All publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
Detection and treatment of patients suffering from breathing disorders often requires that the patent's breathing be monitored. Monitoring may be particularly important during treatment, because it allows a physician to estimate the efficacy of treatment, and may permit dynamic modification of the treatment. For example, it may be helpful to monitor respiration in patients suffering from, or at risk for, medical conditions such as snoring, sleep apnea (obstructive, central and mixed), Cheyne Stokes breathing, UARS, COPD, hypertension, asthma, GERD, heart failure, and other respiratory and sleep conditions. Sleep labs may monitor patients to diagnose these and other conditions of sleep disordered breathing. Monitoring typically involves taping a sensor to the subject or applying a mask including a sensor over the subject's nose and/or mouth.
Unfortunately, applying a sensor to a subject in this fashion may be uncomfortable, and may make it even harder for the patient to sleep, confounding the diagnosis and treatment. This may be particularly true when sensors are used in combination with treatments involving a medical device that is worn on the subject's face, nose, and/or mouth. If a separate sensor is used, it may be difficult to match the sensor to the treatment system, which may add to patient discomfort, as the monitoring device and the treatment device must both be worn concurrently. In addition to the loss of comfort, combining sensing and treatment systems may also result in a loss of accuracy, as sensing may interfere with the function of treatment systems. Such problems may persist even with currently available treatment systems that include an integrated monitoring sensor or sensors.
For example, positive-pressure devices such as PAP (e.g., CPAP) devices are widely used to treat sleep disordered breathing. PAP devices typically include a mask or nasal pillow which is held against the subject's face, and connected to a device for supplying positive pressure air. PAP devices are active devices, because they actively regulate pressure by providing positive flow. Systems including sensors to determine respiratory pressure during treatment are often complex, in part because of the difficulty in assessing breathing flow rate in the presence of active pressure.
Recently, devices and methods for treating breathing disorders using a passive airflow resistor have been developed. These devices are typically much smaller and lighter and therefore may be more comfortable. Examples of these devices may be found in U.S. patent application Ser. Nos. 11/298,640, titled “NASAL RESPIRATORY DEVICES” (filed Dec. 8, 2005); U.S. patent application Ser. No. 11/298,339, titled “RESPIRATORY DEVICES” (filed Dec. 8, 2005); U.S. patent application Ser. No. 11/298,362, titled “METHODS OF TREATING RESPIRATORY DISORDERS” (filed Dec. 8, 2005); U.S. patent application Ser. No. 11/805,496, titled “NASAL RESPIRATORY DEVICES” (filed May 22, 2007); U.S. patent application Ser. No. 11/811,339, titled “NASAL DEVICES” (filed Jun. 7, 2007); U.S. patent application Ser. No. 11/759,916, titled “LAYERED NASAL DEVICES” (filed Jun. 7, 2007); U.S. patent application Ser. No. 11/811,401, titled “NASAL RESPIRATORY DEVICES FOR POSITIVE END-EXPIRATORY PRESSURE” (filed Jun. 7, 2007); U.S. patent application Ser. No. 11/941,915, titled “ADJUSTABLE NASAL DEVICES” (filed Nov. 16, 2007); and U.S. patent application Ser. No. 11/941,913, titled “NASAL DEVICE APPLICATORS” (filed Nov. 16, 2007). Each of these references is herein incorporated by reference in its entirety.
A nasal respiratory device typically also includes a holdfast that secures the device to the nose, so that the airflow resistor is in communication with the nasal passageway. In
The passageway of the nasal device shown in
Nasal respiratory devices such as the nasal device shown in
Described herein are sensor adapters for use with a nasal respiratory device. Sensor adapters typically have a body frame having at least two regions: an attachment region for securing the sensor adapter to the nasal respiratory device; and a sensor connector region for securing a sensor detector input for a sensor in communication with one or more outlets of the nasal respiratory device. The attachment region may be referred to as an attachment site and the sensor connector region may be referred to as a sensor connector.
In general, a sensor adapter is configured to be used with passive-resistance nasal respiratory devices. Passive-resistance nasal respiratory devices typically have a passive airflow resistor (e.g., a flap valve), and may also be referred to herein as simply “nasal respiratory devices” or “nasal devices”. The sensor adapters described herein are configured so that they may be attached to the distal (external) side of a nasal respiratory device without interfering with the activity of the nasal respiratory device. In particular, the body frame of the sensor adapter is configured so that the sensor adapter does not substantially limit the airflow or otherwise alter the resistance through the nasal respiratory device. For example, the body frame may project only slightly over the distal airflow pathway openings of the nasal respiratory device when attached to the nasal respiratory device. In some variations the body frame includes openings (e.g., passages, windows, holes, etc.) that allow airflow substantially unencumbered from the distal airflow pathway openings of the nasal respiratory device.
