Retainer for a welding wire container and welding wire container

Information

  • Patent Grant
  • 10294065
  • Patent Number
    10,294,065
  • Date Filed
    Thursday, June 6, 2013
    11 years ago
  • Date Issued
    Tuesday, May 21, 2019
    5 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Mansen; Michael R
    • Adams; Nathaniel L
    Agents
    • Hayes Soloway P.C.
Abstract
A retainer is described for exerting a braking effect on wire provided as a spool in a container. The retainer has a plate-like elastic element with a contact surface adapted for resting on the wire, an outer circumference adapted for being guided in the container, and an inner circumference adapted for allowing the wire to pass through. The plate-like elastic element has an elasticity such that one of the inner and outer circumferences sags down, under the proper weight of the retainer, by a distance of at least 10 mm when the retainer is supported at the other of the inner and outer circumference.
Description

The invention relates to a retainer for a welding wire container and to a welding wire container.


BACKGROUND OF THE INVENTION

The use of bulk polygonal packs or round drums containing large quantities of reverse wound aluminium welding wire (in some cases up to as much as 500 kgs) is becoming increasingly popular since it offers the advantage of great savings thanks to a reduced pack changeover downtime and a higher productivity. The ability to avoid unwanted weld interruptions in some applications like the production of vehicle components and automotive parts, is extremely important because stoppages in the middle of the automated weld process can cause cracks, weld defects, mechanical failures with consequent costly aftermarket product liability issues. A good weld with no defects or imperfections is absolutely necessary in order to prevent subsequent equipment failures.


Unwanted production interruptions can offset the advantages of the so-called “lean manufacturing process” that relies on the optimization of the supply flow in sequential steps of production.


The industry today, and in particular the automotive industry, is increasingly using aluminium welding wires for many applications, since aluminium has the advantage of being a resistant, fairly strong, corrosion-free metal but also much lighter (approximately three times lighter) than steel; vehicles with less weight bring relevant fuel savings.


More and more manufacturers are choosing bulk containers with large quantities of twist-free reverse wound welding wire in combination with high performing low friction guiding liners with rolling elements inside.


Aluminium wires are however very soft and can easily be deformed by friction or attrition in particular when the wire during payout is forced to scratch against the inner edge of the wire retainer. Deformed wires can cause serious weld defects that would either require repair where possible, or in the worst case scenario, the inevitable scrapping of valued parts because of their non conformance to the desired quality standards.


This problem has been known for a while and several prior art attempts have been made to solve it.


Barton and Carroscia in U.S. Pat. No. 7,398,881 propose a rigid retainer ring with embedded pockets of different shape and density in order to help reduce the overall retainer weight. The attempt to generate some weight relief is obvious but notwithstanding the pockets the retainer maintains its rigidity, and this could still deform soft aluminium wires (like, but not limited to, the grade AWS 4043) in the commonly used thin wire diameters like for example 1.20 mm.


Again Carroscia in U.S. Pat. No. 7,410,111 describes, as a possible solution, the cut out of entire retainer sections in order to decrease the retainer plate weight by as much as 50% of its overall weight. This plate however is rigid and it can still deform the wire during payout; additionally this particular embodiment comes with the risk that the wire coil under the retainer can become excessively exposed to air contamination and oxydation.


Edelmann and Zoller in EP 2 354 039 also try to address the problem of the possible impact of a heavy retainer on the wire coil and disclose a retainer exerting a contact pressure on the wire spool for maintaining the spirals of the spool which is between 10 and 25 N/m2. This retainer with a claimed thickness of up to 15 mm has a significant degree of rigidity.


Gelmetti and Fagnani in EP 2 168 706 propose a flexible rubber retainer to smoothly control the wire payout but their retainer is quite expensive to build as it requires an outer periferical support frame and it is not designed to control aluminium welding wire since it features a plurality of flexible flaps which are freely hanging and pushed downwardly by the force of gravity into the middle of the pack. A soft aluminium wire would have to overcome the resistance of these flaps to be paid out, and that would also inevitably contribute to cause wire deformation. The flaps, in this invention, seem to be aimed at preventing possible tangles caused by the simultaneous feeding of multiple wire strands.


While the first two prior art documents are expressly directed to resolve the problem of the wire deformation, the latter two attempt to rather address the issue of wire tangling during payout from the bulk container.


Gelmetti in U.S. patent application Ser. No. 13/330,314 and International Patent Application PCT/EP2012/076081 teaches of a dynamic retainer to pay wires out of a bulk container such retainer being composed by the assembly of several individual “tiles” connected together but independently raising at the passage of wire. Notwithstanding the dynamic interaction of this retainer with the wire the tiles are rigid pieces and testing has demonstrated that deformation of softer aluminium wires can in fact still occur.


There is a need for a retainer which allows a smooth pay-out of soft, deformable welding wire such as aluminum welding wire.


