This invention generally relates to retail merchandise displays, and more particularly to retail merchandise trays used to face linear rows of merchandise.
Retail merchandise trays are typically used to contain retail merchandise in neat organized linear rows. Such trays may employ spring biased pushers to front face the merchandise, i.e. move the merchandise forward to a front of the tray, by applying a force to the back end of each row of merchandise. Other trays may forego the use of a pusher entirely, and rely on gravity for front facing. The latter style of tray is commonly referred to in the industry as a tray.
While such trays are advantageous, they are not without their drawbacks. First, such trays are typically designed as a stand-alone shelf. In other words, they are not designed to mate with an existing retail shelf. Instead, they require their own custom vertical mounting rack, with each tray mounted directly to the vertical mounting rack. A contemporary example of such a system may be readily seen at U.S. Pat. No. 8,490,800 to Noble Colin titled “Gravity Feed Display Rack,” the teachings and disclosure of which are incorporated in their entirety by reference herein. As such, one drawback is that such gravity feed systems are difficult to integrate with existing retail shelving.
Second, even where such trays are designed to operate with an existing retail shelf, they are relatively complex in their construction and typically require hand tools and the like in their assembly. An example of such a relatively complex system may be seen at U.S. Patent Application Publication No. 2004/0178156 to Knorring, J R. et al. titled “Method and Apparatus For Converting Gondola Shelf to Gravity Feed Shelf,” the teachings and disclosure of which are incorporated in their entirety by reference herein. Such systems often entail a high part count to effectuate installation to a shelf, as well as the use of relatively complex componentry such as rollers and the like. Further such systems often require the use of fasteners in their assembly which requires the use of additional tools and labor.
Accordingly, there is a need in the art for a retail merchandise tray and display incorporating the same which alleviates or eliminates the above drawbacks. The invention provides such a tray and display incorporating the same. These and other advantages of the invention, as well as additional inventive features, will be apparent from the description of the invention provided herein.
In one aspect, the invention provides a retail merchandise display which may be fully integrated with an existing retail display system, e.g. a shelving unit. An embodiment of such a retail merchandise display includes a retail shelf. The display also includes a tray mounted to the retail shelf. The tray includes a linear row of mounting slots extending generally perpendicular to a feed direction of the tray. The display also includes a plurality of mounting plates interposed between the tray and the retail shelf. Each of the plurality of mounting plates includes at least one projection projecting upwardly from a base portion. The at least one projection is slidably received in one of the mounting slots of the tray.
In an embodiment according to this aspect, the retail shelf includes an array of apertures therein. Each one of the plurality of mounting plates includes a pair of bent portions which are received in adjacent ones of the array of apertures to anchor each one of the mounting plates to the shelf. The bent portions extend away from the base portion. The bent portions are coplanar with one another and not coplanar with the base portion.
In an embodiment according to this aspect, the tray includes a first and a second mounting rail. The first mounting rail is situated at a rear of the tray. The second mounting rail is situated at a front of the tray. The tray includes at least one tray section interposed between and mounted to the first and second mounting rails. The at least one tray section mounts to the first and second mounting rails by a resilient snap-fit connection.
In an embodiment according to this aspect, one of the plurality of mounting plates is used per one of the at least tray sections to mount the tray to the retail shelf.
In another aspect, a retail merchandise tray is provided which advantageously has a reduced part count compared to existing tray systems. An embodiment of such a retail merchandise tray includes a first and a second mounting rail arranged in an opposed spaced relationship such that the first mounting rail is situated at a back end of the retail merchandise tray and the second mounting rail is situated at a front of the retail merchandise tray. The retail merchandise tray also includes at least one tray section mounted to and interposed between the first and second mounting rails. The at least one tray section provides a continuous retail merchandise support surface extending between the front and the back end.
In an embodiment according to this aspect, the first and second mounting rails are identical. The first and second mounting rails each include a mounting channel, an upper channel, and a lower channel. The mounting channel is configured to receive at least one tray section such that the at least one tray section mounts within the mounting channel using a resilient snap-fit connection. The retail merchandise tray also includes a support leg mounted to the first mounting rail. The support leg elevates the back end relative to the front end such that the back end is elevated above the front end. The support leg mounts to the lower channel of the first mounting rail via a resilient snap-fit connection. The support leg includes a leg portion and a foot portion extending perpendicular to the leg portion. The support leg includes a projection projecting from an end of the leg portion. The projection is received within the lower channel of the first mounting rail.
In an embodiment according to this aspect, the retail merchandise tray can also include a front stop. The front stop is received within the upper channel of the second mounting rail.
In an embodiment according to this aspect, the retail merchandise tray also includes a plurality of wire supports received in channels formed in a base member of the at least one tray section. The plurality of wire supports are contained within the channels by a pair of cap members mounted to the base member such that the base member is interposed between the pair of cap members.
In yet another aspect, the invention provides a retail merchandise tray which advantageously does not require any mounting hardware in its assembly. An embodiment of such a retail merchandise tray includes a first and a second mounting rail arranged in an opposed spaced relationship such that the first mounting rail is situated at a back end of the retail merchandise tray and the second mounting rail is situated at a front end of the retail merchandise tray. At least one tray section is mounted to and interposed between the first and second mounting rails. The at least one tray section includes a base member having a plurality of hollow channels and defining a continuous retail merchandise support surface. The at least one tray section also includes a pair of cap members. The pair of cap members are mounted to the base member such that the base member is interposed between the pair of cap members. The at least one tray section also includes at least one divider extending over the retail merchandise support surface and mounted to each of the pair of cap members. Each of the pair of cap members mounts to the base member using a resilient snap-fit connection. The at least one tray section mounts to the first and second mounting rails using a resilient snap-fit connection.
