Motor vehicles, such as automobiles, may include airbags designed to be inflated and to be impacted by occupants during a side or frontal oblique impact of the vehicle. For example, a side air curtain may deploy downwardly from a roof rail alongside windows during a side collision, and the side air curtain may be impacted by an occupant adjacent to the side air curtain.
Vehicles may be subject to impact testing standards for the curtain airbags. As one example, the National Highway Traffic Safety Administration (NHTSA) provides a test procedure designed to simulate a vehicle experiencing a side collision with a pole. The NHTSA procedure provides that a test vehicle holding a test dummy as an occupant collides sideways at 20 miles per hour into a rigid vertical pole 10 inches in diameter. As another example, NHTSA provides a test procedure to measure “ejection,” that is, an occupant intruding through a window opening. The NHTSA procedure provides measuring head excursion at four locations after side impacts of the vehicle at 9.9 and 12.4 kilometers per hour.
With reference to the Figures, wherein like numerals indicate like parts throughout the several views, a vehicle 30 has a restraint system 32 that includes a side air curtain 34, a sail panel 36, and a secondary cushion 38. The side air curtain 34 is inflatable to an inflated position and has a top edge 40, a bottom edge 42, and a forward edge 44 extending from the top edge 40 to the bottom edge 42. The sail panel 36 extends from the forward edge 44. The secondary cushion 38 is inflatable to an inflated position and is elongated in a direction D away from the bottom edge 42 and the forward edge 44 toward the top edge 40.
The secondary cushion 38 may provide additional cushioning, reducing a likelihood of injury to an occupant. The secondary cushion 38 may space the side air curtain 34 farther from a window opening 60 and may reinforce the side air curtain 34 at edges of the window opening 60. The spacing and reinforcement of the side air curtain 34 may reduce a likelihood that a head of the occupant intrudes through the window opening 60. Further, in the event that the head of the occupant first makes contact with a front airbag (not shown), the spacing and reinforcement of the side air curtain 34 may prevent the head from sliding off the front airbag.
With reference to
With reference to
The side air curtain 34 has the top edge 40, the bottom edge 42, the forward edge 44, and a rear edge 46. The forward edge 44 and the rear edge 46 may extend from the top edge 40 to the bottom edge 42. The forward edge 44 and the bottom edge 42 may meet at a corner 68. The side air curtain 34 may have an outboard side 70 and an inboard side 72 extending from the top edge 40 to the bottom edge 42 and from the forward edge 44 to the rear edge 46. The outboard side 70 is nearer the nearest window opening 60 than the inboard side 72. The outboard side 70 faces the window opening 60, and the inboard side 72 faces an occupant. The side air curtain 34 in the inflated position may be shaped to cover the vehicle window opening 60. The side air curtain 34 may further be shaped to cover two window openings 60.
The side air curtain 34 is supported by the upper rail 56. Specifically, the top edge 40 of the side air curtain 34 in the inflated position is adjacent the upper rail 56, that is, nothing is between the top edge 40 of the side air curtain 34 and the upper rail 56. The side air curtain 34 in the inflated position extends along the window openings 60. The side air curtain 34 in the inflated position extends between the window openings 60 and an occupant of respective seats (not shown) nearest the respective window openings 60.
The side air curtain 34 may be formed of any suitable airbag material, for example, a woven polymer. For example, the side air curtain 34 may be formed of woven nylon yarn, for example, nylon 6-6. Other suitable examples include polyether ether ketone (PEEK), polyetherketoneketone (PEKK), polyester, or any other suitable polymer. The woven polymer may include a coating, such as silicone, neoprene, urethane, and so on. For example, the coating may be polyorgano siloxane.
With continued reference to
The secondary cushion 38 is inflatable from an uninflated position to an inflated position. The secondary cushion 38 has an inflation chamber 74 for receiving inflation medium. The inflation chamber 74 is defined by panels.
The secondary cushion 38 is connected to and elongated along the side air curtain 34. Specifically, the secondary cushion 38 is elongated in a direction D away from the bottom edge 42 and the forward edge 44 toward the top edge 40 of the side air curtain 34. The secondary cushion 38 may extend from the corner 68 to the top edge 40 of the side air curtain 34. The secondary cushion 38 may extend along the outboard side 70 of the side air curtain 34.