BRIEF DESCRIPTION OF THE INVENTION

The invention provides a retainer for exerting a braking effect on wire provided as a spool in a container. The retainer has a plate-like elastic element with a contact surface adapted for resting on the wire, an outer circumference adapted for being guided in the container, and an inner circumference adapted for allowing the wire to pass through. The plate-like elastic element has an elasticity such that one of the inner and outer circumferences sags down, under the proper weight of the retainer, by a distance of at least 10 mm when the retainer is supported at the other of the inner and outer circumference. The invention is based on the recognition that a comparatively elastic retainer is particularly suitable for controlling pay-out of the welding wire as it on the one hand allows the wire to lift the retainer at the inner circumference, thereby locally adapting the shape and curvature of the retainer to the shape of the welding wire in the portion which is currently withdrawn from the upper surface of the welding wire coil, and on the other hand ensures that the remainder of the retainer remains flat on the upper surface of the wire coil, thereby exerting its braking effect on the upper windings of the welding wire coil.


Preferably, the distance by which the inner or outer circumference sags down is at least 20 mm and not more than 50 mm.


The invention also provides a retainer for exerting a braking effect on wire provided as a spool in a container, which has a plate-like elastic element with a contact surface adapted for resting on the wire, an outer circumference adapted for being guided in the container, and an inner circumference adapted for allowing the wire to pass through. The plate-like elastic element has an elasticity such that when the retainer is supported along a diameter, opposite sides of the retainer sag down, under the proper weight of the retainer, by a distance which is more than 5% of said diameter of the retainer. The elasticity which allows this deformation of the retainer also allows controlling pay-out of the welding wire in an advantageous manner as it on the one hand allows the wire to lift the retainer at the inner circumference, thereby locally adapting the shape and curvature of the retainer to the shape of the welding wire in the portion which is currently withdrawn from the upper surface of the welding wire coil, and on the other hand ensures that the remainder of the retainer remains flat on the upper surface of the wire coil, thereby exerting its braking effect on the upper windings of the welding wire coil.


Preferably, the distance by which opposite sides of the retainer sag downwardly when the retainer is being supported centrally along a diameter is at least 10% of the diameter of the retainer and more preferably 15% of the diameter.


In order to ensure that the retainer has a strength and rigidity which prevents the retainer from collapsing and falling into the interior of the welding wire coil, the distance by which opposite sides of the retainer sag downwardly when the retainer is being supported centrally along a diameter is not more than 40% of the diameter of the retainer.


Preferably, the plate-like elastic element consists of plastic. This allows manufacturing the retainer at low costs with the desired elasticity.


Polycarbonate is particularly advantageous as its properties, in particular the elasticity, can easily be controlled to be within desired values.


According to a preferred embodiment of the invention, the retainer is transparent. This allows visually checking the welding wire coil which is being covered by the retainer.


The plate-like elastic element of the retainer preferably has a thickness which is in a range of 0.3 mm to 12 mm. These values allow combining the desired elasticity with a low weight and a sufficient rigidity.


According to an embodiment of the invention, the plate-like elastic element of the retainer is provided with a reinforcement ring which extends along said outer circumference. This allows using a very pliant and yielding plate-like elastic element, e.g. a rubber sheet, which is being conferred the necessary rigidity for staying on top of the welding wire coil by the frame-like reinforcement ring.


Preferably, the retainer has a contact surface with a roughness which is different from a roughness of a surface which is opposite the contact surface. In other words, the two surfaces of the plate-like elastic element are manufactured with different surface roughnesses. If a higher braking effect of the retainer is desired, the retainer is employed such that the surface with the higher roughness acts as the contact surface. If a lower braking effect is desired, the retainer is reversed and the smoother surface is being used as contact surface. The different roughnesses can be achieved by molding the plate-like elastic element in a mould which has a polished and a non-polished or even roughened surface, or by a suitable surface treatment of the plate-like elastic element of the retainer.


The invention also provides a welding wire container having a bottom, circumferential walls extending upwardly from the bottom, a welding wire coil formed from a plurality of windings of welding wire, and a retainer which rests on an upper surface of the coil. The retainer has a plate-like elastic element with a contact surface adapted for resting on the wire, an outer circumference adapted for being guided in the container, and an inner circumference adapted for allowing the wire to pass through. The plate-like elastic element has an elasticity E which is in a range of 0.05 to 0.4, with the elasticity E being determined by the following formula:






E
=


0.2

%





yieldlimit


specificweight
*
B







with:

    • the 0.2% yield limit of the welding wire in N/mm2;
    • the specific weight of the welding wire in g/cm3;
    • B being the widths of the retainer from the inner to the outer circumference in mm;


Preferably, the elasticity E as determined by the above formula is within a range of 0.08 to 0.14.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described with reference to the enclosed drawings. In the drawings,



FIG. 1 shows a prior art container with retainer in a cross section;



FIG. 2 shows the elastic behavior of the prior art retainer when tested in a first type of set-up;



FIG. 3 shows a perspective view of a container according to the invention with a retainer according to a first embodiment of the invention;



FIG. 4 shows a perspective view of a container according to the invention with a retainer according to a second embodiment of the invention;



FIG. 5 shows the first type of set-up for determining the appropriate elasticity of a retainer according to the invention, and two embodiments of the retainer according to the invention;



FIG. 6 shows a second type of set-up for determining the appropriate elasticity of a retainer according to the invention.





DETAILED DESCRIPTION OF THE INVENTION

A welding wire container 10 with a welding wire retainer 12 as known from the prior art is shown in FIGS. 1 and 2. The container 10 has a rectangular inner cross section (e.g. octagonal), side walls 14 (two side walls are shown), a bottom 16 and a lid 18.


