The present invention relates generally to a respiratory-sensing wearable device and method with respiratory rate, respiratory depth, and calorie and exercised detection. More particularly, embodiments provide a narrowband-filter coated multi-element photodiode sensor for determining a respiratory rate in a living subject using variations in hemoglobin content of the bloodstream detected noninvasively using broadband light from ambient sources (sunlight, room light), or light or from a solid-state broadband white LED. Enabling systems and methods for incorporating or practicing the improved respiratory rate detection are also disclosed.
The traditional method for both consumer-grade or medical-grade respiration-detection is a device, such as an accelerometer, an airflow or stretch receptor, or electrical probes mounted on the chest or abdomen. For example, breathing deeply expands the abdomen as the diaphragm is pulled into the chest cavity. A chest sensor detects the physical movement or the diaphragm's electrical activity. Alternatively, an airflow sensor on the nose can detect cycling breathing, warming or cooling the sensor with each breath and change in direction of air flow. Other schemes may include video monitoring to capture chest and abdomen movement. These tend to record physical movement as well, detecting the physical motion through image analysis.
What is common to these traditional physical approaches is that they are dependent on a physical movement, such as movement of tissue or air.
Respirations also increase or decrease in response to calorie use. In the laboratory, the oxygen used can be exactly measured in the breath, but such cumbersome devices are unlikely to have appeal to the average mass consumer. In the end, however, it should not matter if calories are expended on a stationary cycle or during the Tour de France, the user should be able to estimate calories spent by monitoring the gasses produced and consumed in the breath.
Conventional systems also have drawbacks when used for the continuous respiratory monitoring of ambulatory subjects. For example, having a chest strap in place while running is not comfortable, nor is wearing the strap 24 hours a day. Similarly uncomfortable are sticky chest leads, which come off when sweating and running, and result in a tangle of wires when at rest or in bed. Even video monitoring and image analysis can be difficult when the subject is ambulatory or exercising.
Thus, conventional respiratory monitoring systems and methods suffer from one or more limitations noted above, in that they are not for mass consumer use, are difficult to use, reply on chest straps, electrical sensors, or airflow sensors to detect respiration, and/or they ignore or omit design considerations regarding optimizing respiratory monitoring in living beings and tissues.
None of the above systems suggest or teach a method and system using light to estimate respiratory rate, volume, effort, or variability. More specifically, none of the above systems suggest or teach a method and system to monitor arterial blood volume changes, or other optical signatures associated with respirations. Nor do they teach estimation of respirations or calorie intake as measured at locations outside of the chest, abdomen, or respiratory tract, such as at the finger or toe. Such a device for real-time sensing applications has not been taught, nor has such a tool been successfully commercialized.
The present invention relies upon the discovery that certain features of physiology correlate with respirations and metabolism, and with the right measures, one can estimate respiratory rate, tidal and minute ventilation volumes, and even caloric expenditures. Similarly, such measures can be made to estimate caloric intake, balance, and rate of expenditure. Such discovery led to development of a new sensor, allowing implementation more simply and inexpensively than has been achieved using conventional approaches.
A salient feature of the present invention is that sensors and illuminators can detect metabolism (cytochrome or tissue oxygenation), respiratory load (respiratory rate, depth, effort, and variability), and that these measures can be correlated with actual calories used. Such that respiratory physiology and exercise caloric monitoring, can be beneficially enabled.
Another feature is that these determinations are useful over time, integrating the measures to yield a story over days, weeks, months, or years.
Another feature is that physiology, such as heart rate, respiratory rate, heart rate interval, arterial oxygenation, and tissue oxygenation can be extracted from these measures.
A final salient feature is recognition that such devices can be incorporated into many devices, including phones, watches, wristbands, pendants, traffic lights, street monitors, glasses, and the like. The device can be embedded in clothing (caps, belts, pants, sweats, shirts, suits), both for casual, work, and even professional use such as firefighters, police, pilots, and soldiers.
Accordingly, an object of the present invention is to provide a respiratory sensor, including hardware and processing, to allow sensing and detection of respiratory rate, depth, effort, presence, or absence in mobile, wearable, and occupancy sensing sensor and imaging systems.
Another object is to provide a method for the stable detection of absence of respiratory effort such as with apnea, or increased respiratory effort such as with infections, congestive heart failure, or exercise.
Another object is to provide these measures non-invasively.
Another object is to provide a method for the stable detection of the certain transient features of living bodies sensed or imaged, such as to detect a respiratory rate, respiratory rate variability, heart rate, arterial oxygenation, and tissue oxygenation.
Another object is to provide a combination of a white or broadband LED, one or more spectral filters integrated with one or more optical sensors, and a processing layer into order to produce an integrated sensor/processor that provides a determination or result, such as respiratory rate or proximity of a hand, or even to measure other nearby bodies, such as to record respiratory rates of all persons in a business meeting in a non-contact manner.
Another object is to provide a sensor for embedding into nearly any mobile device, such as into a smartphone, personal wearable items (bracelet, pendant, watch, smart glasses, smart earbuds) and even into wearable clothing (shoe, shirt, or pants).
Another object is to provide an inexpensive spectral filter suitable for mass production.
Another object is to provide an inexpensive broadband solid-state light source of a configurable wavelength range.
The improved respiratory rate sensor for mobile use as described has multiple advantages.
One advantage is that this improved sensor may now be safely deployed within cell phones, smart watches, or sports bracelets, wherein use of conventional sensors would have provided less information, been less reliable, been more costly, or been less functional. This includes in autos (for example, a sensor that analyzes your heart rate and alcohol content as an image in a non-contact manner before starting), or a military helmet (analyzes heart rate of all troops in your view, to identify subjects are risk for failure), or fitness clothing (analysis heart performance during a race), or medical monitors (alerts your physician when your heart is no longer working optimally).
Another advantage is that the improved sensor can enable new types of monitoring, from reliable non-contact sports monitoring to remote healthcare monitoring to business meeting monitoring in which the reactions and heart rates of all participants is known.
A final advantage is that the improved sensor, by virtue of its content-awareness or bio-awareness, can be incorporated into new devices and applications.
There is provided a respiratory sensor for cell phones, health devices, wearables, and occupancy sensors. In one example, the system uses a phosphor-coated white LED and photodiodes with narrowband spectral filters, a processor, and software, to produce a system that reports on features of respiration, such as respiratory depth, respiratory rate, or respiratory rate variability, when worn on the hand, finger, arm, ankle, face, ear, or other parts of the body, even in clothing. Systems incorporating this sensor for physiological monitoring, gesture enabling, and signature verification, and methods of use, are also described.
The breadth of uses and advantages of the present invention are best understood by example, and by a detailed explanation of the workings of a constructed apparatus, now in operation and tested in model systems and on human volunteers. These and other advantages of the invention will become apparent when viewed in light of the accompanying drawings, examples, and detailed description.
For the purposes of this invention, the following definitions are provided:
Ambient Light: Light present in the environment. Ambient light is often broadband, that is available over a wide range of wavelengths to perform a detection or analysis, for example by solution of multiple simultaneous spectroscopic equations using a set of optical filters over a sensor. Sunlight is one type of ambient light. It appears white or off-white to the eye, and is also broadband (as defined below). Room light is another type of ambient light, and is of often broadband as well.
Loose-Fit: A device or sensor that, during movement, allows for a sensor to lift away from the body, without contact, but still allowing the sensor to continue monitoring. In contrast, most heart and respiratory monitors are tight-fit, requiring constant, snug contact with the skin or tissue of the subject being monitored. A tight fit forces light to travel into the skin, rather than reflecting back to the sensor, reduces blood movement in low-pressure venous compartments, and blocks ambient light from reaching the detector.
Compartment: A compartment is a location distinguished by temporal or physiological features that differentiate it from other locations. For example, the skin surface (which reflects and scatters light) can be one compartment. Muscle and tissue is another. The arterial bloodstream is a third example, and it differs in many respects (pressure, oxygenation, compliance) from the venous bloodstream, a fourth example of a compartment. Any region that can be differentiated based on such temporal or physiological characteristics can be a compartment for separation, localization, and computational analysis.
Occupancy: The presence, absence, or count of the living bodies in an area. An occupancy sensor could turn on a light if one or more human heartbeats are detected in a room (as opposed to or in addition to using motion to turn on the light), or an occupancy counter could turn up the air conditioning if 5 or more people's heartbeats are seen in a room. Processing spectral analysis of heartbeats using an image sensor with repeating groups of spectral sensors used to create “spectral pixel” groups, repeated as N x N over an image sensor would allow heartbeats to be spatially detected, temporally auto-correlated to establish identity, and counted.
Hydration Status: The overall water and fluid balance of an individual. In the simplest view, hydration reflects whether an individual has sufficient, insufficient, or excess body water. More complex analysis can look at which body compartments have water (such as intravascular fluids, extracellular fluids such as tissue edema, intracellular fluids).
Reduced-Power: Power consumption lowered as compared to similar sensors through the use of ambient light as a light source for some or all of sensor detection. Reduced power can be a relative term. For example, a sensor and LED system that does not require a lit broadband LED lamp at all times will use less power than an otherwise comparable design that always requires a lit broadband LED, allowing the ambient light system to operate on average at a lower power than the white LED dependent system. A reduction in power consumption by 20% would be considered reduced power.
Respiratory Rate: The rate at which breathing occurs. Breaths may be effective, ineffective (such as during obstruction), or even absent (such as in coma, or during certain types of sleep apnea). There are standard measures known to those skilled in the art, include breath volumes (tidal volumes), and the amount of air moved each minute (minute volume). Other features of respiration include respiratory rate, volume, effort, depth, or variability.
Content-blind: A gesture or event sensing approach that is dependent on a physical act or movement, but is insensitive to state, type, identity, or condition of the gesturer (subject) or object. For example, pressing a key on a keyboard is content-blind, as it does not matter if it is a pencil, a dead cat's paw, a monkey with a banana, or a user's finger that places physical pressure upon the keys or icon. In the view of typical smart phone keyboard, only the physical pressure of the object pressing the key (or for gesture sensitive devices, the movement of the touching object) is important, not the identity of the object doing the actuating.