These devices and systems may be used with a sensor for measuring a parameter of breathing such as pressure, airflow, temperature, or the like. The sensor adapters may include a connector for the sensor detector input of a sensor. A “sensor detector input” typically refers to the sampling region of a sensor. For example, a sensor detector input may be a cannula (e.g., a nasal cannula), the sensor transducer region, or a connector to the transducer region.
In some variations, the sensor adapters include a sensor. The sensor adapters described herein may also be referred to as a cannula adapter.
For example, described herein are sensor adapters configured to attach to a passive-resistance nasal respiratory device without substantially altering the resistance to airflow through the nasal respiratory device. A sensor adapter may include a body frame having a sensor connector that is configured to secure a sensor detector region of a sensor in communication with an opening on the nasal respiratory device and an attachment site configured to mate with the nasal respiratory device and secure the sensor adapter thereto without limiting airflow through the nasal respiratory device.
In some variations, the sensor adapter is configured to secure the sensor detector input of a sensor in a predetermined position with respect to the nasal respiratory device. In some variations the sensor adapter includes a sensor. For example, the sensor detector input may be attached to a sensor connector region of the body frame.
The body frame of the sensor adapter may also be referred to as the body of the sensor adapter. The body frame is configured to position the sensor detector input of a sensor (e.g., a cannula connected to a pressure sensor, or the transducer of a thermocouple/thermister) in communication with one or more opening through a nasal respiratory device. For example, the body frame may be configured to position the sensor detector input a predetermined distance from the opening. In some variations, the body frame is configured to secure at least a portion of a sensor detector input (e.g., a cannula opening), between about 1 mm and 25 mm from an opening through the nasal respiratory device. The opening may be an expiratory opening, which may also be referred to as a leak pathway. A leak pathway is typically open during expiration and inspiration, when the resistance through the device is greater than the resistance during inspiration because of the airflow resistor. In some variations the sensor detector input is positioned to be in communication with an expiratory opening (e.g., leak pathway) and a valved opening (e.g., inspiratory pathway).
In some variations, the sensor connector region of the sensor adapter includes a channel configured to seat at least a portion of a sensor. For example, the channel may be a tube or hole into which a portion of the sensor (e.g., cannula, sensor lead, etc.) can be inserted. In another example, a portion of the sensor is configured to mate over the channel, which is a tube and may include a flange configured to mate with at least a portion of the sensor.
The attachment site region of the sensor adapter may include any appropriate attachment for connection to the nasal device. For example, the attachment region may include a surface that mates with a surface of the nasal device. In some variations, the attachment region is a snap fit region configured to secure a portion of a nasal respiratory device between two or more surfaces forming the snap fit. The attachment region may be a press-fit attachment site. The attachment region may include an adhesive material, a snap, a magnet, a hook-and-latch material, and/or a screw.
As mentioned above, in some variations the sensor adapter includes at least a portion of the sensor. The sensor or a portion of the sensor may be permanently attached. Any appropriate sensor may be used, including: a pressure transducer, a strain gauge, a thermister, a thermocouple, and an IR sensor.
One variation of a sensor adapter is a sensor adapter that is configured to attach a nasal cannula to a nasal respiratory device, the adapter comprising a body frame. This sensor adapter includes: a sensor connector having a surface to which a cannula may be secured so that a distal cannula opening is held in communication with an outlet (e.g., expiratory outlet) on the nasal respiratory device, and an attachment site configured to mate with the nasal respiratory device to secure the sensor adapter to the nasal respiratory device without substantially changing the resistance to airflow through the nasal respiratory device.
The surface of the sensor connector may be a surface against which the inner diameter of a cannula may be friction fit so as to hold the position of the cannula. Alternatively, the surface of the sensor connector may include a surface against which the outer diameter of the cannula is friction fit to hold the position of the cannula.
Also described herein are systems for monitoring respiration. These systems may be configured as systems for monitoring the treatment of a sleep disorder. For example, a system for monitoring may include: a passive-resistance nasal respiratory device having an airflow resistor configured to inhibit expiration more than inspiration; a sensor adapter configured to secure a sensor detector input of a sensor in communication with an outlet of the nasal respiratory device, wherein the sensor adapter includes a sensor connector configured to secure at least a portion of a sensor in communication with an opening on the nasal respiratory device. The sensor connector of the sensor adapter may be configured to secure the sensor detector input in communication with an expiratory outlet of the nasal respiratory device, or in communication with both an expiratory outlet and a valved outlet of the nasal respiratory device.
The system may also include a sensor configured to monitor respiration through the nasal respiratory device. For example, the sensor may be selected from the group consisting of: a pressure sensor, a thermocouple, a thermister, an IR sensor, and a strain gauge.
In some variations, the system includes a nasal cannula configured to attach to the sensor adapter so that one end of the nasal cannula is in communication with the opening on the nasal respiratory device.