In the interior of the container 10, a welding wire coil 20 is accommodated. The welding wire coil 20 consists of a certain amount of welding wire 22 which is coiled so as to form a hollow body with a ring-shaped cross section. The portion of the welding wire which is currently being withdrawn from the container is designated with reference numeral 24.


On the upper side of the welding wire coil 20, the retainer 12 is provided. The retainer 12 has a plate-like body with a central opening 28 which is delimited by an inner circumference 30. An outer circumference 32 of retainer 12 serves for guiding the retainer within the container, in particular between the side walls 14.


The retainer 12 lies on the upper side of the welding wire coil 20, the retainer 12 being always generally parallel to lid 18.


Conventional prior art retainers are made from a thick plastic element which is generally rigid. This will be explained with reference to FIG. 2. If the retainer as used in the container of FIG. 1 is supported along its outer circumference 32 by means of a support 40 which follows the outer contour of retainer 12 and has a small width x (e.g. not more than 10 mm), then the inner circumference 30 of the prior art retainer 12 sags downwardly by a distance s which is not more than 10 mm. This is due to the fact that the plate-like retainer is essentially rigid.


The result of retainer 12 being rigid can be seen in FIG. 1.


Retainer 12 exerts, owing to its weight and the friction between the retainer 12 and the welding wire 24, a braking effect on the welding wire 24 when the welding wire is withdrawn from container 10. This braking effect results in a certain traction force which is necessary for pulling the wire from the coil 20. The traction force however results in the welding wire 24 being bent in a region B where it passes around the inner circumference 30 of retainer 12.


In order to avoid the welding wire 24 from being bent when passing around the inner circumference 30 of retainer 12, the invention provides a retainer 12 which is elastic. A first embodiment of the retainer is shown in FIG. 3, where the same reference numerals are being used as in FIG. 1.


Retainer 12 is as a plate-like elastic element which can simply be cut out from a thin sheet made of elastic material. As elastic material, plastic with the necessary elasticity is preferred, in particular polycarbonate. The inherent elasticity of the plate-like elastic element allows deforming the plate-like element which however returns to its original position as soon as the pressure is released.


The behavior of the retainer can be seen in FIG. 3. Retainer 12 bends and deforms only at the very point (and closely adjacent thereto) where it is engaged by the wire 24 being paid out while the remaining portion of retainer 12, not engaged, remains still and undeformed to control the remaining strands and the rest of the wire coil 20.


As soon as the wire 24 has passed the engaged point of plate-like elastic element 13, the deformed portion returns to its original undeformed condition. This provides a dynamic controlling action that actively follows the movement of the wire strand being paid out, adapting itself to the wire 24 without deforming it.


It can be seen that due to the particular elasticity of the plate-like elastic element which forms retainer 12, the inner contour of the retainer adjacent inner circumference 30 is deformed by the wire such that the retainer is locally curved upwardly, thereby preventing any sharp bending of the welding wire.


A second embodiment of the retainer is shown in FIG. 4. The difference between the first and second embodiment is that the second embodiment uses a reinforcement ring 50 which defines the outer contour of retainer 12. The majority M of the width B of the annular retainer 12 is however not covered by reinforcement ring 50 so that the plate-like elastic element is exposed. The advantage of the second embodiment over the first embodiment is that a very thin and thereby flexible plate-like elastic element can be used with the second embodiment without there being any risk that the stability and rigidity of the entire retainer 12 is not sufficient for securely keeping it on top of the welding wire coil. The plate-like elastic element can here be formed of a very thin, flexible material like rubber or silicon, with the reinforcement ring 50 acting as a rigid, supportive frame.


For both embodiments, the outer contour of retainer 12, defined by outer circumference 32, matches the contour of the inside of container 10, with a slight play being provided between the inner contour of the container 10 and the outer contour of the retainer 12. This play allows retainer 12 to freely descend in the interior of container 10 when the height of the welding wire coil 20 decreases.


Further, the diameter of the opening 28 defined by the inner circumference 30 of the retainer 12 is slightly smaller than the inner diameter of welding wire coil 20 so that no area of the top of the wire coil 20 is exposed to air contamination. In other words, the retainer plate completely covers the top side of the coil.


The inner contour 30 of plate-like elastic element 12 has a uniform, uninterrupted edge, without there being any additional flaps, fingers or dents.


The optimal thickness to obtain a sufficient level of elasticity of the retainer varies and is in relation with the dimensions of the retainer itself: the larger the plate, the thicker it must be, and vice versa. In general, the elasticity of the retainer must not be excessively high as this could result in a deformation of the entire retainer such that it drops into the interior of the welding wire coil, resulting in a jamming of the whole system. At the same time, the elasticity of the retainer must be sufficient for allowing the plate-like elastic element to yield under the traction forces acting on the welding wire such that the welding wire is not deformed.


The suitable elasticity of the retainer can very easily be determined with the set-up as shown in FIG. 5. The set-up is the same as already shown in FIG. 2, namely a support 40 which is narrow (with a thickness x of no more than 10 mm) and which supports the outer circumference 32 of the retainer.


The retainer 12 as shown in FIG. 4 is shown in continuous lines in FIG. 5. It can be seen that the outer circumference 32 remains basically undeformed due to reinforcement ring 50. The inner circumference 30 sags down by a distance s which is at least 10 mm and preferably at least 20 mm.


