Arrhythmias are abnormal heart rhythms that may cause the heart to function less effectively. Atrial fibrillation (AF) is the most common abnormal heart rhythm. In AF, the two upper chambers of the heart (i.e., the atria) quiver rather than beat and, consequently, fail to entirely empty of blood. As blood stagnates on the walls of the atria, it may form thrombi (i.e., clots). Under certain circumstances, these thrombi can re-enter circulation and travel to the brain, causing a stroke or a transient ischemic attack (TIA).
Research has indicated that as many as ninety (90) percent of all thrombi formed during AF originate in the left atrial appendage (LAA). The LAA 11 is a remnant of an original embryonic left atrium that develops during the third week of gestation. As shown in
The high rate of thrombus formation in the LAA is believed to be attributable to its physical characteristics. Blood easily stagnates and thereafter can clot in the long, tubular body of the LAA or at its narrow ostium. In contrast, a right atrial appendage (RAA), which is a wide, triangular appendage connected to the right atrium by a broad ostium, is infrequently the site of thrombus formation. Thrombus formation in the LAA is further promoted by the numerous tissue folds 13 (i.e., crenellations) on its interior surface (
Certain patient subsets are considered to be at an abnormally high risk of thrombus formation. Such patients include those over seventy-five (75) years of age, as well as those presenting with a history of thromboembolism, significant heart diseases, decreased LAA flow velocity, increased LAA size, spontaneous echogenic contrast, abnormal coagulation, diabetes mellitus, and/or systemic hypertension. For these high-risk patients, prophylactic intervention may be recommended. Currently proposed prophylaxes generally fall into three categories: (1) surgical ligation of the LAA; (2) implantation of an LAA occluder sufficient to prevent, or at least minimize, blood flow into the LAA; and (3) placement of a filter in the LAA ostium to prevent clots formed therein from re-entering the circulatory system.
Because of the uncertain physiological role of the LAA, its obliteration and occlusion are controversial. Reports have suggested that obliteration of the LAA may decrease atrial compliance and diminish ANF secretion. Furthermore, while properly positioned filter devices prevent migration of thrombi into the circulatory system, they cannot inhibit thrombus formation within the LAA. Consequently, in the event the filter device is dislodged or ineffectively sealed against the LAA ostium, clots held at the LAA ostium by the filter could be released into the circulation.
In embodiments of the present invention, the left atrial appendage (LAA) is attached to the left atrium at an ostium, and apparatus and methods are provided for allowing blood flow from the LAA to another portion of the body through an opening other than the ostium. The opening preferably has a conduit, and is preferably to the main body of the left atrium. The conduit helps to increase blood flow through an LAA by adding at least one other flow path to the ostium, and thereby reduces the risk of stasis and the formation of thrombi.
A conduit could be any suitable size, but is preferably small enough or compressible enough to be provided through a catheter of no more than about 12 French (F), and preferably less than 5 F. Materials that could be used include any biocompatible metal or polymer, including nitinol; if a polymer is used, it can be desirable to make the conduit radiopaque.
Unlike other methods that focus on closing, occluding or reducing the volume of the LAA using plugs, membranes, or sutures, these embodiments promote constant flow through the appendage in the event of AF. These methods do not require obliteration of the LAA and the functions it serves. Other features and advantages will become apparent from the following detailed description and drawings.
Referring to
Referring to
In this embodiment, the conduit has an outer diameter (OD) that is preferably shaped like a rivet. On delivery, the larger diameter portions at the ends may be folded down to reduce the profile of the device as it passes through a delivery catheter. Other outer diameter configurations could be used, although it is desirable to have a mechanism to hold the conduit in place. For this purpose, hooks, anchors, or struts could be included in the design of the conduit.
The inner diameter (ID) can be tubular, preferably circular, and can include a coating of anti-coagulant or anti-platelet drugs if desired.
The conduit could be made of a tubular vascular graft material, such as knitted or woven polyester, in which case nitinol anchors could be used. Another possible material for the conduit would be nitinol, but other biocompatible metals or polymers can be used. If a polymer is used, it is preferably treated to be radiopaque. The material used for the conduit could be bioresorbable. The conduit can be coated with an anti-coagulant, such as heparin. The conduit or an incision ID would preferably range from 1 to 10 mm.
A conduit is shown as being provided from the LAA to the main body of the left atrium, but a passage could be provided to other blood carrying parts of the body, such as a pulmonary vein. In each case, a blood flow path is created from a part of the body through the LAA separate from the path between the ostium of the LAA and the main body of the left atrium.
The conduit can be delivered through a catheter, such as a 5 F-12 F catheter (or possibly as high as 14 F), using generally known techniques; alternatively, it could be implanted surgically. An incision rather than a conduit could provide a path allowing blood to flow. Such an incision could also be made via a catheter or through surgery.
Having described certain embodiments, it should be apparent that modifications can be made without departing from the scope of the invention as defined by the appended claims. For example, filters could additionally be provided across the ostium and in the conduit.