With reference to
Alternatively, with reference to
Further alternatively, with reference to
With reference to
The impact sensor 78 may be in communication with the control module 80. The impact sensor 78 is adapted to detect an impact to the vehicle 30. The impact sensor 78 may be of any suitable type, for example, post-contact sensors such as linear or angular accelerometers, gyroscopes, pressure sensors, and contact switches; and pre-impact sensors such as radar, lidar, and vision-sensing systems. The vision systems may include one or more cameras, CCD image sensors, CMOS image sensors, etc. The impact sensor 78 may be located at numerous points in or on the vehicle 30.
The control module 80 is a microprocessor-based controller. The control module 80 may include a processor, memory, etc. The memory of the control module 80 may include memory for storing instructions executable by the processor as well as for electronically storing data and/or databases. The control module 80 may be a restraint control module. The control module 80 may be physically separate from other computing systems in the vehicle 30. The control module 80 may be in communication with and may control the inflator 82 and/or the vent 76, among other functions.
At least one inflator 82 may be in fluid communication with the side air curtain 34 and/or the secondary cushion 38. Specifically, the inflator 82 may be in fluid communication with both the side air curtain 34 and the secondary cushion 38, as shown in
With reference to
Alternatively, with reference to
With reference to
The control module 80 may be programmed to instruct the inflator 82 to initiate inflation of the side air curtain 34 and to initiate inflation of the secondary air cushion only after initiating inflation of the side air curtain 34. For example, in the configuration of
In the event of an impact, the impact sensor 78 may detect the impact and transmit a signal through the communications network 84 to the control module 80. The control module 80 may send an inflation signal through the communications network 84 according to the programming of the control module 80 described above. The side air curtain 34 inflates from the uninflated position to the inflated position extending along the window opening 60. For the embodiments of
The disclosure has been described in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. Many modifications and variations of the present disclosure are possible in light of the above teachings, and the disclosure may be practiced otherwise than as specifically described.
Number | Name | Date | Kind |
---|---|---|---|
6612611 | Swann | Sep 2003 | B1 |
6820898 | Dinsdale | Nov 2004 | B2 |
6851706 | Roberts et al. | Feb 2005 | B2 |
7048301 | Walsh | May 2006 | B2 |
8020888 | Cheal | Sep 2011 | B2 |
8408591 | Walston | Apr 2013 | B2 |
8414021 | Tanaka et al. | Apr 2013 | B2 |
8573639 | Markusic et al. | Nov 2013 | B1 |
8720941 | Svensson | May 2014 | B1 |
8807595 | Nakamura et al. | Aug 2014 | B2 |
8851510 | Dinsdale | Oct 2014 | B1 |
8882139 | Kawamura | Nov 2014 | B2 |
8967660 | Taguchi | Mar 2015 | B2 |
9022420 | Arellano | May 2015 | B1 |
9108588 | Fukawatase | Aug 2015 | B2 |
9126558 | Kawamura | Sep 2015 | B2 |
9139154 | Abramoski | Sep 2015 | B2 |
9440610 | Lee | Sep 2016 | B2 |
9469269 | Hiruta | Oct 2016 | B2 |
20070052212 | Powals | Mar 2007 | A1 |
20140203541 | Wei et al. | Jul 2014 | A1 |
20140217709 | Fukawatase | Aug 2014 | A1 |
20140217710 | Fukawatase | Aug 2014 | A1 |
20140239620 | Kawamura | Aug 2014 | A1 |
20150115581 | Mazanek | Apr 2015 | A1 |
20160023626 | Hiruta et al. | Jan 2016 | A1 |
20160107600 | Lee | Apr 2016 | A1 |
20170182967 | Suzuki | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
102006047104 | Apr 2008 | DE |
5983574 | Aug 2016 | JP |
WO 2016010233 | Jan 2016 | WO |
Entry |
---|
UK Search Report dated Jun. 14, 2018 re Application No. GB1721200.2. |
Number | Date | Country | |
---|---|---|---|
20180170300 A1 | Jun 2018 | US |