The present invention pertains to the field of racecar accessories. More particularly, the present invention pertains to parachutes for racecars, specifically to apparatuses for and methods of packing parachutes for use in racecars.
Drag racing is a popular sport involving the operation of motorized vehicles, typically motorcycles and racecars, at very high speeds over a relatively short straight distance. One type of drag racing car is known as a funny car, and this type of car easily exceeds 300 mph over a quarter mile track. Given the great speeds of these racecars over a relatively short distance, parachutes are used to help slow the cars down safely. After the race is over, the parachute must be collected and repacked for the next race.
Packing a drag racing parachute is a tedious chore. The parachute is folded then stowed into a parachute bag that has been premounted on the racecar, with the opening of the bag generally facing sideways or horizontally. The parachute bag is a large sack with a bottom plate, and four generally triangular flaps on top that when folded so as to cover the top of the bag opening, a vertice from each flap crosses over the center of the bag opening. In turn, each of these vertices is formed with a grommet, and all four grommets align when the flaps are folded over the top of the bag. The top flap features a permanently attached loop of cord. After the folded parachute is inserted into the parachute bag, this top flap is first folded over the open top of the parachute bag, followed by the other three flaps. The loop is pulled through all the grommets, and a retractable end of a release cable is inserted into the loop. Either before or after packing the parachute into the parachute bag, a parachute launcher is also packed inside the bag prior to closing the flaps and securing with the release cable. After the parachute and parachute launcher are packed, the flaps of the bag secured, and the retractable end of the release cable inserted into the loop, the parachute is ready for use.
There are currently three common types of parachute launchers used: spring launchers, air launchers, and pilot chute launchers. All three launchers work in a similar fashion: the driver engages a parachute release cable, which releases the packed parachute from its parachute bag. Spring and air launchers both push the parachute out of the parachute bag and away from the vehicle, and are more convenient for one-person use but they have two serious drawbacks: (1) they are much more expensive compared to the popular pilot chute launcher without significant functional improvement; and (2) they are bulky when mounted. The pilot chute launcher works differently: the pilot chute launcher is permanently tethered to the parachute and is packed last into the parachute bag, and when the release cable is pulled by the racecar driver, the pilot chute launcher springs out of the bag first, pulling the tethered parachute with it. The pilot chute launcher is more economical than the spring and air launchers, but has one main drawback: it is awkward to pack as the pilot chute launcher is essentially a large, funnel-shaped spring attached to and placed over a parachute packed into a parachute bag, especially when the parachute bag is mounted to the racecar as the bag opening generally faces sideways or horizontally away from the racecar. The bulky spring design thus requires two people to pack the parachute bag: one person manually compresses the spring evenly against the packed parachute, while the other person secures the parachute bag flaps.
What is needed is an apparatus that evenly compresses the pilot chute launcher while packing a parachute, and a method of packing a parachute that allows a single person to quickly and easily pack the parachute along with the pilot chute launcher into a parachute bag.
Accordingly, in a first aspect of the invention, an apparatus for packing a parachute and a pilot chute launcher into a parachute bag comprises a plate with an array of slots formed in parallel on opposing sides of the plate. A pair of extensions, each extension having a head at one end, an opposed wing at another end and a body between the head and the wing, is inserted into opposed slots, the slots sized and shaped to receive the wing and the body to insert into the slot but not the head. The invention further provides for a pair of tabs, each tab having a receiving notch formed into the tab, each tab pre-installed onto a bottom plate of the parachute bag and on opposing sides of the bag. The notches are sized and shaped to accommodate a portion of the body immediately above the wing.
Still in accord with the first aspect of the invention, the extension is further comprised of at least two wings held in spaced apart relationship by a recess, the recess sized and shaped to receive the notch.
Still in accord with the first aspect of the invention, the plate is formed with three pairs of slots centered on either side of the plate, the spacing of each pair of slots corresponding with a parachute bag width when fitted with a parachute.
Further still in accord with the first aspect of the invention, the apparatus is made of 6016 T6 aluminum.
Even further still also in accord with the first aspect of the invention, the plate is comprised of a first dimension measuring at least four inches, a second dimension measuring at least twelve inches, and a thickness of less than one inch, and the extension is at least eight inches long.
In a second aspect of the invention, a method for packing a racecar parachute using a pilot chute launcher and a retainer apparatus comprising a plate, a pair of tabs, and a pair of extensions, is comprised of the steps of affixing the tabs to opposed sides of the parachute bag bottom plate, inserting the extension into opposing slots, inserting the parachute into the parachute bag, positioning the pilot chute launcher on top of the parachute, placing the retainer apparatus on top of the pilot chute launcher, and coupling the extension recesses into the corresponding tab notches, securing a top flap and bottom flap of the parachute bag by pulling a closing loop through a grommet formed in each flap, uncoupling the extensions from the tabs and removing the extensions from the slots, removing the plate, securing opposed side flaps of the parachute bag over the top flap and bottom flap by pulling the closing loop through grommets in each side flap, and securing a retractable end of a release cable into the closing loop.