Also described herein are methods of monitoring respiration, including methods of monitoring a treatment. For example, methods of monitoring treatment of a sleeping disorder are described. These methods may include the steps of: securing a nasal respiratory device to a subject's nose in communication with the subject's nasal cavity without covering the subject's mouth (wherein the respiratory device includes a passive airflow resistor configured to inhibit expiration more than inspiration); attaching a sensor to the nasal respiratory device; and monitoring respiration using a sensor connected to the nasal respiratory device.
The method may also include the step of securing a sensor adapter to the nasal respiratory device. The sensor may be attached to the sensor adapter and attached to the nasal respiratory device. In some variations, the sensor adapter is attached to the nasal respiratory device after the sensor is attached to the sensor adapter. In some variations, the method includes the step of adjusting the position of the sensor detector input. For example, the position of the sensor detector input of the sensor can be adjusted by adjusting the position of the sensor within the sensor adapter.
As mentioned, the sensor detector input of a sensor may be attached to the nasal respiratory device in communication with one or more outlets of the nasal respiratory device. In some variations, the sensor detector input is positioned to communicate with both an expiratory outlet (e.g., an outlet that is open during both expiration and inspiration) and a valve outlet (that is typically closed during expiration). In some variations the sensor detector input is positioned in communication with just the expiratory outlet. For example, the sensor may be positioned opposite a leak pathway which is opened during both expiration and inspiration. The sensor may be positioned across from the expiratory outlet only, or it may be positioned across from the expiratory outlet and another outlet of the nasal device. The sensor detector input may be spaced across from the outlet (or outlets) of the nasal device by a predetermined distance (e.g., greater than 1 mm, about 2 mm, between 1-5 mm, etc.).
In some variations, the sensor detector input is positioned within an expiratory outlet of the nasal respiratory device.
A sensor may be used to measure any appropriate respiratory parameter in order to monitor a sleep disorder. Thus, the method of monitoring a sleep disorder may include the step of monitoring airflow through the nasal respiratory device. For example, the method may include the step of monitoring air pressure from airflow through the nasal respiratory device. In some variations, the method includes the step of monitoring a temperature change from airflow through the respiratory device. The step of attaching a sensor to the nasal respiratory device comprises attaching a thermister or thermocouple, an IR sensor, a strain gauge, or the like. In some variations, the method includes the step of attaching a sensor detector input (e.g., a pressure transducer) in communication with the nasal respiratory device. For example, the method may include the step of attaching a cannula in communication with a pressure transducer to the nasal respiratory device.
Any appropriate method may be used to secure the nasal respiratory device to the subject's nose so that it is in communication with the subject's nasal cavity. For example, the device may be adhesively secured to the subject's nose, or secured by at least partially inserting into the subject's nose. A compliant material (e.g., compressible foam material) may be used to secure the device to the nose by expanding the material within the nose. Other ways that the nasal respiratory device may be attached to the nose include using a snap, Velcro, van der Waals forces, vacuum, a magnet, a friction fit, a press fit, a screw, and a hook-and-loop adhesive.
The nasal respiratory device typically includes an airflow resistor that passively resists expiration more than inspiration. For example, the airflow resistor may be a flap valve, or multiple flap valves (including valves having multiple flaps).
The method may also include attaching more than one sensor to the nasal respiratory device. In some variations, a separate sensor may be used for each nostril (which may use a single nasal respiratory device or each nostril may be attached to a separate nasal respiratory device). Thus, an additional sensor (or sensors) may be used to monitor and/or measure respiration. In some variation, a sensor that is not attached to a nasal device may also be used.
Although the methods and device described herein are generally directed towards nasal devices including sensor connectors which secure sensor detector inputs that communicate with airflow from the nasal device, these device and methods may also be adapted for use with devices that cover both the nose and the mouth, or just the mouth. Any of the sensor connectors and sensing devices may be used with such devices.
Also described herein are nasal respiratory devices having integral sensor connectors that are configured to be secured in communication with a subject's nasal cavity. These devices may include: a passageway configured to communicate with the nasal cavity; an airflow resistor in communication with the passageway, wherein the airflow resistor is configured to increase the resistance to air exhaled through the passageway more than the resistance to air inhaled through the passageway; an integral sensor connector configured to secure a sensor detector input of a sensor in communication with an opening through the device; and a holdfast configured to secure the respiratory device in communication with the nasal cavity. In some variations the holdfast is an adhesive holdfast that is configured to secure the device to the subject's nose without covering the subject's mouth, and may secure the nasal device at least partly within and/or at least partially over the subject's nasal cavity. In some variations the holdfast is a compressible holdfast that is configured to secure the respiratory device within the subject's nasal cavity by expanding to fit the subject's nasal cavity. The integral sensor connector may be configured to secure a sensor detector input of a sensor in communication with a leak pathway through the device, or in communication with a leak pathway opening and an opening from a valved pathway.
