The present invention relates generally to restraint systems, and more specifically to restraint systems configured to provide an indication of a disengaged coupling apparatus.
Conventional occupant restraint systems for occupant transportation vehicles exist in many forms. It is desirable to provide for improved occupant restraint systems.
The present invention may comprise one or more of the features recited in the attached claims, and/or one or more of the following features and combinations thereof. A restraint system for a motor vehicle may comprise a coupling member, a coupling apparatus configured to receive and engage the coupling member, at least one indicator, and an electrical circuit configured to determine whether the coupling member is engaged with the coupling apparatus and to activate the at least one indicator if the coupling apparatus is not engaged with the coupling member.
The at least one indicator may comprise any one or combination of one or more audible indicators, one or more visual indicators, one or more tactile indicators and at least one indicator external to the coupling apparatus.
The coupling member may comprise a tongue member and the coupling apparatus may comprise a buckle member. The buckle member may be mounted to an occupant seat carried by the motor vehicle.
The electrical circuit may comprise a sensor configured to produce a sensor signal corresponding to a position of the coupling member relative to the coupling apparatus, and a processor including a memory having stored therein instructions that are executable by the processor to activate the at least one indicator if the sensor signal indicates that the coupling apparatus is not engaged with the coupling member.
A latch plate may be carried by and movable relative to the coupling apparatus. The coupling member may engage the latch plate when the coupling member is received by the coupling apparatus, and the coupling member may move the latch plate to a position at which the sensor signal indicates that the coupling apparatus is engaged with the coupling member when the coupling apparatus engages the coupling member. The sensor signal may otherwise indicate that the coupling apparatus is not engaged with the coupling member. The latch plate may include a sensing structure, and the sensor signal may indicate that the coupling apparatus is engaged with the coupling member when the sensing structure is positioned within sensing distance of the sensor. The sensing structure may illustratively comprise a magnet, and the sensor may illustratively comprise a Hall effect sensor.
The instructions stored in the memory may include instructions that are executable by the processor to activate the at least one indicator according to a predetermined indication pattern. Alternatively or additionally, the instructions stored in the memory may include instructions that are executable by the processor to sequentially activate the at least one indicator according to the predetermined indication pattern. Alternatively or additionally still, the instructions stored in the memory may include instructions that are executable by the processor to sequentially activate the at least one indicator according to the predetermined indication pattern with a predetermined time delay between each activation of the at least one indicator according to the predetermined indication pattern.
In embodiments that include at least one visual indicator, the at least one visual indicator may comprise at least one light emitting diode carried by the coupling apparatus, wherein the at least one light emitting diode is visible externally to the coupling apparatus when activated.
In embodiments that include at least one audible indicator, the audible indicator is illustratively audibly perceptible external to the coupling apparatus when activated.
In embodiments which include at least one indicator external to the coupling apparatus, the electrical circuit may further comprise a switch having a voltage input configured to receive voltage from a voltage source carried by the motor vehicle, a voltage output configured to be connected to the indicator external to the coupling apparatus, and a control input electrically connected to the processor. The instructions stored in the memory may include instructions that are executable by the processor to control the switch via the control input thereof to activate the indicator external to the coupling apparatus if the sensor signal indicates that the coupling apparatus is not engaged with the coupling member.
A restraint system for a motor vehicle may comprise a coupling member,
a coupling apparatus configured to receive and engage the coupling member, at least one indicator, and an electrical circuit configured to determine whether the coupling member is engaged with the coupling apparatus and to control the at least one indicator to indicate whether the coupling apparatus is either of engaged and disengaged with the coupling member.
The electrical circuit may be configured to control the at least one indicator to indicate when the coupling apparatus is engaged with the coupling member and when the coupling apparatus is disengaged with the coupling member. The at least one indicator may be configured to provide a visual distinction between when the coupling apparatus is engaged with the coupling member and when the coupling apparatus is disengaged with the coupling member.
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to a number of illustrative embodiments shown in the attached drawings and specific language will be used to describe the same.