Content-aware: In contrast to content-blind sensing, a sensing approach or system in which the sensor is able to intelligently detect and extract certain features about the person or object triggering the sensing event. For example, to analyze and detect that a hemoglobin-containing living hand or a chlorophyll-containing leaf appears in a photographic image are content-aware determinations. Content-awareness allows, for example, a proximity sensor to recognize that an object near a sensor is a living hand or finger, rather than a sleeve or a book, for specific gesture recognition with reduced error. This is not merely a pressure based or touch based system, such as a grip pressure sensor, but an actual spectral analysis to determine the type or state of the target, such as detection of hemoglobin, or changes in the hemoglobin concentration or volume in the bloodstream. Similarly, the color correction of a photograph can be improved if an image sensor is able to determine that a certain feature is human skin, or that another feature is sky, based on a spectral analysis of (or in additional to using traditional image processing of) the spectral information obtained by the sensor.
Bio-aware: A content-awareness that detects features of a living subject, such as the presence of hemoglobin, a heart rate, a body metabolism, a specific body composition, or recognition that an object near a sensor is a hand or finger for body-specific gesture recognition. A camera that color corrects pixels, or counts living objects present, based on the detection of hemoglobin in the one or more pixels, is bio-aware. This again is more than mere physical detection (such as a facial recognition algorithm using the shape of eyes and mouth) that would be fooled by a color photograph. A bio-aware method determines formal content such as chemical composition, not just physical appearance.
Filter: A device that restricts incoming light to of a specific type of light, such as by wavelength range, polarization, or other optical feature.
Spectral Filter: A filter that specifically restricts incoming light based on color or wavelength, usually restricting it to a predetermined set of colors or range or wavelengths, referred to herein as a waveband. For example, a narrowband interference coating that more or less allows only wavelengths from 550 to 560 nm to pass is a 10 nm bandwidth spectral filter for the waveband from 550 to 560 nm. Typical filters are Gaussian or have nearly vertical square sides, and each presents its own manufacturing advantages and challenges. For example, coating onto photodiodes is more difficult than coating on glass, as glass can survive much higher deposition temperatures without losing shape or function.
Sample or Target Sample: Material illuminated then detected by a sensor for bio-aware spectrally resolved analysis. A target sample may be an object, or can be living tissue.
Target Indicator: An optical characteristic specific to the target being measured.
Scattering: The redirection of light by a target sample. Most biological tissues scatter light, which is typically why we can see or detect them from light that scatters back from living tissues onto our retinae.
Light: Electromagnetic radiation from ultraviolet to infrared, namely with wavelengths between 10 nm and 100 microns, but especially those wavelengths between 200 nm and 2 microns, and more particularly those wavelengths between 400 and 1900 nm where chemical bands appear that allow unique identification.
Broadband Light: Light produced over a spectrally continuous and wide range of wavelengths (called the spectral width, spectral range, or bandwidth) sufficient to perform a detection or analysis, for example by solution of multiple simultaneous spectroscopic equations using a set of optical filters over a sensor. The broadband light could be ambient (such as from sunlight or room light), or it could be produced by sources such as a white LED integrated into the sensor. Spectral width is typically measured at some fraction of the peak intensity over the region of interest, such as full width half max (FWHM), full width quarter max (FWQM), or even full-width tenth max. For some purposes, a broadband range of at least 100 nm can at times be sufficient, while an exemplary sensor embodiment uses a white LED that produces light over 300 nm or more from 440 to 740 nm, with additional light is produced in a second broadband range of 880-1020 nm to provide additional analysis power, may be used. Ambient sunlight is broadband and covers a full UV, visible, and IR range from below 400 nm to above 2 microns.
Narrowband: The opposite of broadband is narrowband, and less than 50-100 nm in most cases. As a comparison, monochrome LEDs (non-laser, non-superluminescent) are often narrowband, with 20-70 nm widths, while narrowband spectral filters used in the embodiments and examples herein can ideally be as narrow as 5 nm to 15 nm wide, with some more wide or more narrow.
Light Source: A source of illuminating photons. A light source can be external, such as sunlight.
LED: A light emitting diode.
White LED: A visible wavelength LED that appears white to the eye. For the purposes of this embodiment, the white LED is often a broadband white LED comprised of a blue LED and a broad-emitting blue-absorbing phosphor that emits over a wide range of visible wavelengths. Other phosphors can be substituted, including Lumigen or quantum dots
Wearable: A sensor or device that can be worn on, in, or near the body, such as smart glasses, smart jewelry, or clothing with embedded sensors. The wearable can be an electronic device, like an earphone, or headphones, an ocular implant or contact lens, a mouthpiece, tooth cover, prosthesis, or a monitoring band.
Motion: Movement, such as running during exercises.
Non-contact: A measurement in which the detector and/or the illuminator is not in contact with the tissue. This can be a short distance (such as a 2-10 mm spacing under a loose wristband), a medium distance (such as a headphone that monitors the pulse in your earlobes from centimeters away), or long distance (such as a security and movement detector on the ceiling of an office room, or an occupancy sensor or counter used to control illumination power), or a quite long distance (such as a glasses based sensor that overlays the heart and respiratory rate on people in your visual field even if both of you are in motion).
Hemoglobin (or Heme): A pigmented molecule that carries oxygen in the blood. It is relevant to this invention that hemoglobin comes in many forms. In humans the primary forms are oxyhemoglobin (heme with oxygen) and deoxyhemoglobin (heme without oxygen). The reddish color of arterial blood comes from oxyhemoglobin being the main pigment (arterial hemoglobin is often over 96% oxyhemoglobin and under 4% deoxyhemoglobin), while the bluish color of venous blood is from the presence of large amounts of deoxyhemoglobin (venous hemoglobin is often around 30% deoxyhemoglobin with only 70% oxyhemoglobin).
Software: Software coded instructions for performing the method and algorithms taught herein are code stored on a non-transitory physical media, and are intended to direct a microcontroller, dedicated application-specific physical integrated circuit (ASIC), phone, fitness product, or other physical sensor systems to collect, analyze, and produce results from data collected from the sensors.
Measurement: A non-transient value determined over a period, or at one instant of time. A measurement is a stable form of information that can be stored in machine-readable hardware, such as a memory location, or can be provided (for example, digitally) for use in mathematical equations or analysis.
One embodiment of the device will now be described. This device has been built, and tested in the laboratory and on living subjects.
In the device source shown in
Illuminator 103 is a white LED. Broadband white light is emitted forward, in a beam as shown by light path vectors 114, with some light-reaching (and optically coupled to) target 125. Of note, target 125 is shown for illustrative purposes as a human subject, and is neither a part of the apparatus or system, nor is the human body or human subject claimed as patented material.
A portion of the light reaching target 125 is scattered and reflected, and returns as returning scattered and reflected light 128 into the smartphone camera image detector 141. Optionally, detector 141 could be a point detector, a linear array, or even one or more discrete detectors, provided that data representing filtered returning scattered light from the target sample is sensed and measured.
In this embodiment, detector 141 has added spectral filter 155. This filter allows only light of a certain color range onto certain pixel elements of detector 141. In this case, filter 155 may cover only a small region of the image sensor, so as not to interfere with image collection for other purposes, such as photographs. Filter 155 in this example has 7 narrowband filter ranges, each 5 nm FWHM wide, with center wavelengths at or near 525, 540, 555, 570, 585, 600, and 630 nm. Additional ranges may include filters with center wavelengths at or near 900, 920, 940, 960, and 980 nm for fat and water detection, and for these wavelengths in phones with white LED illumination, the 900-980 nm illumination must come from an infrared (IR) source in the phone's illumination or from ambient or other illumination sources). Sensor 102 measures less than 3 mm in width. Another range could be filters with center wavelengths at or near 445, 465, and 485 for the detection of bilirubin, the pigment of jaundice. Other filter sets could be selected for the detection of other compounds such as grain alcohol, sugar, abnormal hemoglobins, hematin (found in cells infected with malaria), and other biologically relevant pigmented molecules. Filter 155 may incorporate a polarizing coating as part of its filtering function. Filter 155 is attached to detector 141 using optical epoxy.
The non-contact measurement can be enhanced using polarization filters, integrated into the emitter and at 90-degrees (cross-polarized) on the detector. This is because light that reflects off of the skin retains polarization, and can be blocked using a correctly positioned polarizer on the detector (in this case cross-polarized, but it may be a different angle in other situations). In contrast, light entering the tissue is depolarized during multiple scattering, and thus travels in greater percentages through the cross-polarizer on return, thus enhancing the light. In studies, we found that the apparent hemoglobin (a measure of travel through tissue) was up to 2-fold higher when crossed-polarizers were used. These are shown in
Next, some or all of the data from image detector 141, including the filtered pixels, is read and processed by embedded microcontroller 187 (such as those typically present to operate cell phones, and shown dashed as it is located internally as part of the cell phone main circuitry) based on machine-readable code 193 saved on physical medal, such as ROM or flash disk physical memory 191, connected over electrical connection 195.
The machine readable code may optionally be system software saved as a machine-readable code embedded within a non-transitory physical memory ROM, or it could be an “app” (a downloadable code available for installation and/or purchase and then stored within a non-transitory physical memory), or it could be an “API” (an installed driver for a specific sensor, such as would be provided by a manufacturer with a given physical sensor set and using instructions stored on non-transitory computer readable media).
The precise design of software 172 will depend on the smartphone, watch, earbud, anklet, camera, or bracelet processor, but its function is to process the image and provide raw or processed results to the device or system For example, one result would be the photon counts for each of the filtered region, with each filter region covering multiple image pixels. Another result could be a processed result, in which least-squares fitting is performed against a spectral standard in order to determine the presence of hemoglobin in the image. Another result could be that the measurement is processed over time in order to produce a heart rate estimate. Each of these falls within the spirit of the invention if the returning light is processed for type, state, identify, or gesture, and if the broadband white LED source is used for illumination.
Spectral filter 155 of this preferred embodiment is now briefly described, as shown in
A photograph of an actual 7-fiber system we constructed is shown in
Alternative constructions are optionally possible. For example, there may be more or fewer than 7 filter ranges, depending upon the intended application. Next, there may be more than 1 fiber for each wavelength range. For example, there may be 10 of each fiber, for a total of 700 fibers in the set. Then, after placement on the CCD, a calibration may need to be performed to assign each image sensor region to a pixel spectral range, allowing averaging and integration at several locations for each range.