In some variations, the nasal respiratory device also includes a sensor. For example, the sensor may be selected from the group consisting of: a pressure sensor, a thermocouple, a thermister, an IR sensor, and a strain gauge.
Described herein are sensor adapters, systems including a sensor adapter, and methods of monitoring a subject's respiration using a sensor adapter. In general, these sensor adapters include a body frame having two regions: an attachment site region for securing the sensor adapter to a nasal respiratory device and a sensor connector region for securing the sensor detector input of a sensor in communication with an inspiratory and/or expiratory outlet of nasal respiratory device. The body frame of the sensor adapter is configured so that it does not interfere with the operation of the nasal respiratory device, or permit the a portion of the sensor from interfering with the operation of the nasal device. In particular, the sensor adapter body is configured so that it does not substantially limit airflow through the nasal respiratory device or otherwise affect the resistance to airflow through the nasal respiratory device. Furthermore, the sensor connector region may control the position of the sensor so that it does not interfere with the operation of the nasal device.
Also described herein are nasal respiratory devices including integral sensor connectors. These respiratory devices typically include a sensor connector on the distal (external) face of the nasal respiratory device. These integral sensor connectors may be configured as described below for the sensor connectors that are part of a sensor adapter. Integral sensor connectors are integral to a nasal respiratory device; for example, they may be formed as part of the rim body of the nasal respiratory device.
The sensor adapters described herein may be used with one or more nasal respiratory devices, particularly nasal respiratory devices that include a passive airflow resistor. An example of a nasal respiratory device is shown in
In order to get reproducible sensor readings when using a passive-resistance nasal respiratory device, it may be helpful to place the sensor in communication with more than one outlet of a nasal device. In particular, the sensor detector input may be placed in communication with an expiratory outlet (e.g., leak pathway) and a valved outlet. A valved outlet is the opening through the nasal device that is typically regulated by the airflow resistor so that it is closed (or partially closed) during expiration. Placement of the nasal device in communication with just an expiratory outlet may result in an imbalance in the magnitude of the sensor reading between inspiration and expiration, since the airflow during inspiration is typically distributed between both leak pathways and the valved openings (which are typically much larger) and during expiration the airflow is predominantly limited to the leak pathways. By positioning the sensor detector input in communication with both a leak pathway (or expiratory outlet) and valved pathway openings, the signals during both expiration and inspiration may be more balanced. In some variations the proximity of the sensor detector input to either a leak pathway and a valved pathway opening is determined by the ratio of the sizes of the opening; the sensor detector input may be closer to the smaller of the two openings, typically the leak pathway/expiratory outlet. In other variations, the sensor detector input may be further from the smaller of the two openings.
Similarly, the distance from the opening(s) and the sensor detector input of the sensor may be predetermined. If the sensor detector input is too close to an opening of the nasal respiratory device it may interfere with operation of the nasal respiratory device; if it is too far, it may not accurately sense respiration. Thus, in some variations the sensor detector input is greater than 1 mm from the nasal device outlet (e.g., leak pathway opening and/or valved opening), or greater than 2 mm away, or between 1 mm and 10 mm away.
It should be understood that when the specification refers to positioning a sensor with respect to the nasal device (e.g., in communication with an outlet of the nasal device), the region of the sensor positioned is the sensor detector input, unless the context makes clear otherwise.
It is desirable to measure respiration through the nasal device during both inspiration and expiration. A sensor can be placed in communication with one or more openings of the nasal respiratory device to measure one or more characteristic of respiration through the nasal device. As described in greater detail below, any appropriate sensor may be used, including a pressure sensor connected to a cannula, a thermister, a thermocouple, etc. A cannula 209 (connected to a pressure sensor, not shown) having an opening 211 is illustrated in
As mentioned, the position of the sensor detector input (e.g., cannula 209) relative to the openings in the nasal device on the external side may dramatically affect the accuracy and stability of the sensor readings. For example, it may be useful to measure airflow from an expiratory opening in the nasal respiratory device. In
The body frame of the sensor adapter may control the distance between a sensor (including cannula) and the external side of the nasal respiratory device. Further, the body frame of the sensor adapter is typically configured so that is does not interfere with the operation of the nasal respiratory device to which attaches. This means that the sensor adapter does not substantially limit flow through the passive nasal respiratory device to which it attaches. For example, a passive nasal respiratory device typically increases the resistance to expiration greater than the resistance to expiration, and may maintain these resistances within a predetermined range.