The resilient snap-fit connection between the base member and each of the pair of cap members is formed by a tab formed on each of the pair of cap members and corresponding apertures formed in the base member. The tab and aperture are configured such that the tab resiliently snaps into the aperture. The tab of each cap member is formed on a projection of each cap member. The projection is received within an elongated channel of the base member.
In an embodiment according to this aspect, the resilient snap-fit connection between the at least one tray section and the first and second mounting rails is formed by a tab formed on each of the pair of cap members on a projection portion thereof and an aperture formed within a mounting channel of each of the first and second mounting rails. The projection portion is insertable into the mounting channel such that the tab resiliently snaps into the aperture.
In an embodiment according to this aspect, the first and second mounting rails are identical. Also in an embodiment according to this aspect, the at least one divider may include an integrated pusher assembly. The integrated pusher assembly includes a pusher paddle slidably received within a slot of a divider wall of the at least one divider. The pusher assembly also includes a coil spring operably coupled between the pusher paddle and the divider wall.
Other aspects, objectives and advantages of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention and, together with the description, serve to explain the principles of the invention. In the drawings:
While the invention will be described in connection with certain preferred embodiments, there is no intent to limit it to those embodiments. On the contrary, the intent is to cover all alternatives, modifications and equivalents as included within the spirit and scope of the invention as defined by the appended claims.
Turning now to the drawings, an embodiment of a retail merchandise display 20 is illustrated which includes a retail merchandise tray 22 (hereinafter referred to as a “tray”) mounted on a retail merchandise shelf 24. Advantageously, tray 22 does not require any mounting hardware in its assembly. By “mounting hardware” it is meant screws, bolts, rivets, or any other component which a tool is typically required to install. Instead, tray 22 employs resilient snap-fit connections to connect its various components. As a result, no hand tools are required in the assembly and installation of tray 22. Put differently, retail merchandise display 20 advantageously presents a 100% tool-free design. As used herein, “snap-fit” connections means resilient connections in which male feature such as a tab, detent, projection, etc. is biased into a mating female feature such as a hole or slot requiring one or both of the male and female features to resiliently and elastically deform to accommodate such a connection.
As another advantage, tray 22 may be readily incorporated into an existing retail shelf 24. Put differently, and unlike prior designs, tray 22 does not require a custom made shelf or custom made vertical display to mount tray 22 to. Instead, a plurality of mounting plates are provided which mate with conventional features on shelf 22 and with tray 22 to hold the same in place on shelf 24. These and other advantages will be readily understood from the following.
With particular reference to
Turning now to
Display 20 also includes a plurality of mounting plates 56 which are interposed between shelf 24 and tray 22. Mounting plates 56 include bent portions which are received in apertures 106 formed in shelf 24. As will be discussed in greater detail below, mounting plates 56 also include projection 108 which are received in slots 70 of tray 22 (See
It will be recognized by those of skill in the art that shelf 24 may take on any conventional retail shelf form which includes a plurality of apertures formed therein for receipt of bent portions of mounting plates 56. Accordingly, tray 22 is not limited to any particular style of shelf 24 and may be readily retrofit into a variety of existing shelves. Although not shown in
Turning now to
Base member 62 is an extruded component which defines a top retail merchandise support surface which is continuous and extends between back end 50 and front end 54 of tray 20. Base member 62 may be any length given the use of the extrusion process in its manufacture. Base member 62 also includes a plurality of channels formed therein as described below. In the illustrated embodiment, base member 62 is formed by two interlocking subsections 64a, 64b. However, a single base section 62 may be used. In the case of multiple based subsections 64a, 64b, the same interlock with one another to present a continuous retail merchandise support surface as introduced above. Further, base member 62 may be extruded at a given width, and then subsequently rip cut to its desired width. Base member 62 may be formed of high density polyethylene as one example. In view of the foregoing, it will also be recognized that the width of cap members 58, 60 may also vary depending on the width of base member 62.
A plurality of dividers 66 extend over the retail merchandise support surface defined by base member 62 and include downwardly extending proj ections 68 which are received in select ones of the aforementioned linear row of slots 70. The close spacing of the slots allows for a high degree of variability of the width of any given channel 26 by spacing dividers 66 closer or farther away from one another. These dividers 66 may be embodied as shown as generally flat walls, or alternatively, my incorporate a pusher assembly as described below relative to
As can be seen in
Turning now to
Turning now to
Second mounting rail 44 includes a horizontally extending mounting channel 86. Second mounting rail 44 also includes an upper channel 100 and a lower channel 102 which extend generally perpendicular to mounting channel 86. Mounting channel 86 includes a plurality of apertures 88 formed therein. Apertures 88 are arranged to receive tabs 90 formed in a projection portion 48 of cap member 60. Tabs 90 are received within apertures 88 via a resilient snap-fit connection in that one or both of tabs 90 or the wall defining channel 86 including apertures 88 elastically deforms as projection portion 48 is biased into mounting channel 88. This continues until tabs 90 are fully seated within apertures 88 and cap member 60 is thus locked to mounting rail 44.
A similar snap-fit connection takes place between cap member 60 and base member 62. Indeed, base member 62 includes an aperture 96 into which a projection 94 formed on one of the projections 72 of cap member 60 seats into. As was the case with second mounting rail 44 and tabs 90, one or both of tab 94 and base member 62 in the region of aperture 96 elastically deforms until tab 94 is fully seated within aperture 96.
Turning now to
Turning now to
Turning now to
With reference to
All references, including publications, patent applications, and patents cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) is to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
This patent application claims the benefit of U.S. Provisional Patent Application No. 62/442,741, filed Jan. 5, 2017, the entire teachings and disclosure of which are incorporated herein by reference thereto.
Number | Date | Country | |
---|---|---|---|
62442741 | Jan 2017 | US |