Another alternative format for filter 155 as used in sensor 102 is shown as
A photograph of such a device as constructed and tested is shown in
A schematic of a sensor chip is shown in
As described, the spectral filters can be separate elements, one filter element tuned by angle of entry across a range, or filters deposited directly on the detector substrate. In this case, interference filters were on separate glass substrates (custom 3×3 mm filters, Omega Optical, Brattleboro, Vt.) ranging from 5 to 40 nm FWHM, and were glued on each photodiode detector using optical quality UV set glue. A polarizer and lens were additionally added to the stack above each filter. The detector may be CMOS, a photodiode, a phototransistor, or any number of suitable optical detectors known in the art. In this example, the detectors are 8 photodiodes (Vishay temd7000 or larger). Alternatively, spectral filters could be replaced by a spectral grating that filters the light by spatially separating the wavelength into discrete wavebands over each physical region of light striking a detector.
Detector array 272 creates an output measureable amplified and digitized by amplifier and A-to-D converter 274. In this case, the detector outputs are captured and integrated by low noise CMOS or BiFET amplifiers (analog devices AD823A), and translated to 16-bit digital sample/hold A-to-D converter (Linear LTC1867L). High gain channels reach 66% saturation at 16 uW/cm2. The measurement can be improved by use of MOSFET amplifiers, and also by using higher-gain phototransistors, or even avalanche photodiodes (though the required avalanche bias may increase the complexity of the chip and the cost of the sensor). Background estimation can be done by flashing the light at brief intervals. Each measurement filter channel is low pass filtered in two passive stages using a 1.2 ms time constant to control noise, and the light source itself is flashed on for 2 ms before a reading is taken. The system using less than 1 mm2 of photodiode at each wavelength operates with 8-bit effective signal. By using a full 7.6 mm2 from a 3×3 mm detector photodiode, 11 effective data bits can be obtained in this manner. For heart rate hemoglobin pulse signals, 8-14 bits is recommended.
As shown in shown in
Alternative formats are also possible for the broadband light source instead of using a single white LED.
Ambient sunlight is broadband and covers a full UV, visible, and IR range from below 400 nm to above 2 microns, while room light LEDs are increasingly found to be white broadband LEDs. Alternative formats are also possible for the broadband light source instead of using a single white LED. One example is a multiple LED source, shown in
When manufactured, the light source can be significantly more compact, as shown in the photograph in
Light output from this multi-element light source is plotted in
Operation of the device may now be described.
Smart phone 101 is turned on, and the spectral physiology app is selected by the user and started. For example, in an Android system, the app icon is located and touched, launching the app.
The app turns on phone white LED 103 and begins to collect data from camera detector 141. Data from detector 141 is accessed using software, in this case written in android language and compiled using the Android software development kit (SDK), available online (for example, at http://developer.android.com/sdk/index.html). Image data from detector 141 is available as RGB data (or as luminance and color, convertible to RGB using known equations). However, under spectral filter 155 the image from the lens is replaced by data from the fiber ends. An example of such data is shown in the image in
This data may be collected on a spot basis for measurements without real-time change (such as water/fat composition), intermittently for values that change over minutes (such as cardiac performance), and nearly continuously (such as every 50 ms) for values such as heart rate, for which a continued change is key to extracting the value. These determinations are shown in more detail in the illustrative examples that follow.
The breadth of uses of the present invention is best understood by examples, provided below. These examples are by no means intended to be inclusive of all uses and applications of the apparatus, merely to serve as case studies by which a person, skilled in the art, can better appreciate the methods of utilizing, and the scope of, such a device.
In this example, illuminator 103 is a white LED embedded into a Samsung Galaxy S3 smartphone. Software app 172 is a custom software loaded into a machine-readable physical memory (4 Gb microSD card, San Disk) placed into the external SD card slot of the Galaxy phone, and installed using the Android operating system (Android 4.4, Google) on the phone. The app is launched using the Android touch interface. Multiple filters allowed multiple bands wavelength bands to be collected.
Upon launch, Software app 172 turns on illuminator 103, as well as displays a camera image from detector 141, which shows a hand placed into the image sensor view, but not necessarily in contact with the sensor. A pixel region corresponding to sensor intensity averaged over 100 pixels for each of these spectral ranges every 300 milliseconds is captured.
After capturing a spectral channel, the intensity is processed for change over time (a differential plot of intensity changes with respect to time). Here, the value is plotted versus time. The data are shown in
In
Alternatively, raw data, or interim determinations such as intensity changes over time, may optionally be displayed. Also, simply the changes in intensity at 570 nm (or other channels) may be plotted, as in a stable lighting environment the major change over intervals of seconds is the absorbance change caused by changes in hemoglobin.
For processing, a first differential (with respect to time) is determined, producing the varying measurement shown at plot 540 in
Next, we constructed a research probe that allowed the sensor and broadband light source, of the types shown in
Rather than use other indirect measures, such as other fitness monitors, we have compared the performance of this wristband to a chest electrode EKG, to test accuracy. Data were recorded from a human volunteer during an exercise protocol, as described in the previous example. This subject also wore an accelerometer, a pulse oximeter, and several other instruments that monitored multiple functions during the study.
The heart rate signal, as determined in accordance with the present invention in the previous example, in this case using 8 waveband multispectral data, is shown as plot line 582 in graph 586 of
Comparing the signals visually at first, it can be seen by eye that there is a peak in the calculated heart rate signal with nearly every electrical signal, and very few such peaks visible where there is no EKG signal. This validates that the arterial signal has been extracted accurately, and that the timing of the signals is not invalidated by the EKG.
Instead of a visual assessment, another method of assessing the accuracy of these measures is to determine the interval between heartbeats, in milliseconds between beats or in effective heart rate at a given interval (e.g., an interval of 500 milliseconds corresponds to 120 beats/min), and compare these two measures. This beat-to-beat interval can be compared on a beat-to-beat basis, or averaged. In this following example, interval data were plotted as a running boxcar average over a moving 5-second window.
Several points are of note.
First, measurement of the heart rate occurred during hard exercise, and would have been noisy or unreadable if using just one wavelength. In order to perform this calculation, multiple wavelengths were used to correct for movement artifact, and pulsations that resulted from movement of blood in the body.
Second, from this heartbeat data, a heart rate can be calculated. A single point sensor can also be used (zero-D), or a linear array can be used (1-D), instead of or in addition to the image sensor (2-D). An image sensor would allow this measurement to be seen at many pixels, allowing a heart rate to be determined across an image.
Next, it is not required that the sensor have contact with the subject. The heart rate sensor could be a white LED mounted in an exercise machine, with an image sensor in the display panel of the exercise machine measuring the exercising subject without contact.
Next, the sensor is not limited to measuring the heart rate of a wearer or user. The image could use the same algorithms to extract heart rate from a room full of observers, such as during a poker game or a business meeting, or at an airport checkpoint.
Also, as cardio-workout is defined in terms of minutes of elevate heart rate (either above baseline, or as a percentage of maximum ideal heart rate), one could auto-calculate the minutes of cardio workout in any day, automatically, so that the user does not have to see heart rate graphs or tables, merely seeing just the minutes of ideal cardio-workout per day for example.
Also, from the above example, it is clear that multiple analyses can be performed on different regions of the sensor, allowing multiple people to have measurements such as heart rate measured for each person either simultaneously, or by selection. The approach is not limited to one target subject, or to the wearer of the device. The determination could be from a glasses-mounted device that displays the heart rate of those around the wearer, and displays these results for the wearer to view.
Next, multiple image sensors could allow such data to be collected from groups of subjects in more than one location, such as from different rooms or different checkout aisles.
Next, note that there is some baseline variation. The size of the pulse signals varies with respiration. Because of this, a respiratory rate signal can be derived, and this can be used to estimate respiratory rate from optical data from wrist, ankle, or face, using measurements obtained even at a distance.
Next, such measurements are not limited just to heart rate. Screening for medical diseases (such as anemia, tachycardia, heart rhythm irregularities, jaundice, malaria, heart failure, diabetes, jaundice), chemical levels (alcohol, high cholesterol), or even fitness can be screened.
Next, because the measures can be broadband, the background light, which varies according to optical contact or coupling of the light to the subject, can easily be subtracted. For example, a baseline may vary widely as a subject runs and moves with a loose fitting heart rate sensor. However, once the baseline movement is corrected (all wavelengths will change, unlike the heart rate measurement which involves only some of the wavelength spectral channels), the background corrected values will more clearly show the hemoglobin variation that represent the changes with heart beats (e.g., heart rate). This allows a non-contact measurement that is resistant to movement, motion, changes in position, changes in background light (such as running in and out of the shadows of trees), all because the broadband values are oversampled, with excess data that allow for background light correction.
Last, because this approach involves broadband light, even background lighting can be used to extract the measures, such as room light in a meeting, or sunlight on athletes working outdoors. This can allow elimination of the white LED.
As an example of content awareness, one use of the detection of these features is the ability to detect tissue.
Conventional proximity detection involves either an intensity measure that changes as tissue moves closer or farther away, or uses a distance monitoring method to detect the distance from the sensor to the nearest object. Both of these approaches have problems. Both of these methods would view a piece of paper moving closer as the same as a face moving closer. That is, they are neither content-aware nor bio-aware.
In a study performed with human volunteers, a hand was moved over a sensor constructed in accordance with the present invention. The presence of hemoglobin at a tissue saturation level expected in human subjects was used as a measure of the presence of living tissue, and the observed intensity of the signal was plotted as a proximity signal. Also calculated was a pure intensity only signal, which is the standard proximity signal.
Data are plotted in
In a first study, data are shown from a hand passing over the sensor, as shown in
Next, the study is repeated, only this time with a piece of inanimate cloth over the wrist passing over the sensor, as shown in
This bio-aware sensing can have many purposes.
For example, a security device could trigger an alarm not just when motion is detected, but when human hemoglobin or a human pulse is detected. This security device could be made to distinguish human hemoglobin from other animal hemoglobin, such that a dog in the security camera view would not trigger an alarm, even if moving. Because the determination can be performed in a non-contact mode at a distance, the technique could be integrated into video cameras, ceiling sensors, lampposts, and the like.
Similarly, the bio-aware sensor could be used to control illumination. In this case, it is not security that is the issue, but energy efficiency. The lights in a room controlled by a motion sensor will turn on when a subject enters, but turn off when the same subject sits still at a computer monitor. A bio-aware device would turn off the lights only when the living human leaves a room, and there is no remaining human hemoglobin or human pulse in the room. Similarly, the lights would not turn on when the family dog enters the room, as the detection would be keyed to human physiological features, while non-human hemoglobin is often spectrally quite distinct from human hemoglobin.