Returning to the exemplary passive nasal respiratory device shown in
A sensor adapter typically attaches to the external side of a nasal respiratory device, such as the external side of the devices shown in
The body frame of the sensor adapter is also configured so that it can attach to the nasal respiratory device without substantially altering the function (e.g., the inspiratory or expiratory resistance) of the nasal respiratory device. For example, the body frame of the sensor adapter may project only slightly over an opening of the nasal respiratory device when the sensor adapter is attached to the nasal respiratory device. Alternatively, or in addition, the body frame may include one or more openings (e.g., windows, gaps, passages, etc.) to allow airflow from the opening(s) of the nasal respiratory device to communicate with the outside environment substantially unimpeded.
In variations of the sensor adapter that project only slightly over an opening (or openings) of the nasal respiratory device, the body frame may project over an opening of the nasal respiratory device so that it covers less than 25% (or less than 20%, less than 15%, less than 10%, less than 5%, etc.) of the openings of the nasal respiratory device. This is illustrated below in
In variations in which the body frame includes one or more openings or passages, the openings or passages may be located between the attachment site region and the sensor connector. For example, the attachment site region of the body frame may be located proximally so that it contacts the distal or external face of the nasal respiratory device, and the sensor connector region may be located more distally, and the body frame may include one or more openings or windows between the distal sensor connector and the proximal attachment site. This is illustrated in more detail below in
In general, the sensor adapter, including the body frame, may be made of any appropriate material or materials. Lightweight materials may be particularly preferred, as are materials appropriate for use on or near skin (e.g., biocompatible materials). Appropriate materials include may include polymers (e.g., plastics), metals (including alloys), rubbers, ceramics, wood, or the like, and combinations thereof. For example, the body frame may be made of a polymeric material such as a polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyacrylate, styrene-butadiene copolymer, chlorinated polyethylene, polyvinylidene fluoride, ethylene-vinyl acetate copolymer, ethylene-vinyl acetate-vinyl chloride-acrylate copolymer, ethylene-vinyl acetate-acrylate copolymer, ethylene-vinyl acetate-vinyl chloride copolymer, nylon, acrylonitrile-butadiene copolymer, polyacrylonitrile, polyvinyl chloride, polychloroprene, polybutadiene, thermoplastic polyimide, polyacetal, polyphenylene sulfide, polycarbonate, thermoplastic polyurethane, or the like. The body frame may be made at least partially of a thermoplastic resins, thermosetting resins, natural rubbers, synthetic rubbers (such as a chloroprene rubber, styrene butadiene rubber, nitrile-butadiene rubber, and ethylene-propylene-diene terpolymer copolymer, silicone rubbers, fluoride rubbers, and acrylic rubbers), elastomers (such as a soft urethane, water-blown polyurethane), and thermosetting resins (such as a hard urethane, phenolic resins, and a melamine resins).
The body frame may be made of (or coated with) a biocompatible and/or hypoallergenic material. For example, biocompatible materials that may be used include (in addition to some of those described above) biocompatible polymers and/or elastomers. Suitable biocompatible polymers may include materials such as: a homopolymer and copolymers of vinyl acetate (such as ethylene vinyl acetate copolymer and polyvinylchloride copolymers), a homopolymer and copolymers of acrylates (such as polypropylene, polymethylmethacrylate, polyethylmethacrylate, polymethacrylate, ethylene glycol dimethacrylate, ethylene dimethacrylate and hydroxymethyl methacrylate, and the like), polyvinylpyrrolidone, 2-pyrrolidone, polyacrylonitrile butadiene, polyamides, fluoropolymers (such as polytetrafluoroethylene and polyvinyl fluoride), a homopolymer and copolymers of styrene acrylonitrile, cellulose acetate, a homopolymer and copolymers of acrylonitrile butadiene styrene, polymethylpentene, polysulfones polyimides, polyisobutylene, polymethylstyrene and other similar compounds known to those skilled in the art. Teflon, Mylar, PFA, LDPE, Hytrel, HDPE and polyester may also be used.
Materials that are relatively stiff may be particularly useful for forming the sensor adapter. In addition, materials that are sterilizable may also be preferred, for example, medical grade plastics such as Acrylonitrile Butadiene Styrene (ABS), latex, polypropylene, polycarbonate, and polyetheretherketone (PEEK). The materials described above are intended as illustrations only, and other materials having similar properties may be used as well.
The attachment region of the body frame typically includes one or more attachment surfaces that are configured to secure the sensor adapter to nasal device on the distal (external) side of the nasal device. For example, the attachment surface may configured to mate with a portion of the nasal respiratory device, including the body region (forming the passageway through the nasal device), and/or the distal face of the holdfast which secures the nasal device to the subject's nose.
The attachment region may include a mechanical, chemical, magnetic, or other type of attachment to secure to the nasal respiratory device. For example, the attachment region may include an adhesive to secure to the nasal respiratory device. The attachment region may include a mechanical attachment such as a snap, screw, press-fit, or the like. The attachment region may mate with a region on the nasal device. For example, the attachment region may include a snap-fit that includes surfaces which secure a portion of the nasal respiratory device there between. In some variations the attachment region includes a hook-and-latch material (e.g., Velcro) for securing the sensor adapter to a nasal respiratory device. In some variations, the attachment region includes a magnetic material for magnetically attaching to the nasal respiratory device. The attachment region may be made of combinations of these materials.