The retainer of FIG. 3 is shown in dashed lines. Here again, the inner circumference 30 sags down by a distance s which is at least 10 mm and preferably at least 20 mm. Owing to the desired stability of the retainer, the inner circumference 30 of retainer 12 will not sag down more than 50 mm.


A retainer 12 according to the invention will exhibit the same behavior if the set-up is reversed such that it supports the retainer along the inner circumference 30 rather than along the outer circumference 32.


A different set up for choosing the correct elasticity of retainer 12 is shown in FIG. 6. Here, a narrow support (again having a width x of not more than 10 mm) is used which supports the retainer centrally along a diameter. A conventional, rigid retainer will, when supported by a narrow support 50 which extends along a diameter of the retainer, deform under its proper weight such that opposite sides sag down by a distance s which is not more than 5% of the diameter of the retainer. An inventive retainer 12 will show a larger deformation. Opposite ends of a retainer 12 according to the invention will sag down by a distance s which is more than 5% of the diameter of the retainer, in particular more than 15%. In order to guarantee a sufficient proper stability of the retainer, the elasticity is chosen such that opposite sides of the retainer do not sag down more than 40% of the diameter of the retainer.


It has been determined that the 0.2% yield limit of the welding wire in the container and also the specific weight of the welding wire are decisive factors for determining a suitable elasticity of retainer 12. Taking further into account the dimensions of the retainer, it has been found out that an elasticity factor E can be determined with the following formula:






E
=


0.2

%





yieldlimit


specificweight
*
B







with:

    • the 0.2% yield limit of the welding wire in N/mm2;
    • the specific weight of the welding wire in g/cm3;
    • B being the widths of the retainer from said inner to said outer circumference in mm;


The best results were achieved with an elasticity E in a range of 0.05 to 0.4, in particular well within the range of 0.08 to 0.14.


If a transparent material like thin polycarbonate is used to produce the retainer, it is also possible to visually inspect the complete wire movements and layers behavior.


It also possible to use, for cutting the retainer out, plastic sheets which have a polished and therefore more slippery surface on one side and a milled and therefore rougher surface on the opposite side, so that the retainer can conveniently be turned upside down as needed, in order to increase or decrease the retainer strands controlling action, for example depending on the wire diameter, the wire hardness or the wire surface finish.