Referring now to
In the illustrated embodiment, the occupant seat 12 includes a seat frame 14 mounted to a seat base 16 that is mounted to a support surface, e.g., a floor, of the motor vehicle. A conventional seat bottom 18 is mounted to the seat frame 14 and/or seat base 16, and a conventional seat back 20 is mounted to the seat frame 14. The restraint system 10 includes a coupling apparatus 30 that is illustratively mounted to the seat frame 14 adjacent to one side of the occupant seat 12 as illustrated in
Referring now to
A release member 42 is carried by the housing 38, and is movable relative to the housing in a conventional manner to release the coupling member 32 from the coupling apparatus 30 when the coupling member 32 is engaged with the coupling apparatus 30. A disengagement indicator is provided in the form of two visual indicators 46A and 46B mounted within the housing 38 and visible through corresponding visual indicator ports formed into the bottom housing 44 such that they can be seen by an occupant of the occupant seat 12. Illustratively, the visual indicators 46A and 46B are provided in the form of conventional light emitting diodes (LEDs), although alternate light sources and/or other visual indicators, e.g., color coded materials, are contemplated. In alternate embodiments, the coupling apparatus 30 may include more or fewer visual indicators, and/or any such visual indicators may be located in other positions relative to the coupling apparatus 30. For example, one or more visual indicators may alternatively be mounted such that it/they is/are visible through the top housing 40, through the interface between the top and bottom housings 40, 44 and/or through the slot 33 defined by the top and bottom housings 40, 44. Alternatively still, as will be described in greater detail hereinafter with respect to
An electrical cable 48 extends from the coupling apparatus 30 and is electrically connected to a conventional electrical connector 50. The electrical cable 48 contains a number of electrical wires, at least two of which provide an operating voltage and a ground reference to electrical circuitry carried by the housing 38. In some embodiments, the electrical cable 48 may contain one or more additional electrical wires for connection to one or more external indicators as just described.
Referring now to
In the embodiment illustrated in
Referring now to
In the illustrated embodiment, the coupling member 32 includes a web coupling member 32A attached to or integral with a tongue member 32C. The web coupling member 32A illustratively defines a slot 32B through which a conventional web of a conventional restraint harness may extend. The tongue member 32C defines an opening 32D therethrough as is conventional. A latch plate 90 is carried by, and is movable relative to, the bottom housing member 44. The free end of the tongue member 32A of the coupling member 32 contacts one end of the latch plate 90 and moves the latch plate 90 to an engaged position within the bottom housing member 44 as the coupling member 32 advances into the bottom housing member 44 to the engaged or latched position. When the latch plate 90 is in the engaged position, the sensor signal produced by the sensor 64 indicates that the coupling apparatus 30 is engaged with the coupling member 32. Otherwise, the sensor signal produced by the sensor 64 indicates that the coupling apparatus 30 is not engaged with the coupling member 32. Illustratively, the latch plate 90 is biased (not shown) such that the latch plate 90 returns to an unengaged position when the coupling member 32 is disengaged or unlatched from the coupling apparatus 30 and withdrawn sufficiently from the bottom housing member 44.
Referring specifically to
Referring now to
The electrical circuit 100 further illustratively includes an audible indicator driver circuit 68 having an input electrically connected to an output of the processor 62, and an output electrically connected to the audible indicator 66. The audible indicator driver circuit 68 may be conventional, and is configured to be responsive to a control signal produced by the processor 62 to activate the audible indicator 66. In one embodiment, the audible indicator 66 is a conventional speaker and the audible indicator driver circuit 68 is a conventional tone generating circuit, although this disclosure contemplates other conventional audible driver circuits including, for example, but not limited to, musical note generating circuits, synthesized speech generating circuits, and the like, as well as other types of audible indicators including, for example, but not limited to, conventional beepers, buzzers, and the like.
The electrical circuit 100 further includes a visual indicator driver circuit 70 having at least one input electrically connected to an output of the processor 62, and outputs electrically connected to each of the visual indicators 46A and 46B. In embodiments in which the visual indicators are implemented in the form of LEDs, the visual indicator driver circuit 70 may be a conventional LED driver circuit. This disclosure contemplates other embodiments which include more or fewer visual indicators, and/or in which one or more visual indicators are or include one or more other conventional visual indicators including, for example, but not limited to, one or more conventional lamps, one or more color coded indicators, one or more conventional liquid crystal display devices, one or more conventional vacuum fluorescent display devices, one or more conventional analog display devices, and the like.
In some embodiments, the electrical circuit 100 may further include a tactile indicator driver circuit 72 having an input electrically connected to an output of the processor 62, and an output electrically connected to a tactile indicator 74 as shown by dashed-line representation in
In one illustrative embodiment, the memory 65 includes instructions that are executable by the processor 62 to simultaneously activate the audible indicator 66 and the visual indicators 46A, 46B a number of times, e.g., 5, at predefined intervals, e.g., 1 second, followed by a predetermined time delay, e.g., 2 minutes, and to repeat this sequence some number of times, e.g., 5 times, upon detection by the sensor 64 of an disengaged or unlatched coupling member 32 condition. It will be understood, however, that this represents only one example embodiment, and that the memory is generally programmable to provide for any desired pattern or sequence of any one or combination of the various indicator devices. For example, the instructions stored in the memory may be programmed such that the processor activates at least one of the indicators according to a predetermined indication pattern, to sequentially activate at least one of the indicators according to a predetermined indication pattern, and/or to sequentially activate at least one indicator according to a predetermined indication pattern with a predetermined time delay between each activation and/or sequence of activations. Those skilled in the art will recognize other indicator activation patterns and/or sequences, and any such other indicator activation patterns and/or sequences are contemplated by this disclosure.