The attachment region of the body frame may be configured to removably or permanently attach the sensor adapter to a nasal respiratory device.
The sensor connector region of the body frame generally secures at least a portion of a sensor (such as a sampling or sensor detector input of a sensor) in communication with an opening of the nasal respiratory device. The sensor connector may be configured to secure any appropriate sensor, or it may be adapted for a particular type or sensor structure.
As used herein, the term “sensor” may include any appropriate sensor for sensing and/or measuring a respiratory characteristic. The term “sensor” typically includes the sensor housing, a sensor lead, and sensor detector input or sampling region, unless specifically excluded. For example, a pressure sensor may be connected to a cannula (e.g., a hollow tube). The cannula may be considered part of the sensor (e.g., the sensor detector input of the sensor). Thus, a sensor connector may connect to a sensor (including a cannula) so that the sensor may receive input (e.g., detect information from) an opening in the nasal respiratory device. The sensor connector therefore positions the sensor detector input of the sensor in communication with an opening or openings on the external side of the nasal respiratory device.
Types of sensors that may be used include pressure sensors, a flow sensors (airflow sensors), a temperature sensors, a moisture sensors, a gas sensors (e.g., chemical sensors), or the like. Sensors may be mechanical or electronic. A sensor may include a transducer. Examples of sensor transducers include thermocouples, thermisters, strain gages, infrared sensors, or the like. A sensor may be referred to by its transducer type (i.e., “a thermister”, etc.).
In general, the sensor connector secures the sensor detector input of the sensor in communication with an opening on the nasal respiratory device by holding the sensor detector input of the sensor in communication with an opening on the nasal respiratory device, such as an expiratory opening (e.g., a leak path). In some examples the sensor detector input of the sensor is a cannula mouth. In some variations, the sensor detector input of the sensor is the transducer.
The sensor connector may be a mount that holds the sensor in position. The sensor connector may be adjustable, so that the sensor can be positioned relative to the sensor adapter and/or the nasal device. In some variations the sensor can be secured more tightly after it has been adjusted (e.g., by clamping or otherwise activating the sensor connector). A sensor connector may permanently or releasably secure a sensor.
A sensor connector may include one or more structures for holding the sensor in place. For example, the sensor connector may be configured as a surface that grips or attaches to the sensor. The sensor connector may be an opening, tube or passageway into which a portion of the sensor fits. The sensor connector may be a protrusion, tube, or prong onto which the sensor is attached. In some variations the sensor connector includes one or more adjustable surfaces that can clamp onto a portion of a sensor (e.g., sampling cannula, sensor housing, sensor lead, etc.).
The sensor connector may also be keyed to the sensor. Keying may help orient the sensor with respect to the nasal device. For example, the sensor connector may be keyed by having an opening into which the sensor inserts that is notched or flattened on one side in compliment with a projection, groove or surface of the sensor.
The sensor connector may secure the sensor in any appropriate fashion. For example, the sensor connector may be sized to friction fit to the sensor. The sensor connector may include an adhesive surface for securing the sensor. The sensor connector may include a compressible or clamping surface for securing the sensor. The sensor connector surface may interlock with the sensor (or a complimentary portion of the sensor). The sensor connector may magnetically secure the sensor within the sensor connector. The sensor connector may secure a sensor therein using an elastomeric material. For example, the sensor connector may contract around or over a portion of the sensor.
The examples below show different variations of the sensor adapters and may further illustrate variations of the sensor adapter body frame including the sensor connector region and the attachment site region.
In
When the nasal respiratory device shown in FIG., 3A and 3B is worn, the airflow resistor is placed in communication with the subject's nasal passage, and the adhesive holdfast secures the nasal device in place. The sensor adapter may be attached to the nasal respiratory device either before or after the device is secure to the subject's nose. For example, the nasal respiratory device maybe applied in communication with the subject's nose first. Thereafter, the sensor adapter can be attached to the nasal respiratory device. Similarly, a sensor may be attached to the system either before or after either the nasal device or sensor adapter has been applied. The sensor may be positioned within the sensor adapter.
The sensor adapter shown in
Although the nasal respiratory device in
In some variations, the sensor connector may include a washer or other seal around the inner perimeter. This seal may help secure the sensor in position and may help form a seal for reading one or more respiratory parameters.
The sensor adapter include an opening or window 315 which allows passage of air from the nasal respiratory device relatively unencumbered, while positioning the sensor connector directly over (perpendicular to) an opening on the nasal respiratory device. This roof-like structure is opened on one side, and is sufficiently large so that the sensor adapter does not provide a substantial amount of additional resistance to airflow through the nasal device. For example, the distance may be between about 1 mm and 25 mm.