Next, the device could distinguish between real and sham tissue, such as for unlocking security sensors that are image based (such as fingerprint sensors that can be fooled by photocopies of fingerprints).
Next, the device could be used to turn on or off phones when the screen is placed against a face by detection of the human tissue.
Next the sensor could be used to detect where a laptop or tablet is being held, to distinguish human touch from the pressure of a pocket or table.
Last, because different people have differing body composition (fat/water/melanin), different skin thicknesses, different levels of tanning, are of different races, age, gender, and ethnicity, this content awareness could provide some identification features. For example, even without a fingerprint being entered (for instance, if a cell phone is unlocked but is grabbed or picked up by an unauthorized user), then the normal composition of the user in terms of the above characteristics could be used to identify the user, and lock out an unauthorized user who is holding the phone. Similarly, markers (such as dyes, tattoos, unique mixtures of quantum dots) and the like could be used to make very specific optical markers that are nearly impossible to forge, due to the large number of admixtures of different wavelengths of quantum dots (perhaps hundreds could be distinguished) as well as each type having a relative ratiometric concentration, sensitive to one part in 2 raised to the 16th power, or more. As each agent could be in various concentrations, this alone would yield 2 to the 20th mixtures, even without a spatial tattoo patterning. Such implanted dyes could be encapsulated to be stable, providing non-radiowave, optical identification difficult to reproduce or transfer. Combined with a live dead detection, a high level of security could be achieved.
In this example, a bracelet was constructed using a white LED light and an optical fiber. The optical fiber allowed for ease of construction, in that a silicon sensor did not need to be incorporated into the small wristband. Rather, the light was transferred from the optical fiber to a commercial spectrally resolved linear sensor and measurement system (T-Stat 303, Spectros Corp, Portola Valley, Calif.) operating in a data-recording mode. This device is a commercial system incorporating a spectrophotometer (Ocean Optics SD-2000+, Dunedin, Fla., USA) to measure light entering the system. Data is recorded on an internal disk, then exported to a USB solid-state drive for storage and analysis, in this case in excel on a laptop computer.
A fit subject was exercised on an elliptical trainer. The power of the workout (joules/hour), the subject's heart rate, respiratory rate, work power, and pulse oximeter reading were recorded using other monitors, including a video recording for synchronization of the various data during analysis. Selected resulting data are plotted in
In
Data are shown in
Last, taking the power of the exercise in joules/hour (as measured from the elliptical trainer, which is an estimated workload in this case as this trainer was a commercial exercise device not a physiology lab device, though we expect the power estimates to roughly track a physiology device) and correlating with the cardiac performance on a scatter plot shows that among heart rate, pulse oximeter, and cardiac performance measures, only cardiac performance correlates well with workload (r2>0.82).
There are several points to note here
First, this data was collected with a fiber-based system for ease of laboratory analysis. Use of a mobile system with an LED and a sensor would be one approach to measure these values on mobile athletes. The use of a tethered fiber-optic wrist probe was for proof of feasibility.
Next, cardiac performance could be one of the first performance based devices available to athletes that measures cardiac performance using a simple, optical, non-contact, wrist-based monitor.
The form of a monitoring device includes non-contract pendants, cameras, phones, wristbands, and other wearables. The sensors could be incorporated into clothing such as gloves, spandex suits, caps, bracelets, pendants, and the like.
Hemoglobin is one of the most intense and visible pigments in the body, however there are many other pigments that can be measured by this method.
Fats and water are key body constituents, and have spectral features. Fats exhibit a peak at 920 nm (and elsewhere, including near 760 nm), while water has a peak at 960 nm (and elsewhere, include second differential peaks about 820 nm, large absorbance peaks between 1 and 2 microns, and a broad absorbance peak more or less between 2 and 10 microns).
We constructed a device that measures in the infrared by modifying a commercial spectral monitor (T-Stat 303, described earlier) to measure on the body. This device has a broadband infrared LED instead of a broadband white LED. The broadband infrared LED was designed and constructed for the purpose of having wavelengths above the typical white LED visible range, as shown in
The table below shows determinations from this system, which measuring on a hand, wrist, breast, and head, as shown in Table 1, below:
This detection of composition is also important, as fats, water, and even proteins in the bloodstream can be measured optically, allowing an estimate of calories taken in by ingestion. Together with calorie expenditure monitoring, taught below in Example 12 and Example 13, this can be used to estimate calorie balance, such as when sufficient or insufficient calories have been ingested in a day (calorie balance), or using the water signal, whether sufficient or insufficient water has been ingested in a day (such as hydration status and water balance).
Security systems require an identifier in order to detect the presence or identity of a person. Sometimes this identifier is a password or ID chip, while at other times it is a biometric measure (fingerprint, retinal blood vessel pattern). However, some fingerprint detectors can be fooled by something as simple as a cyanoacrylate copy of a fingerprint on cellophane tape.
By performing the analyses of the above examples (detection of heart rate, cardiac performance, fat/water composition), one can easily distinguish real from sham tissue.
In this example, we perform the measures listed in the above example. Tissue is measured for hemoglobin (heme) content. Normal tissue is 20-120 uM heme, with a saturation between 30%-80% for SvO2%. Further, living tissue is mostly water and fat, with water and fat comprising 50-90% of the volume in sum total. Further, there should be a low fitting error (for this algorithm, the error from unrecognized components should be below 200 though this number will vary by system and algorithm). Once these features are taken into account, the real, live tissue (as opposed to dead meat, colored paper, or inanimate objects) can easily be recognized, as shown in Table 2, below:
Different subsets of this approach can be taken into account, depending on application. For example, a pulse (heart rate) takes a few seconds to detect, while fat and water can be measured in a microseconds. Therefore, a fingerprint sensor that seeks to verify what is alive and not alive, or real and not real, may wish to use the spectrally determined composition in this analysis.
A few comments on water detection.
Water has a spectrum with peaks that allow detection of concentration. While many combinations of wavelengths can be used, combinations that detect differentiating features of the water spectrum are possible. For example, water has a broad peak at or near 960 nm (peak 1825 of
One method of detecting water is to look at the difference between the local baseline from 900 to 1000 nm versus the absorbance at the 960 nm peak of water. Analyzing this peak allows determination in Table 2 of the water content. This is translated to a percentage by accounting for the heme and fat components, and normalizing to standards with 100% of each substance in a light scattering medium such as tissue.
Similarly, fat content can be determined using the 920 nm fat peak (peak 1833 of
Hemoglobin can similarly be solved for one or more of its multiple forms. There is a double peak for oxyhemoglobin at or near 542 and 577 nm (peak 1842 and 1844 of
More detailed extractions, such as matrix solutions to multiple simultaneous linear equations can be used as well, though these require more processing by the processor executing instructions stored in memory. Such approaches work for bilirubin (with a peak near 460 nm), alcohol (with peaks above 1 micron), cholesterol with peaks around 1.7 microns), and other pigmented components in the bloodstream.
The sensor as described can be incorporated into a small sensor or device.
Several devices incorporated into systems are shown in
A loose fit wristband is shown in
A medical or fitness wristwatch is shown in
A heart-rate sensing pendant is shown in
Wearable glasses with sensor are shown in
A remote sensor for ceiling or rooftop mounting is shown in
A wearable clothing sensor is shown in
An insertable ear probe, into which a heart rate sensor could be placed, is shown in
One point of note, different parts of the body have stronger or weaker signals, depending upon what is being sought. For example, the pulsatility at the wrist is often lower than at the fingertips, nail beds, ear lobes, lips, cheek, or forehead, while the ability to measure subcutaneous fat is better over the wrist than in the lips. In contrast, the face has a different venous pulsation with movement than does the wrist. In part, this has to do with the blood flow of the tissue, and the thickness of the skin, but it also is affected by the venous valves present in the arms, but not in the face. Because of this, different sensor configurations, and different algorithms, may be required at different places.
In this description the terms loose-fit and non-contact are used. Light forced into tissue (such as from an emitter in physical contact with optical elements of the emitter directly into tissue) and detected by an emitter also in direct physical contact with tissue (such as a CCD pressed directly against skin) travels a different average path than light coming from an emitter source, travelling through the air to skin or tissue, and then scattering and reflecting back to an emitter, also at a distance from the tissue. Further, direct pressure to the measured tissue can suppress pulsatility (though minor pressure may suppress the effects of movement more than the pulsatility).
One way to encourage or ensure the system is non-contact is to place the sensor into a device intended to be kept at a distance, such as cell phone 101 of
However, such distance is not always possible, especially with wearable devices. In such cases, it may be important at times to force the sensor to remain out of physical contact with the subject, tissue, or object to be examined. In such cases, a design as shown in
Such a hardware method to ensure the sensor is non-contact is shown in
First, a recessed non-contract sensor with the illumination and detection on the same chip are shown in
Alternatively, sensor 933 can be separated into separate components, such as emitter 944 and detector 946, with light shield 949 between the two, as shown in
Note that in these designs, emitter 944 and/or detector 946 may also each be composed of multiple components that are also similarly separated.
Breathing leads to increases in pulse size at a time constant determined by the breathing rate, as well as shifts in venous blood proportionate to the depth and effort of respiration.
During inspiration (breathing in), the pressure in the chest cavity drops, increasing the rate of return of venous blood to the heart. This in turn makes the pulse volume larger, as cardiac output volume for each beat is driven in part by how much blood returns to the heart during filling during the rest cycle. As a result, the pulse size rises and falls with respiration. This produces a volume change in the total arterial blood signal that has frequency of 8 to 30 times a minute (even faster in infants). By analyzing the average beat-to-beat volume changes in the arterial compartment at longer frequencies than typically seen for heartbeats, a respiration measure can be seen and counted. Averaging for 0.5 to 2 seconds (or frequency filtering) smooths out the pulse, and allows changes in the arterial pulse size to be determined.
Arterial compartment data from exercising human subjects as determined in the previous examples were analyzed using increasing smoothing on the arterial signal, which focuses on the respiratory changes. The respiratory changes can be considered another physiological compartmental contribution (that is, a first compartment with the heartbeat, having a fundamental rate of the heart rate, and a second compartment with the respiratory effect, having with a fundamental rate of the breathing cycle).
Data are shown in
In
In
Several points are worth noting in discussion.