This application claim priority from provisional application Ser. No. 60/557,485, filed Mar. 30, 2004, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5192301 | Kamiya et al. | Mar 1993 | A |
5306234 | Johnson | Apr 1994 | A |
5382261 | Palmaz | Jan 1995 | A |
5456693 | Conston et al. | Oct 1995 | A |
5823198 | Jones et al. | Oct 1998 | A |
5865791 | Whayne et al. | Feb 1999 | A |
5893869 | Barnhart et al. | Apr 1999 | A |
5984917 | Fleischman et al. | Nov 1999 | A |
6007558 | Ravenscroft et al. | Dec 1999 | A |
6096347 | Geddes et al. | Aug 2000 | A |
6152144 | Lesh et al. | Nov 2000 | A |
6231561 | Frazier et al. | May 2001 | B1 |
6290674 | Roue et al. | Sep 2001 | B1 |
6328727 | Frazier et al. | Dec 2001 | B1 |
6408981 | Smith et al. | Jun 2002 | B1 |
6419669 | Frazier et al. | Jul 2002 | B1 |
6423051 | Kaplan et al. | Jul 2002 | B1 |
6436088 | Frazier et al. | Aug 2002 | B2 |
6447539 | Nelson et al. | Sep 2002 | B1 |
6458100 | Roue et al. | Oct 2002 | B2 |
6485407 | Alferness et al. | Nov 2002 | B2 |
6488689 | Kaplan et al. | Dec 2002 | B1 |
6551303 | Van Tassel et al. | Apr 2003 | B1 |
6561969 | Frazier et al. | May 2003 | B2 |
6641557 | Frazier et al. | Nov 2003 | B1 |
6652555 | Van Tassel et al. | Nov 2003 | B1 |
6652556 | Van Tassel et al. | Nov 2003 | B1 |
6666861 | Grabek | Dec 2003 | B1 |
6689150 | Van Tassel et al. | Feb 2004 | B1 |
6712804 | Roue et al. | Mar 2004 | B2 |
6712836 | Berg et al. | Mar 2004 | B1 |
7128073 | van der Burg et al. | Oct 2006 | B1 |
7152605 | Khairkhahan et al. | Dec 2006 | B2 |
20010025132 | Alferness et al. | Sep 2001 | A1 |
20010034537 | Shaw et al. | Oct 2001 | A1 |
20010039435 | Roue et al. | Nov 2001 | A1 |
20010039436 | Frazier et al. | Nov 2001 | A1 |
20010041914 | Frazier et al. | Nov 2001 | A1 |
20010049492 | Frazier et al. | Dec 2001 | A1 |
20020016626 | DiMatteo et al. | Feb 2002 | A1 |
20020022860 | Borillo et al. | Feb 2002 | A1 |
20020035374 | Borillo et al. | Mar 2002 | A1 |
20020049457 | Kaplan et al. | Apr 2002 | A1 |
20020099390 | Kaplan et al. | Jul 2002 | A1 |
20020103492 | Kaplan et al. | Aug 2002 | A1 |
20020111637 | Kaplan et al. | Aug 2002 | A1 |
20020111647 | Khairkhahan et al. | Aug 2002 | A1 |
20020183823 | Pappu | Dec 2002 | A1 |
20030023262 | Welch | Jan 2003 | A1 |
20030023266 | Borillo et al. | Jan 2003 | A1 |
20030057156 | Peterson et al. | Mar 2003 | A1 |
20030073979 | Naimark et al. | Apr 2003 | A1 |
20030083542 | Alferness et al. | May 2003 | A1 |
20030100920 | Akin et al. | May 2003 | A1 |
20030120337 | Van Tassel et al. | Jun 2003 | A1 |
20030181942 | Sutton et al. | Sep 2003 | A1 |
20030191526 | Van Tassel et al. | Oct 2003 | A1 |
20030195555 | Khairkhahan et al. | Oct 2003 | A1 |
20030199923 | Khairkhahan et al. | Oct 2003 | A1 |
20030204203 | Khairkhahan et al. | Oct 2003 | A1 |
20030212432 | Khairkhahan et al. | Nov 2003 | A1 |
20030220667 | van der Burg et al. | Nov 2003 | A1 |
20040030335 | Zenati et al. | Feb 2004 | A1 |
20040034366 | van der Burg et al. | Feb 2004 | A1 |
20040044361 | Frazier et al. | Mar 2004 | A1 |
20040049210 | Van Tassel et al. | Mar 2004 | A1 |
20040064138 | Grabek | Apr 2004 | A1 |
20040073241 | Barry et al. | Apr 2004 | A1 |
20050043759 | Chanduszko | Feb 2005 | A1 |
20050070952 | Devellian | Mar 2005 | A1 |
20050101984 | Chanduszko et al. | May 2005 | A1 |
20050222533 | Chanduszko et al. | Oct 2005 | A1 |
20050234540 | Peavey et al. | Oct 2005 | A1 |
20050234543 | Glaser et al. | Oct 2005 | A1 |
Number | Date | Country |
---|---|---|
WO 9905977 | Feb 1999 | WO |
WO 9930640 | Jun 1999 | WO |
WO 0121247 | Mar 2001 | WO |
WO 0130266 | May 2001 | WO |
WO 0130267 | May 2001 | WO |
WO 0130268 | May 2001 | WO |
WO 0178596 | Oct 2001 | WO |
WO 0217809 | Mar 2002 | WO |
WO 03063732 | Aug 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20050222533 A1 | Oct 2005 | US |
Number | Date | Country | |
---|---|---|---|
60557485 | Mar 2004 | US |