A sensor 515 (including sensor lead 519 and sensing end 517) is secured in the sensor connector region of the sensor adapter in
In
The sensor adapter shown in
In some variations the sensor connector includes a friction flange into which a sensor can mate.
The sensor adapters 701, 701′ shown in
The adjustable connector region 803 shown in this example is a living hinge that is made as part of the body frame. Other adjustable regions may be made using different constructions, including flexible materials (e.g., strings, fibers, etc.), bendable structures (e.g., springs, etc.), and the like.
The body frame also includes a sensor connector region 905 forming a passageway into which a sensor 909 is connected. As mentioned above, the sensor may be secured in the sensor connector region by a friction fit, by an adhesive, by an elastomeric region, by a vise or clamp region, etc. In this example, the body frame also forms a collecting surface 907. The collecting surface illustrated in
Any of the sensor adapter devices described herein may be included as part of a system for detecting and/or measuring respiration. For example, the devices described herein may be used as part of a system including any of the following components: a nasal respiratory device or devices, a sensor or sensors (including a cannula), and a data acquisition device including a memory or transmitter.
In this variation, the system (shown worn by a subject 1101) includes a pair of adhesive nasal devices 1103. Each nasal device is attached to a sensor adapter 1105, and both sensor adapters are connected to the sensor cannula 1107 which extends from the subject to a sensor unit 1109. The sensor unit may include additional sensor components, and may also include hardware, software and/or firmware for measuring, and storing and/or transmitting information about from the sensor. For example, the sensor attached to the sensor connector may be part of a pressure sensor which reads respiratory pressure from the nasal device through the cannula. In this example, a portion of the pressure sensor (excluding the cannula) may be housed within the sensor unit 1109. Alternatively, the transducer may be attached more proximally to the patient, e.g., near the sensor connector.
Other systems may include different or additional sensors. For example, a sensor for detecting respiration through the subject's mouth may also be included. In some variations, the sensor is not a pressure sensor, but is a temperature sensor (e.g., a thermister, thermocouple, infrared device, etc.). Temperature sensors and pressure sensors may be used in determining a polysomnogram.
Nasal Respiratory Devices with Integral Sensor Connectors
In some variations a separate adapter is not necessary, because the nasal respiratory device includes a sensor connector. In general, the sensor connector is located on the external face (e.g., the distal end) of the nasal device. Nasal respiratory devices including an integral sensor connector typically include a holdfast, one or more passageways through the nasal device, and an airflow resistor configured to increase the resistance to expiration more than the resistance to inspiration, as well as a sensor connector. In general, any nasal respiratory device, particularly those described above, and incorporated by reference, may include an integral sensor connector for connecting and positioning a sensor.
In some variations, the nasal respiratory device includes at least one leak pathway, which may be referred to as an expiratory opening. The leak pathway allows the passage of air through the device during expiration, even when the airflow resistor is closed, and during inspiration. In some variations, the sensor connector is configured so that at least a portion of the sensor detector is aligned (e.g., positioned across from, or within) the leak pathway.
An integral sensor connector may be structured as described above for the sensor connectors that form part of the sensor adapters. Just like the sensor connector of a sensor adapter, an integral sensor connector generally secures a sensor (or a region of a sensor, such as the sampling or detection region) so that it is positioned in communication with an opening of the nasal respiratory device. The integral sensor connector portion of a nasal respiratory device may be configured to secure any appropriate sensor.
The integral sensor connector of a nasal respiratory device may be a mount that holds the sensor in position. The integral sensor connector may be adjustable, so that the sensor can be positioned relative to the sensor adapter and/or the nasal device. In some variations the sensor can be secured more tightly after it has been adjusted (e.g., by clamping or otherwise activating the integral sensor connector). An integral sensor connector may permanently or releasably secure a sensor to the nasal respiratory device.
An integral sensor connector region of a nasal respiratory device may include one or more structures for holding the sensor in place. For example, the integral sensor connector may be configured as a surface that grips or attaches to the sensor. The integral sensor connector may be an opening, tube or passageway into which a portion of the sensor fits. The integral sensor connector may be a protrusion, tube, or prong onto which the sensor is attached. In some variations the integral sensor connector includes one or more adjustable surfaces that can clamp onto a portion of a sensor (e.g., sampling cannula, sensor housing, sensor lead, etc.).
The integral sensor connector may also be keyed to the sensor. Keying may help orient the sensor with respect to the nasal device. For example, the integral sensor connector of the nasal device may be keyed by having an opening into which the sensor inserts that is notched or flattened on one side in compliment with a projection, groove or surface of the sensor.