First, these signals can be increased when breathing hard, and therefore the size of the signal increases during hard exercise. The signal is also increased during certain respiratory diseases, such as congestive heart failure (due to pulmonary edema), asthma (due to obstructive pulmonary disease), and choking (due to increased respiratory effort and pressure gradients). One should be able to detect and count coughing, sighs, sneezes, hiccups, and other respiratory anomalies.
Second, by adding another time-constant compartment to the data analysis, the typically 8-30 Hz respiratory signal can be isolated. Similarly, this can be done through Fourier Transform time filtering as well, as is known in the art of time-analysis.
Third, intervals can be used to derive rate, as shall be explored in more detail in a later example. For example, an estimated heart rate (in beats per minute) may be determined as 60/interval, where the interval is expressed in seconds.
The steps of an exemplary method are shown in
As noted previously, there are many ways of achieving the steps of this method, but provided a multi-spectral and/or multi-compartmental approach is used to separate the signals in order to produce a stable method insensitive to motion and/or changes in body position, whether in contact or in non-contact modes, these fall within the spirit of the present invention.
A first step is collection of the data, shown as method step 1111. In this invention the data is either non-contact optical data or loose-fit data, with a key feature being that multiple wavelengths are used. For complex determinations, this could be 6 or more wavelengths, but for the purposes of this invention 3 or more is more typical.
Next, the data is filtered. One or more filters may be used.
One such filter is to separate multispectral data into types of tissue, shown as method step 1121. This may be performed using a matrix fit to the coefficients for the various components using published spectral weights, as was shown earlier. Alternatively, partial least squares (PLS), principal component analysis (PCA), or iterative methods could be used in such solutions.
Another such filter is to partitioning the concentrations or features found by multispectral fitting into different compartments, such as partitioning oxyhemoglobin, deoxyhemoglobin, water, or other substances into arterial and venous compartments, shown as method step 1131. In one example, shown earlier, using values of 70% saturation of the venous blood, and 98% saturation of the arterial blood, the oxy- and deoxy-hemoglobin changes can be seen to occur in arterial and venous compartments. This step is described more fully in Example 20.
But there are other phases that can be exploited. For example, there are also venous changes that occur during heartbeats and respirations, with slightly different time constants and phase offsets than the arterial pulse. Also, just as breathing in lowers the intra-thoracic chest pressure, which increases the filling of the heart and produces larger arterial pulses, there can be venous changes as a result of the rising and falling back pressure occurring at the frequency of respiration. Next, body motion, such as raising or lowering an arm, changing body position, or jumping, produces a change in venous blood volume in the tissue (and a smaller arterial change, as arterial blood is higher pressure in muscular arteries, while venous blood is low pressure in floppy vessels). You can see this change by eye when you lower your hand, and your veins become fuller in the back of your hand, while when you raise your hand the vessels collapse and such slow changes are also seen in the studies presented earlier. Because these occur over time, and not instantaneously, there are phases and time constants that can allow identification of additional compartments. Similarly, while the changes that occur with changes in position, or with movement, or with jumping, are largely venous changes, there are some lesser arterial changes, and more sophisticated compartment models may identify these, provided sufficient wavelengths are used.
In each of these cases (heartbeat, respiration, body position changes, movement, and impact from exercise), treating the tissue as having one or more arterial changing component and one or more venous changing components allows for a method of extracting and solving for each of these changes. Each of these compartments is another “unknown” to solve for, and solved by adding more wavelengths. Another unknown, baseline reflection signal, can be solved for using more wavelengths.
Another such filter is to filter in frequency space, such as to separate heartbeat from respirations (effectively two compartments), or even to separate motion (such as probe motion) effects based on their own rhythmic frequencies, as shown in method step 1141. This was shown earlier for separation of heartbeat and respirations using different time constants, but there are many methods such as Fourier Transform or its equivalents to produce a frequency-space data set. Suppression or removal of certain frequency ranges, and back conversion to spectral data would effectively separate the heartbeat and respiratory compartments, and may also be used to remove rhythmic exercise effects, such as walking or running induced probe and body motion.
Finally, data is output in method step 1151. Here, parameters are selected from one or more of heart rate, heart rate interval, heart rate variability, respiratory rate, respiratory depth, respiratory effort, calories expended, calories taken in or ingested, calorie balance, hydration status, time since last ingestion of fluid, step rate, sleep stage, exercise cardiovascular zone, number of heartbeats detected, occupancy count, presence of live or dead tissue, and other physiology measures.
Last, the entire process may be repeated, as shown in method step 1165, or one or more of each of the method steps can be repeated or used to feed back into prior analyses in order to iteratively improve the results, as shown in method step 1163. At some point, the method is ended, at method step 1167. The ending could be a firm end to calculation, or it could be restarted as needed.
Some additional comments on the method.
First, other ways of processing can be envisioned, for example an iterative or more sophisticated model will consider the influence of each compartment on the measurement of the other (such as if the arterial component is NOT 100% oxyhemoglobin).
Second, there are other substances that can be measured. Water, for example, can be measured using water peaks (such as at 960 nm or 820 nm) or any other point provided there is measureable contribution in the absorbance signal from water. Similarly, Ethanol, cholesterol, blood lipids, carotene, even medications can be measured in this manner.
Next, heart rate can be collected as an image, allowing the heart rate to be extracted from multiple persons in an image. Thus, a single point sensor can also be used (0-D), or a linear array can be used (1-D), instead of or in addition to the image sensor (2-D).
Next, it is not required that the sensor have contact with the subject. The heart rate sensor could be a white LED mounted in an exercise machine, with an image sensor in the display panel of the exercise machine measuring the exercising subject without contact.
Next, the sensor is not limited to measuring the heart rate of a wearer or user. The image could use the same algorithms to extract heart rate from a room full of observers, such as during a poker game or a business meeting, or at an airport checkpoint.
Also, as cardio-workout is defined in terms of minutes of elevate heart rate (either above baseline, or as a percentage of maximum ideal heart rate), one could auto-calculate the minutes of cardio workout in any day, automatically, so that the user does not have to see heart rate graphs or tables, merely seeing just the minutes of ideal cardio-workout per day for example.
Also, from the above example, it is clear that multiple analyses can be performed on different regions of the sensor, allowing multiple people to have measurements such as heart rate measured for each person either simultaneously, or by selection. The approach is not limited to one target subject, nor just to the wearer of the device. The determination could be from a glasses-mounted device that displays the heart rate of those around the wearer, and displays these results for the wearer to view.
Next, image sensors could allow such data to be collected from groups of subjects in more than one location, using only the pixels for each subject studied to calculate that subjects physiology data, such as from large rooms, street corners, security lines, or checkout aisles in stores.
Next, such measurements are not limited just to heart rate. Screening for medical diseases (such as anemia, tachycardia, heart rhythm irregularities, jaundice, malaria, heart failure, diabetes, jaundice), chemical levels (alcohol, high cholesterol), or even fitness can be screened.
Next, because the measures can be broadband, the background light, which varies according to optical contact or coupling of the light to the subject, can easily be subtracted. For example, a baseline may vary widely as a subject runs and moves with a loose fitting heart rate sensor. However, once the baseline movement is corrected (all wavelengths will change, unlike the heart rate signal which involves only some of the wavelength spectral channels), the background corrected signal will more clearly show the hemoglobin-varying signal of the heart rate. This allows a non-contact measurement that is resistant to movement, motion, changes in position, changes in background light (such as running in and out of the shadows of trees), all because the broadband signal is oversampled, with excess data that allows for background light correction.
Last, because this approach involves broadband light, even background lighting can be used to extract the measures, such as room light in a meeting, or sunlight on athletes working outdoors. This can allow elimination of the white LED.
Now, data is further analyzed by blood compartment.
A compartment is a location distinguished by temporal or physiological features that differentiate it from other locations. For example, the skin surface (which reflects and scatters light) can be one compartment. Muscle and tissue is another. The arterial bloodstream is a third example, and it differs in many respects (pressure, oxygenation, compliance) from the venous bloodstream, a fourth example of a compartment. Any region that can be differentiated based on such temporal or physiological characteristics can be a compartment for separation, localization, and computational analysis.
As described earlier, the venous compartment which is affected more by gravity, body position, and impact, while the arterial compartment which is affected more by heart rate and respirations. Separation of these compartments with further analysis is shown as plot 1240 of
One key to the compartment separation is that arterial and venous blood has different oxygenation. In this example, we assume that the arterial compartment has a heme saturation of nearly 100%, while the second, venous compartment has an oxygen saturation of 70%. This separation yields an arterial-only volume curve shown as graph 1240 in
This approach can be applied to human data collected under study conditions. Multi-spectral analysis of that spectral data, in this case through a matrix solution of simultaneous linear equations, yields the data shown in
In the calculations of this example, a simplistic but fast way to solve for the compartments was to consider venous blood to be 70% saturated, and for arterial blood to be exactly 100% saturated. Solving only for deoxygenated blood yields changes that must be only venous, as arterial blood has no venous blood in this simplistic analysis. Since venous blood is 30% oxygenated and 70% deoxygenated, the amount of total amount of venous blood changes can be calculated from the deoxyhemoglobin change plus an additional volume change of 30/70th of the deoxyhemoglobin change (that is an additional 30% volume that is oxygenated for every volume of venous blood that is deoxygenated). Removing the oxygenated component of the venous blood leaves a change in this example that must only be the arterial compartment change, which is far more pulse-driven than gravity- and body-position-driven. This allows a pulse to easily be seen, as shown in
Several important things are taught by the above example.
First, it is important to note that such a 70%/100% assumption is not required, and even iterative methods can determine the ratios that best fit the data.
Second, mathematical methods of solving such multiple equations are known. For example, one can apply multiple linear equations, where the values in the equation are: (1) an array of measured data within each waveband, (2) the corresponding absorbances, such as blood with and without oxygen, bilirubin, water, or fat, and (3) the result vector, which yields the concentrations (or changes in concentration) over time. In such an example, if the measured data is an N-element 1-D array named B, representing the data measured at N wavebands, and the known coefficients of effective reflection absorbance (absorbance and scattering) of each of M substances at each of the N wavebands are in a M by N 2-D array (a matrix of coefficients) named A, while the concentrations of each substance to be determined are in an M-element 1-D array of unknowns called X, then the values of X can be determined as (after regularization such that the math works, such as making N=M) then X equals the matrix operation: A−1B. The values for the array of coefficients can be found in publications, or may be experimentally estimated. Alternatively, simple algebra can be used to reduce the complexity of the calculations to mere ratios in certain conditions, or weighted nodal partial-least-squares analysis can be used for even a more complex analysis. All of these fall under the present invention if used to correct for distance and motion in a loose-fit or non-contact physiological monitoring.
