Resuscitation devices are utilized to facilitate in resuscitating a patient.
The drawings referred to in this description should be understood as not being drawn to scale except if specifically noted.
Reference will now be made in detail to embodiments of the present technology, examples of which are illustrated in the accompanying drawings. While the technology will be described in conjunction with various embodiment(s), it will be understood that they are not intended to limit the present technology to these embodiments. On the contrary, the present technology is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the various embodiments as defined by the appended claims.
Furthermore, in the following description of embodiments, numerous specific details are set forth in order to provide a thorough understanding of the present technology. However, the present technology may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the present embodiments.
Resuscitation device 100 includes, among other things, bulb 110, pop-off valve 124, cap 132, main housing 120 and exhalation filter 160.
It is noted that exhalation pathway 152 is a portion of housing 120 that allows for the passage of exhalation airflow and includes at least the area located above diaphragm 170 and below sealing ring 172.
It is often desirable to filter the expiratory gasses from a patient. For example, it is desirable to filter expiratory gasses when the patient is known to have an illness that is easily transmitted. Placing a filter on a resuscitation bag is not common in conventional resuscitation bags because the resuscitation bag will become inoperable if the filter is clogged.
As described above, during exhalation, the exhalation gasses are directed along exhalation airflow path 150 through exhalation port 154 and exhalation filter 160. Exhalation filter 160 is utilized to filter the exhalation gasses prior to the exhalation airflow exiting into ambient air. Exhalation filter 160 can be integral or removable with resuscitation device 100.
It is desirable to determine if there is carbon dioxide in the exhaled gasses. This provides a level of confidence to the caregiver that the patient is being properly ventilated.
Referring to
Exhalation relief valve 180 and cap 132 are transparent enabling the colorimetric indicator 184 to be visible to the caregiver. Expiratory gasses within exhalation pathway 152 are compelled towards the colorimetric indicator 184 by the design of the flow path. In one embodiment, colorimetric indicator 184 is placed closer towards the center of exhalation pathway 152.
Referring to
The manometer allows for airway gas pressures (exhalation and inhalation gas pressures) to be measured. The manometer may be integrated with resuscitation bag housing or may be a removable sub-assembly.
Referring to
The movement of diaphragm 170 upwards also moves bearing 190 up along shaft 192. A groove in bearing 190 interacts with protrusion 194 which spirally wraps around shaft 192, thereby rotating shaft 192. Thus, pointer 196, which is attached to shaft 192, is rotated to point to the associated pressure indication. Once the inhalation/exhalation pressure is dissipated, compression spring 198 urges diaphragm 170 back to its relaxed state.
Lower chamber orifice 164 is sized such that rapid changes in pressure are muted in lower chamber 162. This prevents excessive acceleration of diaphragm 170. Any volume of gas in lower chamber 162 must also exit through lower chamber orifice 164. Therefore, lower chamber 162 regulates movement of diaphragm 170 for both inhalation and exhalation.
In one embodiment, for example, an embodiment including lower chamber 162, diaphragm 170 is directly exposed to the exhalation airflow along exhalation airflow path 150.
In various embodiments of manometer sub-assembly 600, the area below diaphragm 170 is completely open (e.g., does not include lower chamber 162) and the bottom portion of diaphragm 170 is directly exposed to both inhalation/exhalation gasses.
Also, the area above diaphragm 170 is substantially open. For example, upper housing 620, of manometer sub-assembly 600, includes opening 622. Opening 622 allows for exhalation airflow path 150 (as described with respect to at least
During the inhalation period, inhalation airflow path 140 is the same path as described with respect to
Manometer sub-assembly 700 does not include a chamber (e.g., lower chamber 162) below diaphragm 170. For example, the area below diaphragm 170 is completely open. In particular, bottom portion of diaphragm 170 is directly exposed to the exhalation/inhalation gasses.
Manometer sub-assembly 700 does include upper chamber 710 located directly above diaphragm 170. Upper chamber 710 has a lower boundary of diaphragm 170, an upper boundary of plate 712 and a side boundary of upper housing 620.
The pressure of the exhalation gasses travelling through exhalation pathway 152 (along exhalation airflow path 150) is communicated through opening 714 to the upper portion of diaphragm 170. As such, the differential pressure between the upper and lower portion of diaphragm 170 compels its movement, as described above.
Referring now to at least
Bearing 820 and bearing 822 index on geometry interior to helical shaft 192. For instance, bearing 822 seats in cavity 823 and bearing 820 seats in cavity 821. It is noted that shaft 192 rotates when protrusion 194 physically interacts with and translates through groove 812.
Bearing 822 provides adequate support such that helical shaft 192 does not contact groove cap 810 at any location resulting in a gap 830 between helical shaft 192 and groove cap 810.
Also, helical shaft 192 does not make contact with any other geometry other than the pivot or bearing 820 and bearing 822. For example, helical shaft 192 does not contact the exhalation relief valve 180. It is noted that various embodiments of resuscitation devices or manometer sub-assemblies, as described herein, can include the bearing configuration of bearing 820 and bearing 822.
In various embodiments, helical shaft 192 can be fabricated to have a larger diameter and a pointer is not provided (e.g., pointer 196). The media marked with indications 840 can be affixed to the larger diameter helical shaft 192 such that the indications (attached to helical shaft 192) rotate with varying pressure. Moreover, a reference point can be located on the device, such as on the exhalation relief valve 180, to provide a point to read/view the pressure values.
Various embodiments of the present invention are thus described. While the present invention has been described in particular embodiments, it should be appreciated that the present invention should not be construed as limited by such embodiments, but rather construed according to the following claims. Moreover, various embodiments described herein may be utilized alone or in combination with one another.