It will be understood that while the embodiment of the electrical circuit 100 illustrated in the attached figures include one audible indicator 66 and two visual indicators 46A and 46B, the electrical circuit 100 is not limited to this configuration. Rather, the electrical circuit may alternatively include only a single type of one or more of the illustrated indicators, e.g., one or more audible indicators, one or more visual indicators or one or more tactile indicators, or alternatively still may include any combination of one or more of these indicator types. The instructions stored in the memory 65 may accordingly program the processor 62 to activate any one or combination of one or more of such indicator types according to any one or more indications, indication patterns and/or indication sequences.
In the illustrated embodiment, the electrical circuit 100 further includes a voltage regulator circuit 102 having inputs electrically connected to two electrical wires within the electrical cable 48 that is electrically connected to the electrical connector 50. The two electrical wires connect to positive voltage and ground inputs of the voltage regulator circuit 102, and also to two corresponding positive voltage and ground outputs of an external voltage source 106 via another electrical connector 104 that is configured to electrically connect to the electrical connector 50. The voltage source 106 may be, for example, but should not be limited to, the battery of the motor vehicle carrying the coupling apparatus 30, the ignition line, e.g., switched battery, of the motor vehicle, or the like. In any case, the voltage regulator has positive voltage and ground reference outputs that are electrically connected to the processor 62, the sensor 64, the audible indicator driver circuit 68 in embodiments that include the audible indicator driver circuit 68, the visual indicator driver circuit 70 in embodiments that include the visual indicator driver circuit 70, and the tactile indicator driver circuit 72 in embodiments that include the tactile indicator driver circuit 72. The voltage regulator circuit 102 is conventional, and is configured to covert the voltage produced by the voltage source 106, e.g., 12 or 24 volts, to a constant reduced voltage, e.g., 5 volts, suitable for operation of the remaining circuitry in the electrical circuit 100. Alternatively, the reduced voltage may be applied only to a subset of the electrical circuits, e.g., to the processor 62 and the sensor 64, and the voltage supplied by the voltage source 106 may be applied directly to one or more of the remaining electrical circuits, e.g., the audible indicator driver circuit 68, the visual indicator driver circuit 70 and/or the tactile indicator driver circuit 72. Alternatively still, the voltage regulator 102 may be omitted, and the voltage supplied by the voltage source 106 may be supplied to all circuitry in the electrical circuit 100 that requires a voltage supply.
In some embodiments, as illustrate by dashed-line representation in
While the invention has been illustrated and described in detail in the foregoing drawings and description, the same is to be considered as illustrative and not restrictive in character, it being understood that only illustrative embodiments thereof have been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected. For example, while the instructions stored in the memory 65 of the processor 62 of the coupling apparatus 30 have been described herein being executable by the processor 62 to control one or more indicators, based on the signal produced by the sensor 64, to indicate when the coupling apparatus 30 is not engaged with the coupling member 32, the instructions stored in the memory 65 may alternatively or additionally include instructions that are executable by the processor 62 to control one or more internal or external indicators, based on the signal produced by the sensor 64, to indicate when the coupling apparatus 30 is engaged with the coupling member 32. In some such embodiments, for example, one of the visual indicators 46A, 46B may be used to indicate the engaged condition and the other may be used to indicate the disengaged condition. The two visual indicators 46A, 46B in this embodiment may, for example, be different color indicators, or may be the identically colored lamps or LEDs but operated at different activation frequencies. In other example embodiments, more or fewer visual indicators may be provided and activated in a manner that provide for a visual distinction between the engaged and disengaged conditions. In these or other embodiments, the audible and/or tactile indicators 66, 74, if included, may be operated differently, e.g., at different operating frequencies, to provide for corresponding audible and/or tactile distinction between the engaged and disengaged conditions.
The application claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/166,138 filed Apr. 2, 2009, the disclosure of which is hereby incorporated by reference herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US10/29132 | 3/30/2010 | WO | 00 | 11/17/2011 |
Number | Date | Country | |
---|---|---|---|
61166138 | Apr 2009 | US |