As another example, the concentration changes over time can be further partitioned into compartments by time (separation based on frequency, which is different for heart and respiratory variations, for example), or by saturation (the total changes in blood volume and saturation can be analyzed as changes in multiple compartments (such as partition into a venous component of 70% saturation versus an arterial compartment of 98% saturation).
Several comments are now included.
First, it should be understood that the compartment analysis (arterial vs. venous, or gravity vs. pulse) and the substance analysis (hemoglobin, fat, water, skin) can be performed simultaneously, and that they are performed sequentially here for the purposes of clarity of illustration. Further, the analysis can be processed in an iterative manner, which optimizes the separation based on different values of arterial and venous saturation, or upon different time constants for respiratory versus cardiac function.
Next, there are other methods that can be applied to this analysis. Time filtering, such as using a Fourier Transform to place the data into frequency-space from time-space, as is known in the art of data analysis, and can separate a regular heart rate from the pulse effects of respiration, as is shown in a later example.
All of these fall within the scope of the present invention if used in a multispectral or compartmental (or both) analysis to extract non-contact or loose-fit physiological parameters such as heart rate, respiratory rate, R-R heart beat interval, pulse oximetry, or tissue oximetry, cardiac function, bilirubin levels, sweat levels, hydration status, fat/water levels or ratios, cholesterol levels, or the like.
Measurement of intervals, such as the interval time between peak arterial pulse timing, or the interval time between breaths, is an advantageous method to monitor rates in living subjects.
Interval measurement by optical methods correlates well with measurement of intervals via the gold-standard EKG, as shown in
Use of intervals in order to determine rate allows for several advantages.
First, consider a heart rate of 115 beats per minute. This would be an interval of 0.52 seconds between each beat, and the heart rate could be estimated by 60/Tinterval, where 60 is the number of seconds in a minute, Tinterval is the beat-to-beat interval, and the result is in beats per minute.
Data accumulates, as shown in
In
The ability to determine a rate in 1 second using an interval method represents a significant improvement over counting.
First, the user can receive a heart rate estimate in as little 1-2 seconds or less. In contrast, a runner would have to wait 20 seconds to see the heart rate using a counting system. Anyone who has watched a runner pause for heart rate measurement, and grow impatient standing still, knows that this is significant user experience for athletes and other users.
Second, if the process of measurement requires power, such as driving an amplifier or illuminating an LED, a good heart rate could be determined by interval by having the watch on only a few seconds each minute, as opposed to counting for much longer periods. The impact of this can be estimated. For a wristband with a small watch battery (such as the 25 mAh CR1216-type battery used in the Timex Indiglo, Timex, Connecticut), the difference between a 3 mA draw (for a typical LED) occurring only 2 seconds each minute, versus having to stay on nearly constantly for good counting, is the difference between a 250 hour (10½ day) battery life, and an 8 hour battery life.
Third, interval measures are surprisingly robust. Consider a runner with body movement that causes every 4th heartbeat to be missed. This is shown in
By counting, only 3 beats would be seen every 4 seconds, or 90 per minute, as shown by a count of 30 beats in 20 seconds at data point 1463 which is significantly in error, and worse, medically misleading.
In contrast, using the interval method, the modal (most frequent) interval would still be 0.5 sec, for an estimated and still-accurate heart rate estimate of 115 beats per minute at data point 1479. In fact, the 1.0 sec interval could easily be detected as being exactly twice the most frequent rate, and thus clearly determined to be a missed beat double interval. In contrast, the counting method would estimate the heart rate at approximately 90 beats/min regardless of the counting interval. An interval method is thus robust, especially one that uses modal or other filtering.
Of note, there are many ways to estimate intervals. For example, methods to detect cyclic rates such as Fourier transforms, wavelength analysis, and the like are well within the skills on one expert in signal processing.
The interval method can be applied to respiratory rates as well. In
One of the features that can be measured using this approach is calories, either calories consumed or calories expended. In this example, it is determined in part based on a function of respiratory rate, as derived in the previous example.
Measuring calories consumed is a common laboratory experiment, and is typically performed using the relationship between the calories burned and the oxygen consumed. It is known that in the production of ATP, the energy currency of the eukaryotic cells that occurs in cells, and to a large extend near the mitochondria of the cell, that oxygen is consumed in an electron transfer called the electron transport chain, involving certain enzymes including cytochrome a/a3, cytochrome c, and others. Thus, the basis of calorie measurement in the laboratory is typically a measure of the amount of oxygen consumed, easily measured by flowing a controlled amount of oxygen into an exercise rebreathing setup that uses a closed breathing system.
It is an important realization that in this process, carbon dioxide is also produced. However, in laboratory systems, the carbon dioxide is often scrubbed away, such as by using alkaline agents that react with free carbon dioxide which the carbon dioxide reacts with. While typically ignored this carbon dioxide will become important later.
Another important realization is that the mammalian respiratory rate (at least as well studied in humans) is driven strongly by acidity of the blood and carbon dioxide levels. In contrast, oxygen does not drive respiration, save in certain end-stage lung disease. Humans placed in low oxygen airplanes at altitude will often lose consciousness before responding to their own low oxygen. Our realization includes that because reparatory rate is driven by carbon dioxide more than oxygen and carbon dioxide is produced in proportion to calories consumed, that the respiratory rate is related to calories. The final step is since we have demonstrated how to measure respiratory rate in a noninvasive, noncontact manner, that this measure can be used to estimate calorie consumption in an active, healthy person, such as during exercise using a wearable sensor.
Deriving a relationship between calories used and respiratory rate requires establishing multiple relationships. Some of these relationships have been determined, often for reasons having nothing to do with the real time monitoring of calorie consumption.
Layton (1993) developed new methodology for estimating breathing rates to determine doses resulting from exposure to airborne gases and particles. In this case, calories were not the goal of this research, but rather Layton was looking to develop scales for toxicity. Breathing rates were related to oxygen consumption associated with energy expenditures utilizing a ventilatory relationship that related minute volume to oxygen uptake as given by the equation V=E×H×VQ (where V is ventilation in L/day, E is energy expenditure in kcal/day, H is volume of oxygen consumed in the production of 1 kJ of energy in liters of oxygen/kcal, and VQ is the “ventilatory equivalent”). H is taken to be 0.21 liters of oxygen per kcal based on a 1977-1978 Nationwide Food Consumption Survey (USDA, 1984) and the NHANES II study (US DHHS 1983). VQ is taken to be 27 (unitless) representing the ratio of minute volume to oxygen uptake, a value is derived by Layton from published data of five researchers (Bachofen et al. 1973; Grimby et al. 1966; Lambersten et al. 1959; Saltin and Astrand 1967; Salzano et al. 1984). Layton's equation was later supported by the OEHHA Report (2000).
We want to estimate calories based on respiratory rate. To begin, we modified Layton's equation for our purposes to solve instead for energy expenditure in kcal/min, instead of solving for minute ventilation, as: E=V/(H×VO). By doing this we asking a different question from the investigators interested in calculating respiratory exposure. However, the relationship between minute ventilation and respiratory rate was not clear.
To estimate minute ventilation given a respiratory rate measured by the device, we modified the work of Naranjo et al. (2005) who demonstrated a curvilinear relation between respiratory rate and minute volume expressed by an exponential function. This study recruited trained athletes and tested them on two different treadmill protocols. Expired air was collected and analyzed for carbon dioxide and oxygen, as well as liter flow. From this they determined one relationship between tidal volume, inspiratory and expiratory duration, and respiratory rate. A nomogram was developed for a relation between tidal volume (y) and respiratory rate (x) in this group of trained athletes, with a split by phenotypic gender: y=9.6446 e0.9328x for women, and y=8.3465 e0.7458x for men.
The work of Naranjo addresses only breathing patterns in one group of subjects, but makes no association with calories consumed and the approach fails for subjects breathing at low rates and in non-exercise conditions.
We modified Naranjo's relationships to derive new functions to estimate energy expenditure (in kcal/min) from respiratory rate (in breaths/min) for both men and women. In one example, this relationship was best represented by second-order polynomial equations where the minimum values are the predicted resting metabolic rate, as follows: y=0.0044x2+0.0798x−0.2106 for women (r2=0.998) and y=0.0069x2+0.0463x−0.0324 for men (r2=0.999). The ability to accurately, non-invasively quantify respiratory rate allows us to combine disparate research to develop a novel solution to measuring metabolism in real-time.
Using these equations, we can now display real-time estimates of calories consumed, using the respiratory rates determined using the method of the previous example, and the calorie conversions as determined in this example.
Results from a human subject are shown in
Several points of note.
First, in contrast, some known devices for estimating calories use accelerometers (e.g., Fitbit Flex, Fitbit, San Francisco, Calif.). These devices estimate a calorie consumption using baseline calculations (such as Basal Metabolic Rate, or BMR) from age, weight, height, or other biometrics, and augment those using additional calories based on movement. These devices do not incorporate noninvasive and/or noncontact measures of respiration. And when moving only part of the body, such as when riding a stationary cycle, such devices underestimate calorie use. However, the accelerometers used in such devices could be incorporated into the present device to provide additional, supplemental data to the optical respiration measures within the spirit of the present invention provided that noninvasive and/or noncontact respiratory signals are incorporated into the analysis.
Second, in additional contrast, some other known devices for estimating calories use global positioning (GPS) signals and map data to calculate a distance traveled over time, (e.g., Runtastic, San Francisco, Calif.) and also input such as mode of movement (walking, running, skating, cycling, etc.) in order to estimate calories used. Such GPS and map data could be incorporated into the present device to provide additional data to the optical respiration measures within the spirit of the present invention provided that noninvasive and/or noncontact respiratory signals are incorporated into the analysis.
Third, a respiratory measure is a robust measure of calories. When working at high effort, our respiratory rate naturally rises to provide the ventilation required. But such a high rate is difficult to “fake.” If a high rate of breathing is attempted when at rest, the carbon dioxide levels in the bloodstream will rapidly fall away from normal values, resulting in alkaline blood, changes in brain blood flow, lightheadedness, and even loss of consciousness.