Claims
  • 1. A container having a bottom, and circumferential walls extending upwardly from said bottom, containing a coil of welding wire formed of a plurality of windings of welding wire contained in the welding wire container, and an internal retainer positioned on the coil of wire for exerting a braking effect on the wire stored in the container as the wire is withdrawn from the container, said retainer comprising a ring-shaped elastic element formed of a non-magnetic material having a contact surface in part supported on said coil of wire, and a surface opposite said contact surface said ring-shaped elastic element having an outer circumference adapted for being guided in said container, and an inner circumference having a uniform uninterrupted edge adapted for allowing said wire to pass through, said ring-shaped elastic element having physical characteristics of a thickness in a range of 0.3 mm to 12 mm, and being formed of a plastic material having a flexibility such that when an outer 10 mm circumference of said ring-shaped elastic element is supported, unsupported regions of said ring-shaped elastic element sag down, under their own weight, by a distance of at least 10 mm and not more than 50 mm, whereby a controlled braking effect of pay-out of the welding wire from the container results due solely to the weight of and friction of the retainer acting on the wire.
  • 2. The container of claim 1 wherein said distance is at least 20 mm.
  • 3. The container of claim 1 wherein said ring-shaped elastic element is formed of polycarbonate.
  • 4. The container of claim 1 wherein said retainer is transparent.
  • 5. The container of claim 1 wherein said ring-shaped elastic element is provided with a reinforcement ring which extends along said outer circumference.
  • 6. The container of claim 1 wherein said contact surface has a roughness which is different from a roughness of a surface which is opposite said contact surface.
  • 7. A container having a bottom, and circumferential walls extending upwardly from said bottom, containing a coil of welding wire formed of a plurality of windings of welding wire contained in the welding wire container, and an internal retainer positioned on the coil of wire for exerting a braking effect on the wire stored in the container as the wire is withdrawn from the container, said retainer having a ring-shaped elastic element formed of a non-magnetic material having a contact surface in part supported on said coil of wire, and a surface opposite said surface, said ring-shaped elastic element having an outer circumference adapted for being guided in said container, and an inner circumference having a uniform uninterrupted edge adapted for allowing said wire to pass through, said ring-shaped elastic element having a thickness in a range of 0.3 mm to 12 mm, and being formed of a plastic material having physical characteristics of a flexibility such that when the retainer is supported centrally by a 10 mm wide support, unsupported regions of said ring-shaped elastic element sag down, under their own weight, by a distance which is between 5% and 40% of said diameter of said retainer, whereby a controlled braking effect of pay-out of the welding wire from the container results due solely to the weight of and friction of the retainer acting on the wire.
  • 8. The container of claim 7 wherein said distance is at least 10% of said diameter.
  • 9. The container of claim 8 wherein said distance is at least 15% of said diameter.
  • 10. The container of claim 7 wherein said distance is not more than 40% of said diameter.
  • 11. The container of claim 7 wherein said ring-shaped elastic element is provided with a reinforcement ring which extends along said outer circumference.
  • 12. The container of claim 7 wherein said contact surface has a roughness which is different from a roughness of a surface which is opposite said contact surface.
  • 13. A container having a bottom, and circumferential walls extending upwardly from said bottom, containing a welding wire coil formed from a plurality of windings of welding wire contained in the welding wire container, and an internal retainer which rests on an upper surface of said coil, said retainer having a ring-shaped elastic element formed of non-magnetic material having a contact surface in part resting on said coil of wire, and a surface opposite said contact surface, said retainer having an outer circumference adapted for being guided in said container, and an inner circumference having a uniform uninterrupted edge adapted for allowing said wire to pass through, said ring-shaped elastic element being formed of a plastic material having physical characteristics of a thickness in a range of 0.3 mm to 12 mm, flexibility E selected based on a yield limit and a specific weight of the wire, and a width of the retainer, wherein the flexibility E is determined by the following formula:
  • 14. The container of claim 13 wherein said elastic flexibility E is within a range 0.08 to 0.14.
  • 15. The container of claim 13 wherein said ring-shaped elastic element is formed of polycarbonate.
  • 16. The container of claim 13 wherein said retainer is transparent.
US Referenced Citations (280)
Number Name Date Kind
RE8148 Meinikheim Apr 1878 E
318062 Warren May 1885 A
532565 Kilmer Jan 1895 A
617353 Redmond Jan 1899 A
627722 Edwards Jun 1899 A
932808 Pelton Aug 1909 A
1276117 Riebe Aug 1918 A
1468994 Cook Sep 1923 A
1508689 Glasser Sep 1924 A
1640368 Obetz Aug 1927 A
1821354 Meyer Sep 1931 A
1907051 Emery May 1933 A
1936227 Cook Nov 1933 A
2027670 Broeren Jan 1936 A
2027674 Broeren Jan 1936 A
2059462 Jungmann Nov 1936 A
2260230 Olson Oct 1941 A
2319628 Pinniger May 1943 A
2329369 Haver Sep 1943 A
2366101 Grothey Dec 1944 A
2407746 Johnson Sep 1946 A
2457910 McLaren et al. Jan 1949 A
2477059 Hill Jul 1949 A
2483760 Duncan Oct 1949 A
2579131 Tinsley Dec 1951 A
2580900 Epstein Jan 1952 A
2679571 Chappel May 1954 A
2694130 Howard Nov 1954 A
2713938 Snyder Jul 1955 A
2724538 Schweich Nov 1955 A
2752108 Richardson Jun 1956 A
2838922 Gift Jun 1958 A
2849195 Richardson Aug 1958 A
2864565 Whearly Dec 1958 A
2869719 Hubbard Jan 1959 A
2880305 Baird Mar 1959 A
2911166 Haugwitz Nov 1959 A
2929576 Henning Mar 1960 A
2966258 Krafft Dec 1960 A
2974850 Mayer Mar 1961 A
2984596 Franer May 1961 A
3022415 Francois Feb 1962 A
3028066 Bumby Apr 1962 A
3096951 Jenson Jul 1963 A
3108180 Linnander Oct 1963 A
3119042 Bond Jan 1964 A
3185185 Pfund May 1965 A
3244347 Jenk Apr 1966 A
3274850 Tascio Sep 1966 A
3283121 Bernard et al. Nov 1966 A
3284608 McDonald Nov 1966 A
3344682 Bratz Oct 1967 A
3352412 Draving et al. Nov 1967 A
3377388 Hsu et al. Apr 1968 A
3433504 Hanes Mar 1969 A
3463416 Quenot Aug 1969 A
3478435 Cook Nov 1969 A
3491876 Zecchin Jan 1970 A
3512635 Lang May 1970 A
3536888 Borneman Oct 1970 A
3565129 Field Feb 1971 A
3567900 Nelson Mar 1971 A
3576966 Sullivan May 1971 A
3595277 Lefever Jul 1971 A
3648920 Stump Mar 1972 A
3659737 Garbe May 1972 A
3690567 Borneman Sep 1972 A
3724249 Asbeck et al. Apr 1973 A
3729092 Marcell Apr 1973 A
3730136 Okada May 1973 A
3799215 Willems Mar 1974 A
3815842 Scrogin Jun 1974 A
3823894 Frederick et al. Jul 1974 A
3939978 Thomaswick Feb 1976 A
3958712 Martin May 1976 A
4000797 Ducanis Jan 1977 A
4043331 Martin et al. Aug 1977 A
4044583 Kinney, Jr. Aug 1977 A
4074105 Minehisa et al. Feb 1978 A
4097004 Reese Jun 1978 A
4102483 Ueyama et al. Jul 1978 A
4113795 Izawa et al. Sep 1978 A
4127590 Endo et al. Nov 1978 A
4157436 Endo et al. Jun 1979 A
4161248 Kalmanovitch Jul 1979 A
4171783 Waltemath Oct 1979 A
4172375 Rushforth et al. Oct 1979 A
4188526 Asano Feb 1980 A
4222535 Hosbein Sep 1980 A
4254322 Asano Mar 1981 A
4274607 Priest Jun 1981 A
4280951 Saito et al. Jul 1981 A
4293103 Tsukamoto Oct 1981 A
4354487 Oczkowski et al. Oct 1982 A
4392606 Fremion Jul 1983 A
4396797 Sakuragi et al. Aug 1983 A
4429001 Kolpin et al. Jan 1984 A
4451014 Kitt et al. May 1984 A
4464919 Labbe Aug 1984 A
4500315 Pieniak et al. Feb 1985 A
4516692 Croley May 1985 A
4540225 Johnson et al. Sep 1985 A
4546631 Eisinger Oct 1985 A
4575612 Prunier Mar 1986 A
4582198 Ditton Apr 1986 A
4585487 Destree et al. Apr 1986 A
4623063 Balkin Nov 1986 A
4737567 Matsumoto et al. Apr 1988 A
4742088 Kim May 1988 A
4795057 Jungels et al. Jan 1989 A
4826497 Marcus et al. May 1989 A
4855179 Bourland et al. Aug 1989 A
4869367 Kawasaki et al. Sep 1989 A
4891493 Sato et al. Jan 1990 A
4916282 Chamming et al. Apr 1990 A
4918286 Boyer Apr 1990 A
4949567 Corbin Aug 1990 A
4974789 Milburn Dec 1990 A
5051539 Leathers-Wiessner Sep 1991 A
5061259 Goldman et al. Oct 1991 A
5078269 Dekko et al. Jan 1992 A
5097951 Pigott Mar 1992 A
5100397 Poccia et al. Mar 1992 A
5105943 Lesko et al. Apr 1992 A
5109983 Malone et al. May 1992 A
5147646 Graham Sep 1992 A
5165217 Sobel et al. Nov 1992 A
5201419 Hayes Apr 1993 A
5205412 Krieg Apr 1993 A
5215338 Kimura et al. Jun 1993 A
5227314 Brown et al. Jul 1993 A
5261625 Lanoue Nov 1993 A
5277314 Cooper et al. Jan 1994 A
5279441 Featherall Jan 1994 A
5314111 Takaku et al. May 1994 A
5368245 Fore Nov 1994 A