The features and advantages of the invention will become apparent from a consideration of the subsequent detailed description presented in connection with accompanying drawings, in which:
The following is a list of reference labels used in the drawings to label components of different embodiments of the invention, and the names of the indicated components.
A retainer apparatus according to the invention is shown in
Looking now at
Each extension 2020′ is comprised of a head 22 at one end of the extension 2020′, a series of wings 24 alternating with recesses 26 at an opposed end of the extension, and a body 28 joining the head with the wings and recesses. In the Figures, four wings and three recesses are shown. The body 28 is shown as generally tapering from the head 22 to the first wing 24. The head 22 measures approximately two inches wide, and one inch tall, and the 24 are smaller, with a height of about 0.44 inches, and a width less than that of the head. Each recess is about 0.44 inches tall and about 0.5 inches deep. The extension 2020′ measures about 11.25 inches long. These dimensions are for a typical embodiment of the retainer apparatus for use with a standard-sized parachute bag, parachute, and pilot chute launcher for a racecar, however the inventor notes that as these dimensions correspond to commonly used parachute and parachute bag sizes, larger or smaller parachute bags would require a proportionally larger or smaller retainer apparatuses, and thus the given dimensions are suggestive only of typical proportions and not meant to limit the retainer apparatus to just the dimensions listed here.
Looking now at
Turning now to
The retainer apparatus 100 is typically made of metal, preferably 6016 T6 aluminum for strength and durability, however other rigid, strong materials such as structural plastic with optional ribs may also be used. The inventor uses 0.090 inch thick 6016 T6 aluminum, and notes that the plate 10 is ideally less than one inch thick because a larger thickness will interfere with the ability to secure the parachute bag flaps when fully packed. Metal is an ideal material combining strength with thinness, and the inventor notes that while plastics may be used, a plastic plate thin enough to use may not be durable over the long term. It is also possible to create a smaller, more portable retainer apparatus by hinging the plate 10 and then sliding small latches over the hinged area to prevent the plate from bending along the hinge.
It is to be understood that the above-described arrangements are only illustrative of the application of the principles of the present invention. Numerous modifications and alternative arrangements may be devised by those skilled in the art without departing from the scope of the present invention. For instance, the plate 10 is elongated so that the user can grasp opposing sides 10b as handles, and in some embodiments, actual handles or cut outs could also be formed and not alter the functionality of the invention. The inventor also notes that the number of wings 24 and recesses 26 shown on the extensions are one embodiment, and a single wing at a terminal end of each extension is also possible. Multiple wings and recesses however allow for adjustments in packing and allows the user to gradually adjust the compression of the pilot chute launcher, as needed, so as to obtain a tighter, more compact parachute package.
Number | Name | Date | Kind |
---|---|---|---|
504307 | Roberts | Aug 1893 | A |
1829613 | Sato | Oct 1931 | A |
2316895 | Smith | Apr 1943 | A |
2335589 | Fremeau | Nov 1943 | A |
2452604 | Selsmeyer | Nov 1948 | A |
2543064 | Roll | Feb 1951 | A |
2959098 | Hassman | Nov 1960 | A |
3162001 | Reynolds | Dec 1964 | A |
3515372 | Courville | Jun 1970 | A |
3913179 | Rhee | Oct 1975 | A |
3944033 | Simson | Mar 1976 | A |
4502192 | Hess | Mar 1985 | A |
4524495 | Hess | Jun 1985 | A |
5125599 | Sherman | Jun 1992 | A |
6704971 | Dossett | Mar 2004 | B2 |
6973700 | Hsiao | Dec 2005 | B2 |
6976719 | Agayof | Dec 2005 | B2 |
7185399 | Logan | Mar 2007 | B2 |
7377013 | Cheung | May 2008 | B2 |
7578532 | Schiebler | Aug 2009 | B2 |
7582089 | Schiebler | Sep 2009 | B2 |
7651169 | Collins | Jan 2010 | B2 |
8049629 | Schiebler | Nov 2011 | B2 |
8152105 | Rossi | Apr 2012 | B2 |
20030000052 | Dossett | Jan 2003 | A1 |
20050028326 | Logan | Feb 2005 | A1 |
20060144951 | Schiebler | Jul 2006 | A1 |
20080116326 | Schiebler | May 2008 | A1 |
20090032646 | Rossi | Feb 2009 | A1 |
Entry |
---|
Packing and Maintenance Manual for Stroud Safety Drag Chutes, pp. 1-11, www.stroudsafety.com, Oklahoma City, OK, US. |
Number | Date | Country | |
---|---|---|---|
20160129848 A1 | May 2016 | US |