In addition to calories used or expended, the number of calories ingested is an important part of the equation. Here, the calculations of Example 4 are relevant. Fat has an absorbance peak at multiple points, including local peaks at 760 nm, 920 nm, and elsewhere. By detecting changes in the peaks of the fat levels, and integrating over time, a measure of the fat calories consumed can be estimated. One exemplary method would be to then assume that fat comprises a fixed amount of dietary calories, and total calories ingested can be estimated as Intake (in kcal or kJ)=Cin/Ffat, where Cin is the estimated total calories ingested, and Ffat is the fraction of calories estimated to come from fat.
Once calories used and calories ingested are calculated, a calorie balance over the day can be determined as: Cbal=Cin−Cused, where Cbal is the calorie balance over a period of time, Cin is the estimated total calories ingested, and Cused is the estimated total calories used. In this way, a user could adjust the calories consumed by eating and drinking to balance the calories burned or used during the day.
In addition to calorie balance, other balances are important to a user. For example, the water balance could be calculated. Again, using the calculations of Example 4, water concentrations can be calculated. Here, water has absorbance peaks at multiple points, including local peaks near 960 nm and elsewhere (as also shown in the water spectrum of
For example, dehydration will lower the water content at the skin, in the tissues, result in a higher hemoglobin concentration in the blood and capillaries, and reduce the perfusion of the capillaries. In contrast, a drink of water or fluids would, when absorbed, result in the opposite: an increase in the sweat water content at the skin, an increase in the water in the tissues and capillaries, and a drop in hemoglobin concentration in the blood and capillaries, increases in perfusion of the capillaries.
A time since last hydration can be determined, and an automated detection of intake can be determined. In such cases, the time since the last drink can be calculated and displayed. Alternatively a light can be displayed that indicates a sip of fluids is needed in response to time passage or fluid losses.
As an example, the hemoglobin pulse is shown from a signal collected in ambient light in
Data were collected from the hand of a human subject at a distance of approximately 10 cm, in order to allow the room light to reach the skin and eliminate any shadow from the sensor board over the target sample tissue site.
The signal is clearly visible as peaks (for example, peaks 1722 and 1728) where collected from distance of 10 cm from the subject in ambient light. Such signals can be processed as described in earlier examples to separate signals into various compartments and determine pulse and respiratory rate, such as is illustrated in the flow chart of
Many sleep-stage bands collect accelerometer data. Such devices determine sleep stage by motion, which can be very inaccurate. In contrast, heart rate, heart rate variability, and respiratory rate also fit into these equations. Once a good measure of heart rate, heart rate variability, and respiratory rate is obtained using the methods described herein, sleep stage can be extracted using the equations and methods from the published literature. More accurately, a database can be assembled using remote monitoring from the optical devices disclosed herein, and the features extracted can be used to determine sleep stage using any depth of sleep algorithm known in the art.
The complexity of light absorbance in the body is not straightforward, which is one reason that use of a limited number of wavelengths will fail to correct for the many substances in the body, particularly if there are rapid changes in absorbance caused by drifting LED lights (less of an issue with filter-coated detectors and broadband light sources).
For example, with regard to
Here, the peaks of water, fat, and hemoglobin have been described earlier. For example, water has a broad peak at or near 960 nm (peak 1825) that differentiates water from the absorbance of fat, hemoglobin with or without oxygen, bilirubin (the pigment of jaundice), and other substances. Similarly, fat content can be determined using the 920 nm fat peak (peak 1833). This peak is often accompanied by a peak near the 760 nm peak of deoxyhemoglobin. Hemoglobin can similarly be solved for one or more of its multiple forms. There is a double peak for oxyhemoglobin at or near 542 and 577 nm (peaks 1842 and 1844) and a broader single peak for deoxyhemoglobin at 560 nm (peak 1852). Such approaches work for bilirubin (with a peak near 460 nm), alcohol (with peaks above 1 micron), cholesterol with peaks around 1.7 microns), and other pigmented components in the bloodstream.
The same approaches that allow determination of solutions of equations or functions that produce concentrations for water, fat, and hemoglobin can be used to extract spectral information from other substances at other wavelengths, including proteins, DNA, alcohols, chlorophyll, and other pigmented substances. The wavelengths required for analysis can be in the ultraviolet, visible, or even infrared wavelengths, provided that spectral features exist allowing extraction of concentrations or solutions to equations that are a function of the presence, absence, change, concentration, or variance in those substances over time.
Just as a normal heartbeat leads to a pulsatile, rhythmic increase in the amount of arterial blood in certain tissues (and thus an increase in the absorbance of light, as shown in the prior example), other events can also significantly change the amount of light reflected by a tissue such as skin. For example, merely moving the skin on which a light shown farther away or toward a sensor will change the amount of light returning from the skin tissue.
We constructed a research probe that allowed the sensor shown in
Data from this study are shown in
Note that the movement of the probe away from, then back toward, the subject's skin produces an apparent change in total absorbance in this single-waveband plot (e.g., data are plotted using just one color band such as 560 to 570 nm, or after measuring just one intensity across all colors in a camera sensor over time). This matches the number of movement cycles in the study.
Importantly, this cyclic pattern caused by the movement in
Because hemoglobin can be determined using spectroscopy at multiple wavelengths, and the spectrum of the skin by itself is different than the spectrum of blood, multiple linear equations can be solved to partition the signal into blood and into skin contributions. In this example, we use the fact that hemoglobin absorbance is 100-fold higher at in the 500-600 nm range than it is in the 650-700 nm range, whereas the scattering of skin is more nearly equal over that range. By relying upon the differing absorbance of each tissue at different wavelengths, a multi-wavelength system allows separation of the signal into blood and skin tissue quantities, or even into oxygenated, deoxygenated, and non-blood tissue quantities.
The result of this multispectral approach is shown in the results shown in graph 1940 of
In some cases, reduction of the noise by half (an improvement in signal to noise of “one bit”) may be sufficient. In this case, the reduction is by more than 90%, or roughly 7 effective bits of signal to noise improvement. Another way to view the merit of this approach is to consider the improved signal to be measure of physiology of the subject localized to one compartment, namely an oxyhemoglobin component of arterial bloodstream compartment, with skin surface compartment changes as a result of body movement, body position changes, and sensor movement substantially removed.
Again, just as both the heart beat pulse and probe movement each lead to a change in the amount of various components of the bloodstream (in these examples, blood and water), and thus leads to changes in the absorbance of light, positional changes of the body are yet another factor that change the amount of light returning from the body.
For example, by merely raising your arm above your head, or by lying down then standing up, one changes where the blood redistributes in the body (this is a big issue in space travel, where the blood that is normally in your legs due to gravity distributes everywhere, making your face puffy and engorged with blood). One can see this effect by dropping one's wrist at one's side, and noting the swelling up of the veins (with no similar effect easily seen on the arteries), and then raising one's hand above one's head, and noting the emptying of the veins. There is a reason for this: arteries are high-pressure, muscular vessels with little change in volume with pressure (in physics terms, arteries have a low compliance, defined as change in volume with pressure), while veins are floppy, baggy, low-pressure tubes with a large change in volume with a very small change in pressure (high-compliance). A shift in the location of various components of the bloodstream between the veins, arteries, and capillaries creates a signal that can mask the more subtle changes introduced by the beating heart and by breathing.
Data collected using the system of the previous example is shown in
These 2 movement cycles are visible in graph 2040 of
Several points are important to note.
First, a loss of signal (increased absorbance) with moving away from the skin makes intuitive sense. If bodies remained at rest, then such measurements could be straightforward. But when considering only one wavelength, it is difficult to determine whether a change in intensity is a change in the proximity or contact with skin, or a change in blood volume in the tissue, or a change in the blood content from a heartbeat. More violent movement, such as impacts during running and jumping, product strong changes that make heart rate detection very difficult to perform accurately at one wavelength, except in certain circumstances or with addition of additional monitoring data.
Second, the same pattern (falling with raising of the wrist, rising with lowering of the wrist) repeat each cycle, showing these general changes are a result of body movement. While a moving probe can be corrected with a tight wristband or well stabilized probe, the body will move in position during exercise, making this change difficult to correct for. Many commercial probes correct for this by being not only fixed in place with a strap to prevent probe movement and ambient light seeping under the sensor, but also are sufficiently tight so as to reduce venous blood flow. Such approaches cannot be used in a non-contact loose-fit or remote monitoring device, and they fail under such circumstances with movement.
Third, a rising and falling pattern is the same type of signal produced by the heartbeat, which can make the signals hard to separate if the body motion and movement is rhythmic and occurs at a rate that a heartbeat would be expected to occur (such as a once a second movement from footfalls during running) The size of the absorbance change with movement is on the order of 0.05-0.15 absorbance units. This is 100 fold larger than the changes due to the heartbeat. As changes in body position are common during jogging and other exercise, and if rhythmic can be very similar to the heartbeat curve seen in
Using multiple wavelengths, the same correction for changes in distance to the skin shown in Example 18 was performed, and the data as shown in
As before, reduction of the noise is by more than half (absorbance changes up to 0.15 in
So, it may be asked why didn't this skin correction work in the same way in this example as it did in Example 18. The answer has to do with physiology of compliance. When one puts one's hand down low, the blood distributes by gravity into the arm and the absorbance increases. This represents not just a change in skin contact and distance, but an actual change in the blood content of the measured skin as well.
To solve for blood changes, one needs to solve for the presence of blood (or water), or in more detail solve for the presence of oxy- and deoxy-hemoglobin. When just the skin effect is considered, this totals either 2 or 3 unknowns without separation into compartments.
In general, the number of unknowns to be solved for means that at least the same number of equations is needed to solve it well (in mathematics, it would be said N wavelengths are needed to solve for N unknowns, in order to not be underdetermined). Our biggest unknowns so far are the amount of hemoglobin and skin reflection/scattering, which requires at least 2 wavelengths. In order to determine oxyhemoglobin, deoxyhemoglobin, and skin, at least 3 wavelengths are required to solve this data set well. This is a simplification, as arteries have both oxygenated and deoxygenated blood, and there are other substances that absorb light. But there are also wavelengths were water absorbs well, so a pulse could come from the water signal instead of the amount of hemoglobin. In the next example, it will be shown how blood movement, as opposed to the probe movement, can be more completely corrected.
It is worth noting that while the predominate change in the data in
In the next example, it will be shown how movement of blood in the body can be corrected for, and used to enhance the heartbeat signal.
So how does one solve correct for blood movement, given that water and hemoglobin are present in all the compartments? The answer is to consider physiology.