5372269 Sutton et al. Dec 1994 A
5452841 Sibata et al. Sep 1995 A
5485968 Fujioka Jan 1996 A
5494160 Gelmetti Feb 1996 A
5530088 Sheen et al. Jun 1996 A
5553810 Bobeczko Sep 1996 A
5562646 Goldman et al. Oct 1996 A
5585013 Truty Dec 1996 A
5586733 Miura et al. Dec 1996 A
5590848 Shore et al. Jan 1997 A
5629377 Burgert et al. May 1997 A
5645185 Cassina Jul 1997 A
5665801 Chang et al. Sep 1997 A
5692700 Bobeczko Dec 1997 A
5702001 Russell et al. Dec 1997 A
5714156 Schmidt et al. Feb 1998 A
5738209 Burr et al. Apr 1998 A
5739704 Clark Apr 1998 A
5746380 Chung May 1998 A
5758834 Dragoo et al. Jun 1998 A
5778939 Hok-Yin Jul 1998 A
5816466 Seufer Oct 1998 A
5819934 Cooper Oct 1998 A
5845862 Cipriani Dec 1998 A
5847184 Kleiner Dec 1998 A
5865051 Otzen et al. Feb 1999 A
5921391 Ortiz et al. Jul 1999 A
5931408 Ishii et al. Aug 1999 A
5971308 Boulton Oct 1999 A
5988370 Roemer et al. Nov 1999 A
5990377 Chen et al. Nov 1999 A
6016911 Chen Jan 2000 A
6019303 Cooper Feb 2000 A
6103358 Bruggemann et al. Aug 2000 A
6159591 Beihoffer et al. Dec 2000 A
6237768 Cipriani May 2001 B1
6245880 Takeuchi et al. Jun 2001 B1
6255371 Schlosser et al. Jul 2001 B1
6260781 Cooper Jul 2001 B1
6301944 Offer Oct 2001 B1
6322016 Jacobsson et al. Nov 2001 B1
6340522 Burke et al. Jan 2002 B1
6408888 Baeumer et al. Jun 2002 B1
6409116 Brown Jun 2002 B1
6417425 Whitmore et al. Jul 2002 B1
6425549 Bae et al. Jul 2002 B1
6464077 Liu Oct 2002 B1
6481892 Agostini Nov 2002 B1
6498227 Horie Dec 2002 B1
6524010 Derman Feb 2003 B1
6547176 Blain et al. Apr 2003 B1
6564943 Barton et al. May 2003 B2
6613848 Wang et al. Sep 2003 B1
6636776 Barton et al. Oct 2003 B1
6648141 Land Nov 2003 B2
6649870 Barton et al. Nov 2003 B1
6708864 Ferguson, III et al. Mar 2004 B2
6715608 Moore Apr 2004 B1
6745899 Barton Jun 2004 B1
6749136 Speck Jun 2004 B1
6750262 Hahnle et al. Jun 2004 B1
6753454 Smith et al. Jun 2004 B1
6821454 Visca et al. Nov 2004 B2
6831142 Mertens et al. Dec 2004 B2
6872275 Ko et al. Mar 2005 B2
6889835 Land May 2005 B2
6913145 Barton Jul 2005 B2
6938767 Gelmetti Sep 2005 B2
6977357 Hsu et al. Dec 2005 B2
7004318 Barton Feb 2006 B2
7108916 Ehrnsperger et al. Sep 2006 B2
7147176 Rexhaj Dec 2006 B2
7152735 Dragoo et al. Dec 2006 B2
7156334 Fore et al. Jan 2007 B1
7178755 Hsu et al. Feb 2007 B2
7198152 Barton et al. Apr 2007 B2
7220942 Barton et al. May 2007 B2
7309038 Carroscia Dec 2007 B2
RE40351 Cipriani Jun 2008 E
7398881 Barton et al. Jul 2008 B2
7410111 Carroscia Aug 2008 B2
7441657 Gelmetti Oct 2008 B2
7441721 Bae et al. Oct 2008 B2
7533906 Luettgen et al. May 2009 B2
7563840 Ye Jul 2009 B2
7748530 Hsu et al. Jul 2010 B2
7950523 Gelmetti May 2011 B2
8207475 Minato et al. Jun 2012 B2
8235210 De Lacerda et al. Aug 2012 B2
8882018 Gelmetti Nov 2014 B2
20010014706 Sprenger et al. Aug 2001 A1
20020000391 Kawasai et al. Jan 2002 A1
20020003014 Homma Jan 2002 A1
20020014477 Lee et al. Feb 2002 A1
20020039869 Achille Apr 2002 A1
20020120178 Tartaglia et al. Aug 2002 A1
20030006235 Przytulla Jan 2003 A1
20030042162 Land Mar 2003 A1
20030042163 Cipriant Mar 2003 A1
20030052030 Gelmetti Mar 2003 A1
20030184086 Christianson Oct 2003 A1
20040020041 Ferguson, III et al. Feb 2004 A1
20040050441 Roschi Mar 2004 A1
20040133176 Muthiah et al. Jul 2004 A1
20040155090 B.-Jensen Aug 2004 A1
20040176557 Mertens et al. Sep 2004 A1
20040186244 Hatsuda et al. Sep 2004 A1
20040201117 Anderson Oct 2004 A1
20040241333 Cielenski et al. Dec 2004 A1
20040265387 Hermeling et al. Dec 2004 A1
20050008776 Chhabra et al. Jan 2005 A1
20050023392 Hsu et al. Feb 2005 A1
20050258290 Kuper Nov 2005 A1
20050261461 Maeda et al. Nov 2005 A1
20060027699 Bae et al. Feb 2006 A1
20060074154 Harashina et al. Apr 2006 A1
20060155254 Sanz et al. Jul 2006 A1
20060196794 Nicklas Sep 2006 A1
20060247343 Kishimoto et al. Nov 2006 A1
20060258824 Oshima et al. Nov 2006 A1
20060278747 Carroscia Dec 2006 A1
20070045141 Gelmetti Mar 2007 A1
20070056943 Tenbrink Mar 2007 A1
20070175786 Nicklas Aug 2007 A1
20070175965 Carroscia Aug 2007 A1
20070272573 Gelmetti Nov 2007 A1
20070284354 Laymon Dec 2007 A1
20080156925 Cooper Jul 2008 A1
20080257875 De Keizer Oct 2008 A1
20080300349 Fuchikami et al. Dec 2008 A1
20080314876 Pinsonneault et al. Dec 2008 A1
20090014572 Weissbrod et al. Jan 2009 A1
20090014579 Bender et al. Jan 2009 A1
20090107867 Bang Apr 2009 A1
20090200284 Sanchez Aug 2009 A1
20100116803 Gelmetti May 2010 A1
20110073703 Gelmetti et al. Mar 2011 A1
20110094911 Gelmetti Apr 2011 A1
20110114523 Gelmetti May 2011 A1
20110114617 Gelmetti et al. May 2011 A1
20110132880 Kossowan Jun 2011 A1
