder material, and the protruding edge 2 of the mask are fitted together. To this end, the protruding edge 2 of the mask has a U-shaped profile that is not evident in the drawings. This U-shaped profile is pushed onto an edge of the body 1 of the mask. In the area of the point of contact between the protruding edge of the mask and the body of the mask, there is at least one undercut and at least one projection complementary to the undercut. The undercut is preferably located in the area of the softer component. The interaction of the undercut and projection in the assembled state provides a secure connection.
In the next assembly step, for example, a shaft 35 of the forehead support 2 can be inserted in a mounting support 36 of the mask body 1 and secured by means of at least one fastening device 37. However, the assembly of the forehead support 5 can also be carried out at any other desired point of the assembly operation.
In another assembly step, the retaining ring 31 is pushed onto the connector 3, starting from the sleeve 4, and is positioned in the area of the ball-and-socket joint 18. As the retaining ring 31 is being pushed onto the connector 3, it has an orientation such that, after the placement operation has been completed, the bayonet teeth 26 point in the direction away from the sleeve 4, and the ball-and-socket joint 18 is partially enclosed by the ball cage 24 of the retaining ring 31.
In a final assembly step, the retaining ring 31 is positioned, together with the connector 3, in the vicinity of the centering ring 13 of the body 1 of the mask. Due to the asymmetrical arrangement of the ribs 11 along the periphery, as shown, for example, in
After the bayonet teeth 26 have been inserted in the recesses 37 between the ribs 11, the retaining ring 31 is twisted relative to the body 1 of the mask in such a way that the catch 12 is engaged. The catch 12 is preferably designed as a projection of the retaining ring 31 that engages a corresponding recess in the mask body 1. In principle, however, the device can also be constructed in the opposite way. Elastic engagement of the catch 12 is assisted if the retaining ring 31 is made of a relatively soft material, so that the likewise soft projection of the retaining ring 31 can be inserted in the recess of the mask body 1 and can also be twisted back out again.
After the retaining ring 31 has been twisted relative to the mask body 1, the assembly operation is complete. The final position of the retaining ring 31 is predetermined by a lateral stop of the bayonet teeth 26 on the ribs 11. In addition, the bayonet teeth 26 engage behind the ribs 11, so that the total unit is also able to withstand tensile loads. The respiratory mask is disassembled in the reverse order of assembly described above.
As a result of the design of the retaining ring 31, it can be mounted on the mask body 1 without play and, if necessary, with pretensioning. Consequently, the width of the exhalation gap or gaps 14 now depends only on the tolerance of the height of the spacer ribs 25. The exhalation gap 14 is thus realized in a way that is extremely uniform and largely independent of tolerance. This in turn means that the discharge of the respiratory gas through the exhalation gap 14 is extremely constant and thus that the sound emissions produced by this discharge are likewise extremely constant.
The design of the retaining ring 31 allows the ball-and-socket joint 18 to be inserted in the elastic ball cage 24 of the retaining ring 31 and allows the ball cage 24 to enclose the ball-and-socket joint 18 at least partially. The ball-and-socket joint 18 is secured in the ball cage 24 by inserting the centering ring 13 in the receptacle 30 present in the retaining ring 31. As a result, the elastic elements of the ball cage 24 are bounded on one side by the ball-and-socket joint 18 and on the other side by the centering ring 13. In the assembled state, the ball-and-socket joint is secured in the area of the mask in this way. The mobility of the ball-and-socket joint, on the one hand, and the seal relative to the respiratory gas in the area between the ball-and-socket and-socket joint and the ball cage, on the other hand, are determined by the exact dimensioning and narrow tolerances.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 043 208 | Sep 2004 | DE | national |
The present application is a continuation of U.S. patent application Ser. No. 11/883,822, the entire disclosure of which is expressly incorporated by reference herein, which is a National Stage of International Patent Application PCT/DE2005/001535, filed Sep. 1, 2005, which claims priority under 35 U.S.C. § 119 of German patent application 10 2004 043 208.2, filed Sep. 3, 2004.
Number | Name | Date | Kind |
---|---|---|---|
3824999 | King | Jul 1974 | A |
5765553 | Richards et al. | Jun 1998 | A |
5921239 | McCall et al. | Jul 1999 | A |
5924420 | Reischel et al. | Jul 1999 | A |
6142342 | Lewis | Nov 2000 | A |
6823869 | Raje et al. | Nov 2004 | B2 |
7011090 | Drew et al. | Mar 2006 | B2 |
7089939 | Walker et al. | Aug 2006 | B2 |
7216647 | Lang et al. | May 2007 | B2 |
7753050 | Lithgow et al. | Jul 2010 | B2 |
7856980 | Lang et al. | Dec 2010 | B2 |
20010029950 | Haubeil | Oct 2001 | A1 |
20030075180 | Raje et al. | Apr 2003 | A1 |
20040045550 | Lang et al. | Mar 2004 | A1 |
20040112384 | Lithgow et al. | Jun 2004 | A1 |
20040211416 | Lurie | Oct 2004 | A1 |
20050076913 | Ho et al. | Apr 2005 | A1 |
20050126567 | Lurie | Jun 2005 | A1 |
20070157934 | Lang et al. | Jul 2007 | A1 |
20110056498 | Lang et al. | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
29723101 | May 1998 | DE |
29810846 | Aug 1998 | DE |
19817332 | Jan 1999 | DE |
19822308 | Nov 1999 | DE |
29923126 | Mar 2000 | DE |
19981084 | Jan 2002 | DE |
10057883 | Aug 2002 | DE |
102004002125 | Aug 2005 | DE |
102004002870 | Aug 2005 | DE |
1314446 | May 2003 | EP |
2004022145 | Mar 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20150059762 A1 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11883822 | US | |
Child | 14532359 | US |