Movement of blood during body movement tends to occur in the veins. This is because veins tend to be floppy, thin, low-pressure tubes that are partially distended with blood, and therefore swell and empty small changes in pressure, such the column of pressure created by gravity. In contrast, there is a much smaller change in the arteries. Arteries are thick and muscular, and are already under substantial blood pressure. Therefore, when the body moves, gravity does not cause them to empty or fill very much. Because movement under gravity occurs more in the veins than in the arteries, this allows multi-wavelength analysis to include another “compartment” in the analysis: what is that some of the oxyhemoglobin and deoxyhemoglobin is in the veins, and some is in the arteries.
Now, if arterial and venous blood were identical in composition, this floppy versus stiff tube approach would not add much useful information. However, arterial blood and venous blood different in many important ways: pH, oxygen content, dissolved carbon dioxide, and other ways. Venous blood, for example is typically 70% oxygenated in healthy adults at sea level (that is about 70% oxyhemoglobin, 30% deoxyhemoglobin, not including smaller amounts of other heme forms typically totaling under 2% of the hemoglobin). At the same time, arterial blood is typically about 95-99% oxygenated in healthy adults at sea level (that is, about only 1-5% deoxyhemoglobin, and the rest is oxyhemoglobin, again not counting other heme forms present).
These physiological and compartmental differences in oxygenation allow the measured components to be sorted into multiple compartments (e.g., arterial, venous, skin, muscle, gut, and liver). For example, skin is where melanin and other pigments not typically seen in blood are concentrated, while muscle is where myoglobins are typically found. In contrast, hematin, a form of hemoglobin found in malaria victims, is typically found in red blood cells in the bloodstream.
Now, rather than use just a few wavelengths, we can determine a heart rate from data collected 30 to 100 times a second from a spectrally resolved system with 6 to 8 wave bands, to which we will apply a method of multi-compartment multi-spectral analysis.
Data were collected using the research system of the of the previous example on a human volunteer undergoing exercise protocol that consists of a series of actions performed for 1-3 minutes each: sitting, abruptly moving arms while sitting, standing, abruptly moving arms while standing, squats, jogging or jumping in place, standing, then sitting. This subjected the sensor to movement of the probe as well as to changes in body position.
Note the wide variation in the signal with movement of the body and probe during exercise in
After correcting for the movement of the probe relative to the skin, as shown in previous examples, then multi-spectral linear equation analysis at these 6 wavelengths allows both oxygenated and deoxygenated hemoglobin levels to be determined, in addition to changes in skin distance. For such analysis, 3 or more wavelengths are required to separate the 3 unknowns: tissue, heme with oxygen, and heme without oxygen signals. With multispectral data, one way to process the data is to use multiple equations with multiple unknowns, such as linear matrix fitting, an approach known to those skilled in the art
Multi-spectral analysis, in this case through a matrix solution of simultaneous linear equations, yields the data shown in
Now, data is further analyzed by blood compartment. As described earlier, the venous compartment which is affected more by gravity, body position, and impact, while the arterial compartment which is affected more by heart rate and respirations. Separation of these compartments with further analysis is shown as plot 1240 of
The key to the compartment separation is that arterial and venous blood have different oxygenation. In this example, we assume that the arterial compartment has a heme saturation of nearly 100%, while the second, venous compartment has an oxygen saturation of 70%. This separation yields an arterial-only volume curve shown as graph 1240 in
In the calculations of this example, a simplistic but fast way to solve for the compartments was to consider venous blood to be 70% saturated, and for arterial blood to be exactly 100% saturated. Solving only for deoxygenated blood yields changes that must be only venous, as arterial blood has no venous blood in this simplistic analysis. Since venous blood is 30% oxygenated and 70% deoxygenated, the amount of total amount of venous blood changes can be calculated from the deoxyhemoglobin change plus an additional volume change of 30/70th of the deoxyhemoglobin change (that is an additional 30% volume that is oxygenated for every volume of venous blood that is deoxygenated). Removing the oxygenated component of the venous blood leaves a change in this example that must only be the arterial compartment change, which is far more pulse-driven than gravity- and body-position-driven. This allows a pulse to easily be seen, as shown in
Several important things are taught by the above example.
First, it is important to note that such a 70%/100% assumption is not required. Iterative methods can determine the ratios that best fit the data, or tissue oximetry and pulse oximetry can be used to measure these values more precisely, allowing accurate numbers to be used in the compartmental calculations.
Second, mathematical methods of solving such multiple equations are known. For example, one can apply multiple linear equations, where the values in the equation are: (1) an array of measured data within each waveband, (2) the corresponding absorbances, such as blood with and without oxygen, bilirubin, water, or fat, and (3) the result vector, which yields the concentrations (or changes in concentration) over time. In such an example, if the measured data is an N-element 1-D array named B, representing the data measured at N wavebands, and the known coefficients of effective reflection absorbance (absorbance and scattering) of each of M substances at each of the N wavebands are in a M by N 2-D array (a matrix of coefficients) named A, while the concentrations of each substance to be determined are in an M-element 1-D array of unknowns called X, then the values of X can be determined as (after regularization such that the math works, such as making N=M) then X equals the matrix operation: A−1B. The values for the array of coefficients can be found in publications, or may be experimentally estimated. Alternatively, simple algebra can be used to reduce the complexity of the calculations to mere ratios in certain conditions, or weighted nodal partial-least-squares analysis can be used for even a more complex analysis. All of these fall under the present invention if used to correct for distance and motion in a loose-fit or non-contact physiological monitoring.
As another example, the concentration changes over time can be further partitioned into compartments by time (separation based on frequency, which is different for heart and respiratory variations, for example), or by saturation (the total changes in blood volume and saturation can be analyzed as changes in multiple compartments (such as partition into a venous component of 70% saturation versus an arterial compartment of 98% saturation).
As before, reduction of the noise by half (an improvement in signal to noise of “one bit”) may be sufficient. However, the combined improvement of both corrections yields an estimated reduction by more than 99%, or roughly 8 effective bits of signal to noise improvement. Another way to look at this improvement is that the improved signal is measure of physiology of the subject localized to one compartment, namely the result is an oxyhemoglobin component of arterial bloodstream compartment, with venous compartment changes as a result of body movement, body position changes substantially removed.
Several additional comments are now included.
First, it should be understood that the compartment analysis (arterial bloodstream vs. venous bloodstream vs skin surface) and the component substance analysis (hemoglobin, fat, water, skin) can be performed simultaneously, and that they are performed sequentially here for the purposes of clarity of illustration. Further, the analysis can be processed in an iterative manner, which optimizes the separation based on different values of arterial and venous saturation, or upon different time constants for respiratory versus cardiac function.
Next, there are other methods that can be applied to this analysis. Time filtering, such as using a Fourier Transform to place the data into frequency-space from time-space, as is known in the art of data analysis, and can separate a regular heart rate from the pulse effects of respiration, as is shown in a later example.
All of these fall within the scope of the present invention if used in a multispectral or compartmental (or both) analysis to extract non-contact or loose-fit physiological parameters such as heart rate, respiratory rate, R-R heart beat interval, pulse oximetry, or tissue oximetry, cardiac function, bilirubin levels, sweat levels, hydration status, fat/water levels or ratios, cholesterol levels, or the like.
In summary, the improved sensors have multiple expected and unexpected advantages that can result from using broadband white LED illuminators (or broadband ambient light sources) and spectrally-resolved detectors in mobile devices, especially when combined with integrated processing power. In certain applications, such as fitness applications, this improvement may occur without undue space and size constraints, and all without degrading or with improvement in output stability. We show that improved sensors can be achieved by (a) using broadband light, from the room or from a white LED source, and (b) using a sensor with multiple narrowband spectral filters built into a portable board, such that the improved sensor can even be embedded into watches, bracelets, pendants, phones, and even clothes. Sensitivity to hemoglobin and other tissue components in various compartments allows for quantitative detection of gestures and physiology, and improves data quality during movement, allowing non-contact operation. Such improved sensors may permit a light source and detector to be embedded into nearly any mobile device, such as into a smartphone, bracelet, pendant, shoe, clothing, or watch.
We have discovered an improved respiratory sensor for mobile, wearable, non-contact, and remote use. Various sensor implementations have been constructed and tested, such as a phone and a watch, in which a solid-state broadband white LED, and one or more sensors having spectral filters designed to pass certain predetermined wavebands of light to produce (if needed in the absence of adequate ambient light or to replace ambient light) a continuous, broadband light from 400 nm to 700 nm, and a spectrally resolved detection. The resulting data is passed to a processor and memory having programs for execution by the processor to determine a measure of respiration, such as respiratory rate, volume, effort, depth, or variability of the subject. In one example, variations in components of the bloodstream of the subject over time such as hemoglobin and water are determined based on the detected light, and said measure of respiration is then determined based on the in components of the bloodstream over time, with venous compartment changes as a result of body movement and body position changes, and skin surface compartment changes as a result of sensor movement, substantially removed. In addition, the sensor is sensitive to other physiology (e.g., heart rate, calories, hydration, jaundice, alcohol levels), as well as to type and state (e.g., finger, hand, live, dead), for analysis and initiating actions based on the resulting determinations. This device has been built and tested in several configurations in models, animals, and humans, and has immediate application to several important problems, both medical and industrial, and thus constitutes an important advance in the art.
This application claims the benefit of, and priority to, U.S. Provisional Pat. Appn. No. 61/908,926, filed Nov. 26, 2013, U.S. Provisional Pat. Appn. No. 61/970,667, filed Mar. 26, 2014, and U.S. Provisional Pat. Appn. No. 61/989,140, filed May 6, 2014, U.S. Provisional Pat. Appn. No. 62/050,828, filed Sep. 16, 2014, U.S. Provisional Pat. Appn. No. 62/050,900, filed Sep. 16, 2014, U.S. Provisional Pat. Appn. No. 62/050,954, filed Sep. 16, 2014, U.S. Provisional Pat. Appn. No. 62/053,780, filed Sep. 22, 2014, U.S. Provisional Pat. Appn. No. 62/054,873, filed Sep. 24, 2014, the entire contents of each of which is incorporated herein in their entirety by this reference.
Number | Date | Country | |
---|---|---|---|
61908926 | Nov 2013 | US | |
61970667 | Mar 2014 | US | |
61989140 | May 2014 | US | |
62050828 | Sep 2014 | US | |
62050900 | Sep 2014 | US | |
62050954 | Sep 2014 | US | |
62053780 | Sep 2014 | US |