20120006802 Bae Jan 2012 A1
20120298630 Stoutamire Nov 2012 A1
20130193259 Weissbrod et al. Aug 2013 A1
Foreign Referenced Citations (50)
Number Date Country
152978 Aug 1903 DE
202011104120 Jan 2012 DE
0017445 Oct 1980 EP
0408259 Apr 1992 EP
0519424 Dec 1992 EP
2 264 482 Sep 1993 EP
0665 166 Jan 1995 EP
0686439 Dec 1995 EP
1057751 Dec 2000 EP
1 275 595 Jan 2003 EP
1 295 813 Mar 2003 EP
1357059 Oct 2003 EP
1 471 024 Oct 2004 EP
1 698 421 Jun 2006 EP
1932613 Jun 2008 EP
1 504 841 Feb 2009 EP
2 256 064 Jan 2010 EP
2 354 039 Jan 2010 EP
2 168 706 Mar 2010 EP
2484476 Aug 2012 EP
2695696 Feb 2014 EP
2933202 Oct 2015 EP
880502 Oct 1961 GB
1168928 Oct 1969 GB
1229913 Apr 1971 GB
1 575 157 Sep 1980 GB
2059462 Apr 1981 GB
2 332 451 Jun 1999 GB
H05112352 May 1993 JP
WO 8103319 Nov 1981 WO
WO 8810230 Dec 1988 WO
WO 94-00493 Jan 1994 WO
WO 94-19258 Sep 1994 WO
WO 9700878 Jan 1997 WO
WO 9852844 Nov 1998 WO
WO 00-50197 Aug 2000 WO
WO 0127365 Apr 2001 WO
WO 02094493 Nov 2002 WO
WO 03-106096 Dec 2003 WO
WO 2005005704 Jan 2005 WO
WO 2005061168 Jul 2005 WO
2006091075 Aug 2006 WO
WO 2007010171 Jan 2007 WO
WO 2007112972 Oct 2007 WO
WO 2007149689 Dec 2007 WO
WO 2009007845 Jan 2009 WO
WO2009027784 Mar 2009 WO
WO 2009143917 Dec 2009 WO
WO 2011147565 Dec 2011 WO
WO 2013092658 Jun 2013 WO
Non-Patent Literature Citations (48)
Entry
MatWeb Data Sheet: “Universal Wire Works 4043 (AMS 4190) Aluminum Alloy Filler Metal”.
English Translation of KR 2004-0059894.
U.S. Appl. No. 10/526,539, filed Mar. 3, 2005.
U.S. Appl. No. 10/596,697, filed Jun. 21, 2006.
U.S. Appl. No. 11/466,048, filed Aug. 21, 2006.
U.S. Appl. No. 12/545,717, filed Aug. 21, 2009.
U.S. Appl. No. 12/545,720, filed Aug. 21, 2009.
U.S. Appl. No. 12/593,271, filed Sep. 25, 2009.
U.S. Appl. No. 12/572,994, filed Oct. 2, 2009.
U.S. Appl. No. 12/618,165, filed Nov. 13, 2009.
U.S. Appl. No. 12/618,250, filed Nov. 13, 2009.
U.S. Appl. No. 12/691,554, filed Jan. 21, 2010.
U.S. Appl. No. 12/789,095, filed May 27, 2010.
U.S. Appl. No. 12/994,686, filed Nov. 24, 2010.
U.S. Appl. No. 13/330,314, filed Dec. 19, 2011.
U.S. Appl. No. 13/382,491, filed Jan. 5, 2012.
U.S. Appl. No. 13/744,394, filed Jan. 17, 2013.
U.S. Appl. No. 14/030,879, filed Sep. 18, 2013.
U.S. Appl. No. 14/195,497, filed Mar. 3, 2014.
U.S. Appl. No. 14/289,090, filed May 28, 2014.
U.S. Appl. No. 13/330,314, filed Dec. 19, 2011, Gelmetti.
U.S. Appl. No. 13/744,394, filed Jan. 17, 2013, Gelmetti et al.
U.S. Appl. No. 14/030,879, filed Sep. 18, 2013, Gelmetti.
U.S. Appl. No. 14/195,497, filed Mar. 3, 2014, Gelmetti et al.
U.S. Appl. No. 14/289,090, filed May 28, 2014, Gelmetti et al.
Office Action issued in related U.S. Appl. No 13/330,314, dated Jun. 20, 2014 (14 pgs).
Notice of Allowance issued in related U.S. Appl. No. 13/330,314, dated Sep. 11, 2014 (17 pgs).
Extended European Search Report issued in corresponding European application No. 14169341.6-1705 dated Oct. 10, 2014 (9 pgs).
U.S. Appl. No. 12/572,994, filed Oct. 2, 2009, Gelmetti.
U.S. Appl. No. 13/382,491, filed Jan. 5, 2012, Gelmetti et al.
U.S. Office Action issued in related U.S. Appl. No. 12/572,994, dated Sep. 17, 2013 (13 pgs).
U.S. Appl. No. 13/912,016, filed Jun. 6, 2013.
U.S. Appl. No. 14/679,768, filed Apr. 6, 2015.
U.S. Appl. No. 13/912,016, filed Jun. 6, 2013, Gelmetti.
U.S. Appl. No. 14/679,768, filed Apr. 6, 2015, Gelmetti et al.
Office Action issued in related U.S. Appl. No. 14/030,879, dated Dec. 1, 2014 (38 pgs).
Extended European Search Report issued in related application No. 13179908.2, dated Nov. 13, 2013 (6 pgs).
Office Action issued in related U.S. Appl. No. 13/330,314, dated Feb. 28, 2014 (10 pgs).
European Office Action issued in application No. 16180212.9, dated Jan. 19, 2017 (7 pgs).
Office Action issued in U.S. Appl. No. 13/912,016, dated Sep. 22, 2016 (13 pgs).
Office Action issued in U.S. Appl. No. 14/850,753, dated Aug. 25, 2017 (64 pgs).
Office Action issued in U.S. Appl. No. 14/195,497, dated Mar. 23, 2017 (24 pgs).
European Search Report issued in application No. 17191662.0, dated Mar. 5, 2018 (8 pgs).
Notice of Allowance issued in U.S. Appl. No. 14/850,753, dated Mar. 27, 2018 (14 pgs).
Notice of Allowance issued in U.S. Appl. No. 15/295,797, dated Feb. 13, 2018 (18 pgs).
Office Action issued in U.S. Appl. No. 15/295,797, dated Mar. 5, 2018 (9 pgs).
Notice of Allowance issued in U.S. Appl. No. 14/850,753, dated Jan. 19, 2018 (14 pgs).
Office Action issued in U.S. Appl. No. 15/295,797, dated Dec. 14, 2017 (57 pgs).
Related Publications (1)
Number Date Country
20140361115 A1 Dec 2014 US