The integral sensor connector may secure the sensor in any appropriate fashion. For example, the integral sensor connector may be sized to friction fit to the sensor. The integral sensor connector may include an adhesive surface for securing the sensor. The integral sensor connector may include a compressible or clamping surface for securing the sensor. The integral sensor connector surface (or some other portion of the nasal respiratory device) may interlock with the sensor (or a complimentary portion of the sensor). The integral sensor connector may magnetically secure the sensor within the sensor connector. The integral sensor connector may secure a sensor therein using an elastomeric material. For example, the integral sensor connector may contract around or over a portion of the sensor.
An integral sensor connector may be formed as part of a nasal respiratory device. For example, the integral sensor connector may be formed as part of the rim body region forming the passageway through the nasal device. In particular, the integral sensor connector may be formed as part of the distal side which faces outward from the subject when the device is worn. In some variations, the sensor connector is formed as part of the holdfast. For example, the nasal device may include an adhesive holdfast and/or a conformable or compressible holdfast.
In some variations, the integral sensor connector is formed as part of the airflow resistor. For example, the airflow resistor may include a valve (e.g., flap valve) limiter or a crossbeam/cross-strut. The integral sensor connector may be formed as a portion of this.
In some variations of the nasal respiratory devices described herein, a sensor (or sensors) is attached to the nasal respiratory device. For example, a sensor may be attached (permanently or removably) to the integral sensor connector.
In operation, the sensor adapters allow the measurement of one or more respiratory parameters, particularly when a nasal respiratory device is worn. For example, a sensor adapter may be used to monitor treatment of a sleep disorder when a subject is wearing a nasal respiratory device.
A sensor may then be attached to the nasal respiratory device. The sensor may be any appropriate sensor 1203. The sensor may be attached using any of the sensor adapters described herein. Once the sensor is attached, the position of the sensor detector may be adjusted. For example, the sensor detector may be adjusted so that it is positioned opposite of an expiratory opening (e.g., leak pathway) or so that it is opposite both an expiratory and an inspiration-only opening. In some variations, the method also includes the step of locking the sensor in position (e.g., by clamping the sensor connector region). In some variations, the position of the sensor may be adjusted so that it is positioned within an outlet (e.g., expiratory outlet) of the nasal device.
The sensor may be attached permanently or removably to the sensor adapter and the sensor adapter may be attached permanently or removably to the nasal device. For example, the sensor adapter may be permanently or semi-permanently attached to the nasal device by an adhesive that chemically bonds the sensor adapter to the nasal device. The sensor may be either permanently (by adhesive) or removably (e.g., by friction fit) secured by the sensor adapter. Any of the methods of securing either the sensor adapter to the nasal device or the sensor to the sensor adapter may be used.
Once the sensor is attached, respiratory many be monitored by the sensor 1305. Data may be collected for any desired time period, particularly when the subject is sleeping. For example, the sensor may be used to record a polysomnogram. Methods of recording an analyzing polysomnograms may be found, for example, in “Nasal Pressure Airflow Measurement: An Introduction,” by D. Rapoport, et. al. (Pro-tech services, Inc., Mukilteo, Wash., 2001).
As described above, any appropriate sensor may be used. For example, the sensor may allow monitoring of: airflow, air pressure, temperature, humidity, chemical composition, or the like. One exemplary sensor is an air pressure sensor including a cannula. Pressure is measured, and the pressure data may be analyzed to estimate airflow through the nasal device. Thus, the systems described herein may be used to measure airflow through a nasal device (and therefore through the nose). The systems described herein may also be used for measuring air pressure. When a thermister or thermocouple sensor is used, the temperature change due to respiration through the nasal device may be measured. The change in temperature may also be used to determine an estimation of airflow through the device or nose. Similarly, infrared sensors may also be used to measure temperature change and/or flow.
In general, the order in which the steps above are preformed may be different. For example, the sensor may be attached (and adjusted) to the nasal device before it is applied to the subject. The methods described above may be used to monitor treatment of a sleep disorder, or simply to monitor respiration generally. Other treatments or diagnoses, particularly those involving the use of a nasal respiratory device, may also be performed using the devices and systems described herein. Furthermore, although the sensor adapters described above are described for use with a passive nasal devices (e.g., having an airflow resistor configured to inhibit expiration more than inspiration), they may also be used with other nasal device, particularly nasal devices that attach to the nose and include an opening or passageway thorough the body of the nasal device.
While the devices, systems, and methods for using them have been described in some detail here by way of illustration and example, such illustration and example is for purposes of clarity of understanding only. It will be readily apparent to those of ordinary skill in the art in light of the teachings herein that certain changes and modifications may be made thereto without departing from the spirit and scope of the invention.
This application claims priority to U.S. Provisional Patent Application 60/905,850, titled “Nasal Devices” (filed Mar. 7, 2007), herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60905850 | Mar 2007 | US |